

KJM 5250 and KJM 9250

HSQC, HMBC and H2BC Experiments with CW (PR) and Excitation Sculpting Solvent Suppression on the AVneo400 Spectrometer.

Version 3.1 Topspin 4.3

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. March 2024

© Professor Frode Rise, University of Oslo, Norway.

March 2024

AVneo-400 HSQC, HMBC and H2BC Experiments

1.0 Introduction

aw coded TS4 **Neo-400 HSQC** and **HMB**C parameter sets are set up with 1K or 2K acquired ¹H points in F2 and 128 ¹³C increments in F1.

¹H and ¹³C spectral windows and their mid points can be adjusted if required. The **O1** frequency at which **PR** or **ES** is applied at should be determined accurately in **Hz**, rather than approximately in **ppm**.

Topspin's **getprosol** and **pulsecal** commands should be used to read in **prosol Table** stored **pulse times** and **powers** and adjust them based on your samples solvent and matrix /buffer effects. Optionally, for concentrated samples, but not low level samples, **pulsecal 13c** can be used to adjust ¹³C pulse times and powers.

Neo-400 aw coded **hsqc135** pp's have been derived from Topspin's **hsqcedetgpsisp2.3** pp with the addition of auto-calculation of **d21** and **d24** from **cnst**2 (= the ${}^{1}J^{13}C^{-1}H$ coupling constant: default value = 145 Hz) and the removal of an optional **p28** trim pulse.

1.1 Processing

HSQC experiments are phase sensitive experiments which should be manually phased before optionally using the **abs1** and **abs2** commands. Low level ${}^{2}J$ may be observed in **HSQC** spectra.

HMBC spectra are magnitude mode (QF) spectra (phasing is not required) and should be transformed with **xfb**.

The **H2BC** experiment is acquired in phase sensitive mode and transformed to afford an absolute value spectrum using the **xfb** and **xf2m** commands. Phasing of **h2bc** spectra is not required

2.0 HSQC Experiments and Parameter Sets

The following **HSQC** experiments have been set up on the **Neo-400** spectrometer.

2.1	hsqc45	not multiplicity edited, DEP145 like
2.2	hsqc135	multiplicity edited, DEPT135 like
2.3	hsqc135pr	with CW presaturation
2.4	hsqc135es	with ES peak suppression
2.5	hsqc135espr	with ES and PR peak suppression

3.0 HMBC and H2BC Experiments and Parameter Sets

The following HMBC and H2BC experiments have been set up on the Neo-400 spectrometer.

3.1	hmbc	with $^{\rm n}J$ selection
3.2	hmbcpr	with CW presaturation
3.3	hmbces	with ES peak suppression
3.4	hmbclp2	with $^1J_{\min/\max}$ filter
3.5	hmbc-cigar	with ¹³ C decoupling
3.6	hmbeet	with min/max ^{1}J selection
3.7	hmbcctpr	with CW presaturation
3.8	hmbcctes	with ES peak suppression
3.9	hmbcctespr	with ES +PR presaturation
3.10	h2bc	for 2J correlations

2.1 HSQC45 Spectrum

Parameter set: awhsqc45 (+ getprosol + pulsecal)

Pulse program: awhsqcetgpsisp2.2-45

d24 is automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW(¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

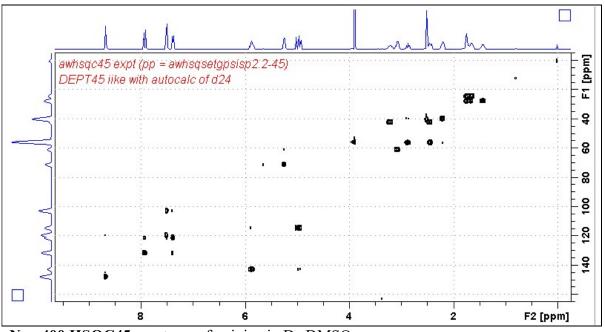
TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 1.5 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.


Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

Neo-400 HSQC45 spectrum of quinine in D₆-DMSO.

2.2 HSQC135 Spectrum

Parameter set: awhsqc135 (+ getprosol + pulsecal)

Pulse program: awhsqcedetgpsisp2.3-135

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (1H) and SW (13C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

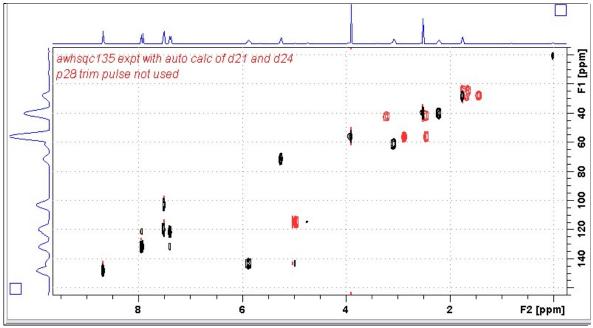
TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 2 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.


Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

Neo-400 HSQC135 spectrum of quinine in D₆-DMSO plotted with positive CH and CH₃ correlations (black) and negative CH₂ correlations (red).

2.3 HSQC135pr Spectrum

Parameter set: awhsqc135pr (+ getprosol + pulsecal)

or awhsqcedetgpsisp2.3-135pr (+ getprosol + pulsecal_

Pulse program: awhsqcedetgpsisp2.3-135pr

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1 = {}^{1}H$ spectral window midpoint in Hz (for PR).

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

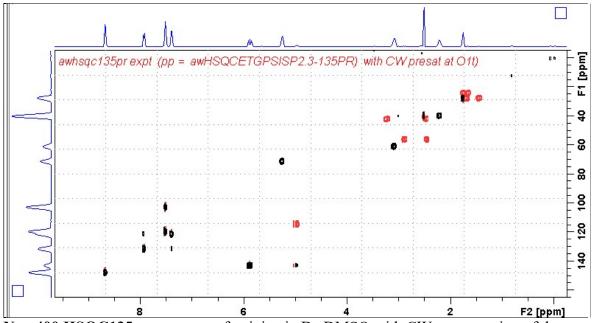
NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 2 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

PLW9(db) = **PR** power applied during **D1**. If required the **PR** power can be increased by *subtracting* 6 or 12 db from its prosol Table value.

Type **ased** (enter) and review parameters used in the job.


Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 1K points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

Neo-400 HSQC135pr spectrum of quinine in D₆-DMSO with CW presaturation of the HOD line at 3.37 ppm. The spectrum is plotted with positive CH and CH₃ correlations (black) and negative CH₂ correlations (red).

2.4 HSQC135es Spectrum

Parameter set: awhsqc135es (+ getprosol + pulsecal)

Pulse program: awhsqc135es

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

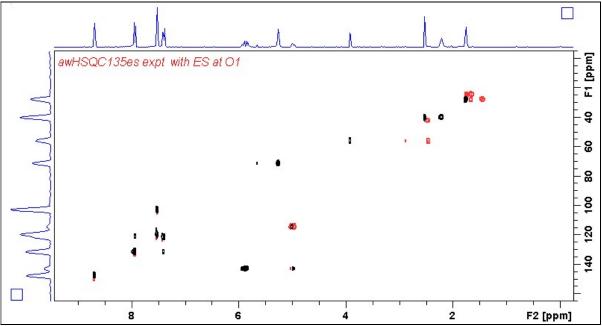
Enter $O1 = {}^{1}H$ spectral window midpoint in Hz (for ES)

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 1.5 sec or other time of your choice.


 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK, including a prosol Table defined **2000 usec p40:sp10 Sinc1.1000 ES** pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

Neo-400 HSQC135es spectrum of quinine in D₆-DMSO with ES suppression of the HOD line at 3.37 ppm. The spectrum is plotted with positive CH and CH₃ correlations (black) and negative CH₂ correlations (red). ¹H signals /correlations located 0.5-0.7 ppm either side of the **ES** suppressed line have reduced intensity.

2.5 HSQC135espr Spectrum

Parameter set: awhsqc135espr (+ getprosol + pulsecal)

Pulse program: awhsqc135espr

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1 = {}^{1}H$ spectral window midpoint in Hz (for ES + PR).

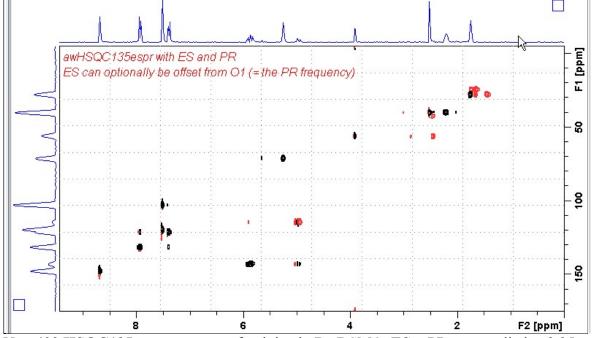
ES can optionally be offset from PR as described in the Appendix.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 2 sec or other time of your choice.


 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

PLW9(db) = **PR** power applied during **D1**. If required the **PR** power can be increased by *subtracting* 6 or 12 db from its prosol Table value.

Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK, including a prosol Table defined **2000 usec p40:sp10 Sinc1.1000 ES** pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2 xfb, manual phasing and abs1 + abs2

Neo-400 HSQC135espr spectrum of quinine in D₆-DSMO. **ES** + PR was applied at 3.35 ppm (= the HOD line). ¹H signals /correlations located 0.5-0.7 ppm either side of the **ES** suppressed line have reduced intensity.

3.1 HMBC Spectrum

Parameter set: awhmbc (+ getprosol + pulsecal)

Pulse program: hmbcgplpndqf

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16.

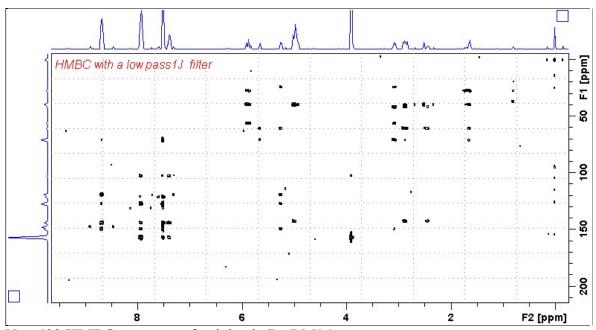
D1 = repetition delay = 1.5 sec or other time of your choice.

CNST2 = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice.

Type ased (enter) and review parameters used in the job.

Check gradients and shaped pulses are OK.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = SINE

SSB(F2) = SSB(F1) = 0

xfb and abs1 + abs2

Neo-400 HMBC spectrum of quinine in D₆-DMSO.

3.2 HMBCpr Spectrum

Parameter set: awhmbcpr (+ getprosol + pulsecal)

Pulse program: awhmbcgplpndqfpr

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1 = {}^{1}H$ spectral window midpoint in Hz (for PR)

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

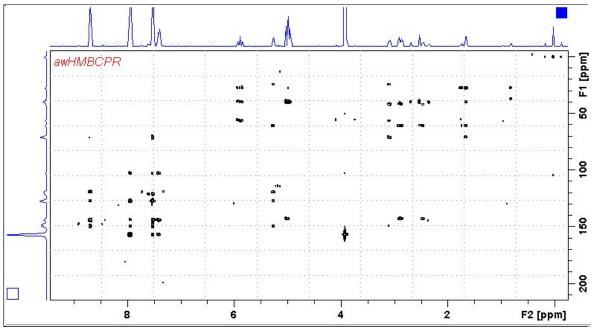
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16.

D1 = repetition delay = 2 sec or other time of your choice.

CNST2 = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice.

CNST13= ^{n}J selection filter = **8 Hz** or other value of your choice.

PLW9(db) = **PR** power applied during **D1**. If required the **PR** power can be increased by *subtracting* 6 or 12 db from its prosol Table value.


Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = SINE

SSB(F2) = SSB(F1) = 0**xfb** and **abs1** + **abs2**

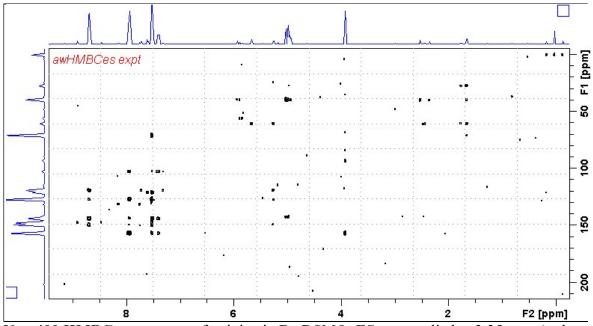
Neo-400 HMBCpr spectrum of quinine in D₆-DMSO with CW presaturation of the HOD signal at 3.37 ppm,

3.3 HMBCes Spectrum

Parameter set: awhmbces (+ getprosol + pulsecal)

Pulse program: awhmbces

Type eda (enter) and enter SW (1 H) and SW (13 C) in ppm. Enter O1 = 1 H spectral window midpoint in Hz (for ES) Enter O2P = 13 C spectral window midpoint in ppm. TD(F2) = 1K or 2K,TD(F1) = 128-256 (your choice).


NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay =1.5 sec or other time of your choice.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK, including a prosol Table defined **2000 usec p40:sp10 Sinc1.1000 ES** pulse.

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb and abs1 + abs2

Neo-400 HMBCes spectrum of quinine in D₆-DSMO. **ES** was applied at 3.35 ppm (= the HOD line). ¹H signals /correlations located 0.5-0.7 ppm either side of the **ES** suppressed line have reduced intensity.

3.4 HMBCL2 Spectrum

Parameter set: awhmbcl2 (+ getprosol + pulsecal)

Pulse program: hmbcgpl2ndqf

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16.

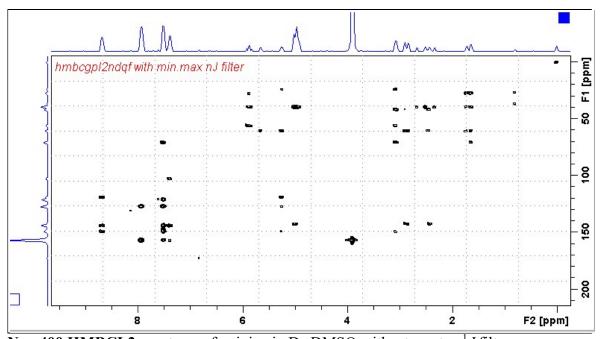
D1 = repetition delay =1.5 sec or other time of your choice.

CNST6 = $\min_{i=1}^{1} J$ coupling constant = **125** Hz or other value of your choice.

 $CNST7 = max.^{1}J$ coupling constant = 165 Hz or other value of your choice.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice

Type **ased** (enter) and review parameters used in the job. Check gradients and shaped pulses are OK.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = SINE

SSB(F2) = SSB(F1) = 0

xfb and abs1 + abs2

Neo-400 HMBCL2 spectrum of quinine in D₆-DMSO with a two step ${}^{1}J$ filter.

3.5 HMBC-CIGAR Spectrum

Parameter set: awhmbc-cigar (+ getprosol + pulsecal)

Pulse program: hmbcacgplpqf

Spectrum is acquired with ¹³C decoupling

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16.

D1 = repetition delay = **1.5 sec** or other time of your choice.

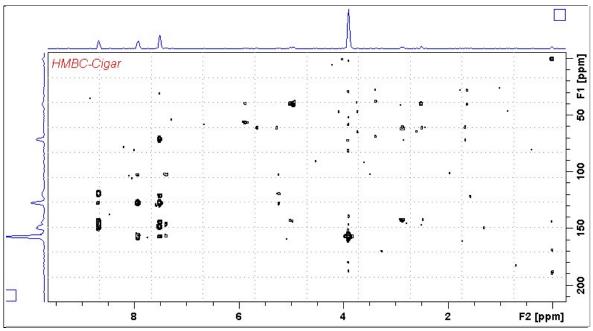
CNST6 = 125 Hz, **CNST7** = 160 Hz = min/max ${}^{1}J$ selection filter range.

CNST14 = 4 Hz, CNST15 = $12 \text{ Hz} = \text{min/max}^{\text{n}}J$ selection filter range.

 $\mathbf{CNST16} = 1.0 = J$ scale factor.

Type ased (enter) and review parameters used in the job.

Check gradients and shaped pulses are OK.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = SINE

SSB(F2) = SSB(F1) = 0

xfb and abs1 + abs2

Neo-400 HMBC-CIGAR spectrum of quinine in D₆-DMS

3.6 HMBCCT Spectrum

Parameter set: awhmbcct (+ getprosol + pulsecal)

Pulse program: hmbcctetgpl2nd

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay =1.5 sec or other time of your choice.

CNST6 = 120 Hz, CNST7 = 170 Hz = min/max ^{1}J coupling constants.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

 $xfb \underline{and} xf2m (and abs1 + abs2)$

Neo-400 HMBCCT spectrum of quinine in D₆-DSMO centered at 145 ppm. Correlations at the edges of the ¹³C spectral window have reduced intensity.

3.7 HMBCCTpr Spectrum

Parameter set: awhmbcctpr (+ getprosol + pulsecal)

Pulse program: awhmbcctpr

Type eda (enter) and enter SW (1 H) and SW (13 C) in ppm. Enter O1 = 1 H spectral window midpoint in Hz (for PR) Enter O2P = 13 C spectral window midpoint in ppm.

TD(F2) = 2K, TD(F1) = 128-256 (your choice).

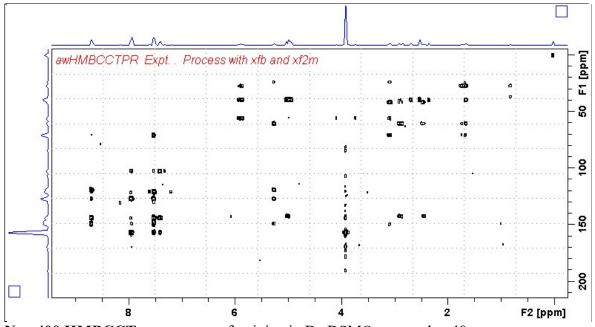
NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 2 sec or other time of your choice.

CNST6 = 120 Hz, CNST7 = 170 Hz = min/max ^{1}J coupling constants.

 $\mathbf{CNST13} = {}^{\mathrm{n}}J$ selection filter = 8 Hz or other value of your choice (eg. 6-14 Hz).

PLW9(db) = **PR power** applied during **D1**. If required the **PR power** can be increased by *subtracting* 6 or 12 db from its prosol Table value.


Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb and xf2m (and abs1 + abs2)

Neo-400 HMBCCTpr spectrum of quinine in D_6 -DSMO centered at 40 ppm. Presaturation was applied at the HOD line frequency (3.35 ppm).

3.8 HMBCCTes Spectrum

Parameter set: awhmbcctes (+ getprosol + pulsecal)

Pulse program: awhmbcctes

Type eda (enter) and enter SW (1 H) and SW (13 C) in ppm. Enter O1 = 1 H spectral window midpoint in Hz (for ES) Enter O2P = 13 C spectral window midpoint in ppm.

TD(F2) = 2K, TD(F1) = 128-256 (your choice).

1D(F2) = 2K, 1D(F1) = 128-230 (your choice

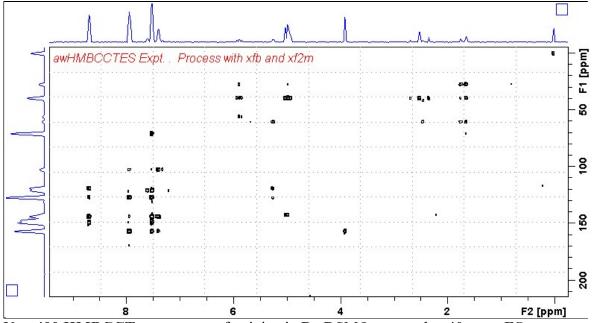
NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay =**1.5 sec** or other time of your choice.

CNST6 = 120 Hz, CNST7 = 170 Hz = min/max ^{1}J coupling constants.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK, including a prosol Table defined **2000 usec p40:sp10 Sinc1.1000 ES** pulse.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 1K points

WDW(F1) = WDW(F2) = OSINE

SSB(F2) = SSB(F1) = 2

 $xfb \underline{and} xf2m (and abs1 + abs2)$

Neo-400 HMBCCTes spectrum of quinine in D₆-DSMO centered at 40 ppm. **ES** was applied at 3.35 ppm (= the HOD line). ¹H signals /correlations located 0.5-0.7 ppm either side of the **ES** suppressed line have reduced intensity

3.9 HMBCCTespr Spectrum

Parameter set: awhmbcctespr (+ getprosol + pulsecal)

Pulse program: awhmbcctespr

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1 = {}^{1}H$ spectral window midpoint in Hz (for ES and PR).

ES can optionally be offset from **PR** as described in the Appendix.

TD(F2) = 2K, TD(F1) = 128-256 (your choice).

NS = multiple of 4, 8 or 16, DS = 8 or 16.

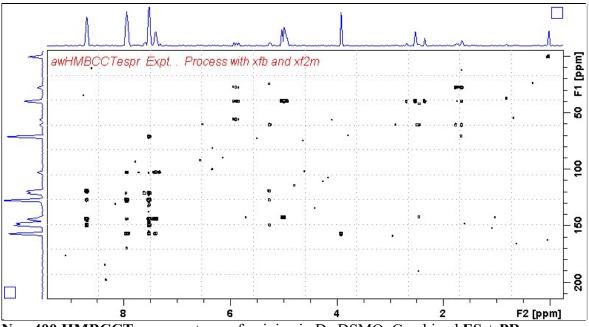
D1 = repetition delay =2 sec or other time of your choice.

CNST6 = 120 Hz, CNST7 = 170 Hz = min/max ¹*J* coupling constants.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

PLW9(db) = **PR power** applied during **D1**. If required the **PR power** can be increased by *subtracting* 6 or 12 db from its prosol Table value.

Type **ased** (enter) and review parameters used in the job. Check that gradients and shaped pulses are OK, including a prosol Table defined **2000 usec p40:sp10 Sinc1.1000 ES** pulse.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = OSINE

SSB(F2) = SSB(F1) = 2

 $xfb \underline{and} xf2m (and abs1 + abs2)$

Neo-400 HMBCCTespr spectrum of quinine in D₆-DSMO. Combined **ES** + **PR** was applied at 3.35 ppm (= the HOD line). ¹H signals /correlations located 0.5-0.7 ppm either side of the **ES** suppressed line have reduced intensity.

3.10 H2BC Spectrum

Parameter set: awh2bc (+ getprosol + pulsecal)

Pulse program: h2bcetgpl3

Type eda (enter) and enter SW (¹H) and SW (¹³C) in ppm.

Enter $O1P = {}^{1}H$ spectral window midpoint in ppm. Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

TD(F2) = 1K or 2K, TD(F1) = 128-256 (your choice).

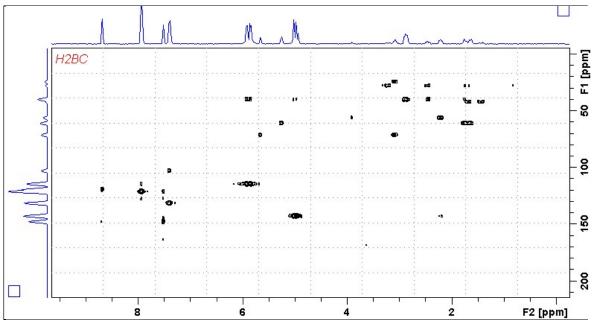
NS = 4, 8, 16 (multiple of 4 or 8 recommended), DS = 8 or 16.

D1 = repetition delay =1.5 sec or other time of your choice.

CNST6 = 125 Hz, **CNST7** = 165 Hz = min/max ¹*J* selection filter range.

Type **ased** (enter) and review parameters used in the job.

Check gradients and shaped pulses are OK.


Set receiver gain using RGA (Important!).

Process with: SI(F2) = 1K or 2K, SI(F1) = 512 or 1K points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

 $xfb \underline{and} xf2m (and abs1 + abs2)$

Neo-400 **H2BC** spectrum of quinine in D₆-DMSO.

4.0 How to offset ES from O1 in an ESPR experiment

By default **ES** and **PR** are applied at **O1** (Hz) frequency in aw coded **HSQC** and **HMBCCT ESPR** experiments. Combined (double) **ES** + **PR** can be used to suppress a large HOD or solvent peak.

The ES pulse in hmbc135espr or hmbcctespr experiments is defined as an F1 (¹H) channel 2000 usec Sinc1.1000 p40:sp10 pulse, rather than a p12:sp1 pulse as used in shsqc135espr or shmbcctespt experiments.

The frequency (in Hz) at which **ES** is applied in **hsqc135** and **hmbcct** can optionally be offset from **O1** (= the frequency PR is applied) so you can suppress two solvent lines by entering an **SPOFFS10(Hz)** offset value in its **ased** visible cell. hsqc135

For example if, the **HOD line** occurs at **2701 Hz** and the **DMSO line** occurs at **2007 Hz**, the offset of the **DMSO line** (*to be ES suppressed*) relative to that of the **HOD line** (*PR suppressed at O1*) is calculated as:

SPOFFS1(Hz) = **ES** offset signal (Hz) - **O1** frequency (Hz)

ie~2007~Hz~(DMSO) - 2701~Hz~(HOD) = -694~Hz

The offset is negative in this case since the **DMSO line** occurs at - 694 Hz *less* than that of the frequency at which **PR** is applied to the **HOD line** at **O1** Hz.

The setup of an ES pulse is illustrated below for a p12:sp1 pulse as used in shsqc135 and shmbcct experiments. The purple and red under lined cells will be replaced by p40:sp10 cells/values when ES is used in hsqc135 and hmbcct experiments.

ased view of p12:sp1 ES pulse parameters. The red highlighted (arrowed) SPOFFS1(Hz) line will be replaced by a SPOFFS10(Hz) line when a p40:sp10 ES pulse is used in HSQC135es and HMBCCTes experiments.