

KJM 9250

AVI-600 ¹³C NMR spectra

Version 7.3

Topspin 1.3 Windows XP AVI600

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. January 2020

AVI-600 ¹³C NMR spectra

1.0 Introduction

aw coded AVI-600 carbon parameter files typically have 64 K points across a 240 ppm window with D1 typically = 1.5 or 4 sec for quaternary carbon only spectra.

Quaternary carbons may have moderate to long T1's. If saturation is suspected **D1** should be increased from its default time.

Shaped pulse DEPT, INEPT, JMOD and APT spectra have wider flat topped spectra windows. This is most noticeable for signals within 0-20 ppm ppm of the high and low field sides of 240 ppm window ¹³C spectra, especially so in INEPT, JMOD and APT spectra.

When processed with EF or EFP a default LB of 1 or 2 Hz will be applied.

2.0 ¹³C NMR Spectra

- 2.1 ¹³C spectra with power gated ¹H decoupling and NOE
- 2.2 Inverse gated ¹³C spectra (no NOE)
- 2.3 Coupled ¹³C NMR spectrum with NOE
- 2.4 ZRESTSE, ZRESTSEIG and ZRESTSEND spectra
- 2.5 DEPT45, DEPT90 and DEPT135 spectra DEPT45SP, DEPT90SP and DEPT135SP spectra ¹H Coupled DEPTND spectra
- 2.6 DEPTQ135 spectrum with quaternary carbons DEPTQ quaternary (singlet) carbons only spectrum
- 2.7 INEPT spectra
 INEPTSP spectra
 INEPTND spectrum
- 2.8 JMOD spectra JMODSP spectra
- 2.9 APT spectra APTSP spectra

2.1 ¹³C NMR spectra using a 30°, 45°, 70° or 90° pulse

Parameter sets: awcarbon30, awcarbon45, awcarbon70 or awcarbon90 (+ getprosol) Pulse programmes: zgpg30, awzgpg45, awzgpg70 or zgpg respectively.

Spectra are ¹H decoupled with NOE.

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

 $\mathbf{DE} = 50$ or 60 usec will reduce but not eliminate baseline roll in cyroprobe $^{13}\mathrm{C}$ spectra.

Type ased (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with **EF** or **EFP** (applies **LB**). A large negative **PHC1** phase correction (eg -650°) will be required. After phasing baseline roll can be eliminated using the **multiabsn** macro with n = 30-40.

Lower: ¹³C spectrum of quinine in D₆-DMSO with a 70° pulse.

Upper: ¹³C spectrum of quinine in D₆-DMSO with a 30° pulse.

2.2 Inverse gated ¹³C NMR spectra

Parameter sets: awcarbon30ig, awcarbon45ig, awcarbon70ig, awcarbon90ig (+ getprosol)

Pulse programmes: zgig30, awzgig45, awzgig70, zgig respectively

Spectra are ¹H decoupled without NOE

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

 $\mathbf{DE} = 50$ or 60 usec will reduce but not eliminate baseline roll in cyroprobe $^{13}\mathrm{C}$ spectra.

Type ased (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with **EF** or **EFP** (applies **LB**). A large negative **PHC1** phase correction (eg -650°) will be required. After phasing baseline roll can be eliminated using the **multiabsn** macro with n = 30-50.

Lower: Inverse gated ¹³C spectrum of quinine in D₆-DMSO with a 70° pulse. **Upper:** Inverse gated ¹³C spectrum of quinine in D₆-DMSO with a 30° pulse.

2.3 ¹H coupled ¹³C NMR spectrum with NOE

Parameter set: awcarbon70nd (+ getprosol)

Pulse programme: awzg70nd

¹H decoupled ¹³C spectrum with NOE using a 70° pulse

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

 $\mathbf{DE} = 50 \text{ or } 60 \text{ usec will reduce but not eliminate baseline roll in cyroprobe } ^{13}\mathbf{C}$ spectra.

Type ased (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with **EF** or **EFP** (applies **LB**). A large negative **PHC1** phase correction (eg -650°) will be required. After phasing baseline roll can be eliminated using the **multiabsn** macro with n = 30-50.

Lower: ¹³C spectrum of quinine in D₆-DMSO with a 70° pulse.

Upper: ¹H coupled ¹³C spectrum of quinine in D₆-DMSO with a 70° pulse.

2.4 ZRESTSE ¹³C spectra

Parameter sets: awzrestse, awrestseig, awzrestsend (+ getprosol)
Pulse programmes: awzrestse, awzrestseig, awzrestsend respectively
Spectra are free from baseline roll.

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

P0 = P1*CNST0/90.0; CNST0 = 70° or other tip angle of your choice (30°-90° range).

D1 = **1.5 sec** (zrestse and zrestseig) or **4 sec** (zrestsend) or other time of your choice.

Type **ased** (enter) and review parameters used in the job. Check shaped pulses and gradients are OK.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

ZRESTSE spectra of quinine in D₆-DMSO determined with a 70° P0 pulse.

Lower: power gated zrestse spectrum. Center: inverse gated zrestseig spectrum.

Upper: ¹H coupled **zrestsend** spectrum.

2.5.1 DEPT45, DEPT90 and DEPT135 spectra

Parameter sets: awdept45, awdept90 or awdept135 (+ getprosol)

Pulse programmes: dept45, dept90 or dept135 respectively

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!). Process with EF or EFP (applies LB).

DEPT spectra of quinine in D₆-DMSO. **Lower: DEPT45** spectrum.

Center: DEPT90 spectrum. Upper: DEPT135 spectrum.

2.5.2 DEPTSP45, DEPTSP90 and DEPTSP135 spectra

Parameter sets: awdept45sp, awdept90sp or awdept135sp (+ getprosol)

Pulse programmes: deptsp45, deptsp90 or deptsp135 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

DEPTSP spectra of quinine in D₆-DMSO. **Lower: DEPT45SP** spectrum.

Center: DEPT90SP spectrum. Upper: DEPT135SP spectrum.

2.5.3 ¹H Coupled DEPTND Spectra

Parameter set: awdeptnd (+ getprosol)

Pulse programme: **awdeptnd** with a P0 = 45 degree pulse

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

P0 is auto-set up as **0.5*P3** to afford a dept45nd spectrum.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

Lower: DEPT45 spectrum of quinine in D₆-DMSO.

Upper: DEPTND spectrum.

2.6.1 DEPT135Q spectrum with quaternary carbons

Parameter set: awdept135q (+ getprosol)

Pulse programme: **deptqgpsp**

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST12 = 1.5 for DEPT135 spectrum with quaternary carbons.

Type **ased** (enter) and review parameters used in the job.

Check GPZ1, GPZ2 and GPZ3 gradients = 31%.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

Lower: ¹³C NMR spectra of quinine in D₆-DMSO. **Upper: Dept135** spectrum. CH and CH₃ carbons positive; C (quaternary) and CH₂ carbons negative.

2.6.2 DEPT Quaternary carbon only spectrum

Parameter set: awdeptq (+ getprosol)

Pulse programme: deptqgpsp

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = multiple of 4 or 8, DS = 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST12 = 1.5 for alternating cancellation of DEPT135 carbon signals.

Type **ased** (enter) and review parameters used in the job.

Check GPZ1, GPZ2 and GPZ3 gradients = 31%, 31% and 11% respectively.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

Lower: ¹³C NMR spectra of quinine in D₆-DMSO. Upper: DeptQ spectrum.

2.7.1 INEPT45, INEPT90 or INEPT135 spectra

Parameter sets: awinept45, awinept90, awinept135 (+ getprosol)
Pulse programme: ineptrd with CNST11 = 6, 4 or 3 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 6 for INEPT45,

= 4 for INEPTT90

= **3** for INEPT135

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

INEPT spectra of quinine in D₆-DMSO. *Lower:* INEPT45 spectrum.

Center: INEPT90 spectrum. Upper: INEPT135 spectrum.

2.7.2 INEPT45SP, INEPT90SP or INEPT135SP spectra

Parameter sets: awinept45sp, awinept90sp, awinept135sp (+ getprosol) Pulse programme: ineptrdsp with CNST11 = 6, 4 or 3 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 6 for INEPT45SP,

= 4 for INEPTT90SP

= 3 for INEPT135SP

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB)

INEPTSP spectra of quinine in D₆-DMSO. *Lower:* INEPT145SP spectrum.

Center: INEPT90SP spectrum Upper: INEPT135SP spectrum.

2.7.3 INEPTND spectrum

Parameter set: awineptnd (+ getprosol)

Pulse programme: ineptnd

TD = 64 K, SI = 64 K.

SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choic.e

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

Process with EF or EFP (applies LB).

Signals have non-binomial intensities: CH (d) = (-1, 1); CH₂ (t) = (-1, 0, 1); CH₃ (q) = (-1, -1, 1, 1)

INEPTND spectrum of quinine in D₆-DMSO. The multiplicity of some signals is shown.

Insert: Expansions of the 20-30 ppm regions of **ineptnd**, **zrestsend** and **inept135sp** spectra with signal annotations.

2.8.1 JMOD (J-modulated) spectra

Parameter sets: **awjmod or awjmodq (+ getprosol)**Pulse programme: **jmod** with **cnst11 = 1 or 2**

TD = 64 K, **SI** = 64 K. **SW** = 240 ppm, **O1P** = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec (jmod) or 4 sec (jmodq) spectra or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 1 (CH, CH₃ positive, C, CH₂ negative), or = 2 for C (quaternary) only carbons.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!.)

JMOD (lower) and **JMODQ** (upper) spectra of quinine in D₆-DMSO. Some residual positive or negatively phased signals are seen ex protonated carbons whose ${}^{1}J$ coupling constants differ significantly from CNST2 = 145 Hz.

2.8.2 JMODSP spectra with shaped refocusing pulses

Parameter set: awjmodsp or awjmodqsp (+ getprosol)

Pulse programme: awjmodsp with cnst 11 = 1 or 2 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = multiple of 4 or 8, DS = 4, 8 or 16.

D1 = 1.5 sec (jmodsp) or 3-4 sec (jmodqsp) spectra or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 1 (CH, CH₃ positive, C, CH₂ negative), or = 2 for C (quaternary) only carbons

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

JMODSP (lower) and **JMODSPQ** (upper) spectra of quinine in D_6 -DMSO. Some residual positive or negatively phased signals are seen ex protonated carbons whose 1J coupling constants differ significantly from CNST2 = 145 Hz.

2.9.1 APT (Attached Proton Test) spectra

Parameter sets: awapt or awaptq (+ getprosol)

Pulse programme: apt with cnst 11 = 1 or 2 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = Any number, DS = 4, 8 or 16.

D1 = 1.5 sec (APT) or 3-4 sec (APTQ) spectra or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 1 (CH, CH₃ positive, C, CH₂ negative), or = 2 for C (quaternary) only carbons.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important).

APT (lower) and **APTQ (upper)** spectra of quinine in D₆-DMSO. Some residual positive or negatively phased signals are seen ex protonated carbons whose ${}^{1}J$ coupling constants differ significantly from CNST2 = 145 Hz.

2.9.2 APTSP spectra with shaped refocusing pulses

Parameter sets: awaptsp or awaptqsp (+ getprosol)

Pulse programme: awaptsp with cnst11 = 1 or 2 respectively

TD = 64 K, SI = 64 K.SW = 240 ppm, O1P = 110 ppm.

NS = multiple of 4 or 8, DS = 4, 8 or 16.

P0 = 90° or other tip angle of your choice (30° - 90°).

D1 = 1.5 sec (ATPSP) or 4 sec (APTQSP) spectra or other time of your choice.

CNST2 = 145 Hz = ${}^{1}J({}^{13}C^{-1}H)$ or other value of your choice.

CNST11 = 1 (CH, CH₃ positive, C, CH₂ negative), or

= 2 for C (quaternary) only carbons.

Type **ased** (enter) and review parameters used in the job.

Set receiver gain using RGA (important!).

APTSP (lower) and **APTSPQ** (upper) spectra of quinine in D₆-DMSO. Some residual positive or negatively phased signals are seen ex protonated carbons whose ${}^{1}J$ coupling constants differ significantly from CNST2 = 145 Hz.