

KJM 5250 and KJM 9250 HSQC135 and HMBC Experiments with Excitation Sculptured (ES) Peak Suppression on the AVneo400 spectrometer.

Version 3.1 Topspin 4.3

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. March 2024

© Professor Frode Rise, University of Oslo, Norway. March 2024

AVneo400 HSQC135 and HMBC Experiments with Excitation Sculptured (ES) Peak Suppression

1.1 Spectral Window Set up

The spectral window width (in ppm), centered around the peak to be **ES** suppressed should be determined in a standard ¹H NMR spectrum <u>before</u> setting up **a HSQCES** or **HMBCCTES** experiment. There should be no signals within 0.5 ppm of the upper or lower limits of the spectral window. The frequency of the peak to be **ES** suppressed should be determined **in Hz**.

The **getprosol** command will read in **prosol Table** saved pulse time, powers and types into an experiment. After using the **getprosol** command the **pulsecal** and **pulsecal 13C** commands can be used to adjust the ¹H and ¹³C 90 degree pulse times and **prosol Table** linked pulse powers to take account of solvent and/or buffer matrix effects which influence a samples 90 degree pulse time.

1.2 ES set up

ES is applied at **O1 Hz** = the spectral window midpoint, or it can <u>optionally be offset</u> at **O1* Hz** where **SPOFFS1** (or **SPOFFS10** in some ES pp's) = **O1*-O1 Hz**. The use of a 2000 usec Sincl.1000 ES pulse suppresses signals ~ \pm 0.7 ppm (~ 280 Hz) either side of its frequency. This band width is 2-3 times greater than that of PR presaturation.

1.3 Processing

HSQC135ES experiments are phase sensitive experiments which should be phased **before** using the **abs1** and **abs2** (and optional **syma**) commands.

The **HMBCES** experiment in acquired in MC (magnitude) mode and does not require phasing

The **HMBCCTES** (constant time) experiment is acquired in phase sensitive mode and transformed to afford an absolute value spectrum using the **xfb** and **xf2m** commands.

2.0 Experiments and Parameter Sets

- 2.1 HSQC135ES Spectrum
- 2.2 HMBCES Spectum
- 2.3 HMBCCTES (constant time) Spectrum

2.7 HSQC135ES with Excitation Sculpting

Parameter set: awhsqc135es (+ getprosol) Pulse programme: awhsqcedetgpsisp2.3es d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.
Enter O1 in Hz of the signal to be ES suppressed
O1 = spectral window midpoint. Check SW (¹H) is wide enough.
Enter O2P = ¹³C spectral window midpoint in ppm.
TD(F2) = 1K or 2K, TD(F1) = 160, or 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16. D1 = repetition delay = 1.5-2 sec or other time of your choice. CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Verify that a **2000 usec sinc1.1000** shaped pulse is used. Check gradients are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = SI(F1) = 1K or 2K WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

Neo400 HSQC135ES spectrum of quinine in D_6 -DMSO with the OCH₃ signal at 3.9 ppm suppressed. If the HOD signal at 3.31 ppm was **ES** suppressed correlations located ± 0.7 ppm either side of the HOD peak would also have also suppressed.

2.8 HMBCES with Excitation Sculpting

Parameter set: **awhmbcpr (+ getprosol)** Pulse programme: **awhmbcgplpndqfpr**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.
Enter O1 in Hz of the signal to be ES suppressed
O1 = spectral window midpoint. Check SW (¹H) is wide enough.
Enter O2P = ¹³C spectral window midpoint in ppm.
TD(F2) = 1K or 2K, TD(F1) = 160, or 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay =1.5 sec or other time of your choice. CNST2 = ${}^{1}J$ coupling constant = 145 Hz or other value of your choice. CNST13= ${}^{n}J$ selection filter = 8 Hz or other value of your choice.

Type **ased** (enter) and review parameters used in the job. Verify that a **2000 usec sinc1.1000** shaped pulse is used. Check gradients are OK.

Set receiver gain using RGA (Important!).

Process with: **SI(F2)** = **SI(F1)** = **1K** or **2K WDW(F1)** = **WDW(F2)** = **SINE SSB(F2)** = **SSB(F1)** = **0 xfb**, **abs1** and **abs2**

Neo400 HMBCES spectrum of quinine in D6-DMSO with **ES** suppression of the DMSO signal at 2.52 ppm. Correlations located ± 0.7 ppm either side of the DMSO signal are also suppressed.

2.9 HMBCCTES with Excitation Sculpting

Parameter set: **awhmbcctes (+ getprosol)** Pulse programme: **awhmbcctes**

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.
Enter O1 in Hz of the signal to be ES suppressed
O1 = spectral window midpoint. Check SW (¹H) is wide enough.
Enter O2P = ¹³C spectral window midpoint in ppm.
TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16. D1 = repetition delay = 1.5 sec or other time of your choice. CNST6 = min ${}^{1}J$ coupling constant = 120 Hz or other value of your choice. CNST7 = max ${}^{1}J$ coupling constant = 170 Hz or other value of your choice. CNST13 = ${}^{n}J$ selection filter = 8 Hz or other value of your choice.

Type **ased** (enter) and review parameters used in the job. Verify that a **2000 usec sinc1.1000** shaped pulse is used. Check gradients are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = SI(F1) = 1K or 2K WDW(F1) = WDW(F2) = SINE SSB(F2) = SSB(F1) = 0xfb, xf2m, abs1 and abs2

Neo400 HMBCCTES spectrum of quinine in D_6 -DMSO with **ES** suppression of the DMSO signal at 2.52 ppm. Correlations located ± 0.7 ppm either side of the DMSO signal are also suppressed.