

KJM 5250 and KJM 9250 One Dimensional SELHSQC and SELHMBC Experiments on the AVneo400 Spectrometer. ¹H detected with selective ¹³C excitation.

Version 3.1 Topspin 4.3

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. March 2024

© Professor Frode Rise, University of Oslo, Norway. March 2024

AVneo400 SELHSQC + SELHMBC Experiments

1.1 Introduction

Prior to running **SELHSQC** and **SELHMBCCT** experiments determine the frequency of the ¹³C signal to be selectively excited in Hz and enter this value as **O2 (Hz)**.

SELHSQC and **SELHMBCCT** experiments use a selective (soft) 180 degree refocusing **Q3 type** pulse.

The use of ¹³C decoupling during FID acquisition in **SELHSQC** experiments on the Neo-400 results in a modest degree of probe warming with some loss of shim and resolution drift unless the FID acquisition time is short (ca 0.5 sec). Accordingly the **awselhsqc** experiment is set up as a 15.6 ppm ¹H window expt with 6400 data points (AQ = 0.512 sec) which when processed can be zero filled to 16-32K points (your choice) with optional linear prediction to 12-16K data points.

Decoupling related probe heating does not occur when running **SELHSQCND** experiments (ND = not decoupled).

The **SELHMBCCT** experiment (which does not use ¹³C decoupling) <u>only</u> affords correlations ex quaternary (s) carbons.

1.2 Signals with short T₂'s

¹³C signals with short T_2 's may give no result in a SELHSQC or SELHMBCCT experiments run with a 180° inversion p36 = 40000 usec Q3 pulse in which case (*after* using the getprosol command) one can try *halving* the p36 pulse time to 20000 usec and *subtracting* 6 db from its sp26(db) *power level*.

1.3 SELHSQC and SELHMBCCT Experiments

The following 1D-Selective **HSQC** and **HMBCCT** experiments have been set up on the **Ne0-400** spectrometer.

2.1 SELHSQC	with ¹³ C decoupling during AQ
2.2 SELHSQCND	without ¹³ C decoupling
2.3 SELHMBCCT	quaternary carbons only

2.1 SELHSQC Spectrum

Parameter set: **awselhsqc** (+ getprosol) Pulse programme: **awselhsqcgpsisp**

Prior to running a **SELHSQC** experiment run a standard ¹³C or **DEPT** experiment and determine the **O1** frequency of the ¹³C **signal** in **Hz** to be selectively excited. Enter this value as **O2** (**Hz**) *(Important)*

TD = 6400, **SI** = 16 or 32 K. Check **AQ** is \sim 0.5 sec (or less) *(Important)* **SW** = 15.6 ppm, **O1P** = 6 ppm. **NS** = multiple of 8 or 16, **DS** = 4 or 8.

D1 = 1.5-2 sec or other value of your choice. **D24** is automatically calculated from **CNST2** (${}^{1}J_{C-H}$). **CNST2** = ${}^{1}J_{C-H}$; typically 125 to 160 Hz for sp³-sp² carbons. Furan or pyrrole ring carbons adjacent to hetero atoms will have ${}^{1}J$ = 200-220 Hz.

Shaped pulse types and powers are read in by the **getprosol** command.

Process with EFP (applies LB, typically use 0.3-0.5 Hz).

Neo-400 **SELHSQC** spectrum of quinine in D₆-DMSO (6-10 ppm region) with selective excitation of the ¹³C signal at 131.6 ppm (**O2** = **13244.1 Hz**). The ¹*J* correlated proton signal of this carbon occurs at 7.95 ppm.

2.2 SELHSQCND Spectrum

Parameter set: **awselhsqcnd** (+ getprosol) Pulse programme: **awselhsqcndgpsisp**

Prior to running a **SELHSQCND** experiment run a standard ¹³C or **DEPT** experiment and determine the **O1** frequency of the ¹³C **signal** in **Hz** to be selectively excited. Enter this value as **O2** (**Hz**) (*Important*).

TD = SI = 16 or 32 K. SW = 15.6 ppm, O1P = 6 ppm.NS = multiple of 8 or 16, DS = 4 or 8.

D1 = 1.5-2 sec or other value of your choice. **D24** is automatically calculated from **CNST2** (${}^{1}J_{C-H}$). **CNST2** = ${}^{1}J_{C-H}$; typically 125 to 160 Hz for sp 3 -sp 2 carbons. Furan or pyrrole ring carbons adjacent to hetero atoms will have ${}^{1}J$ = 200-220 Hz.

Shaped pulse types and powers are read in by the **getprosol** command.

Process with EFP (applies LB, typically use 0.3-0.5 Hz).

Lower: Neo400 **SELHSQCND** spectrum of quinine in D₆-DMSO (6-10 ppm region) with selective excitation of the ¹³C signal at 131.6 ppm (**O2 = 13244.1 Hz**). **Upper:** ¹³C decoupled **SELHSQC** spectrum of quinine

2.3 SELHSQCCT Spectrum

Parameter set: **awselhmbcct** (+ getprosol) Pulse programme: **awselhmbcct**

Prior to running a **SELHMCCT** experiment run a standard ¹³C or **DEPTQ** experiment and determine the **O1** frequency of the ¹³C **signal** in **Hz** to be selectively excited. Enter this value as **O2** (**Hz**) (*Important*)

TD = SI = 16 or 32 K. SW = 15.6 ppm, O1P = 6 ppm.NS = multiple of 8 or 16, DS = 4 or 8.

D1 = repetition delay = **1.5 sec** or other time of your choice. **CNST6** = min ${}^{1}J$ coupling constant = **120 Hz** or other value of your choice. **CNST7** = max ${}^{1}J$ coupling constant = **170 Hz** or other value of your choice. **CNST13** = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice.

Shaped pulse types and powers are read in by the **getprosol** command.

Process with EFP and MC (applies LB, typically use 0.3-0.5 Hz).

Neo400 **SELHMBCCT** spectrum of quinine in D_6 -DMSO (6-10 ppm region) with selective excitation of the ¹³C signal at 157.2 ppm.