

KJM 5250 and KJM 9250 AVneo400 ¹⁵N HSQC and HMBC Spectra on the AVneo400 Spectrometer.

Version 3.1 Topspin 4.3

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. March 2024

© Professor Frode Rise, University of Oslo, Norway. March 2024 AVneo400¹⁵N f2 (f3 on the AVneo800) HSQC and HMBC Spectra.

(The f2 or f3 radio channels give rise to the F1 dimension in the 2 D spectra, the f1 radio channel give rise to the F2 dimension in the 2D spectra)

1.1 Introduction

aw coded ¹⁵N **f2 HSQC**, **HSQC-DIPSI2** and **HMBC** parameter sets have been set up with 2048 (2K) points acquired across a **9 or 14 ppm** ¹H window and a **400 ppm** ¹⁵N **window (SW)**). These settings were used to acquire 15N-HSQC and HMBC spectra ex an aromatic compound containing an NH and a quaternary N atom. Different ¹H and ¹⁵N settings may (will) be required for other nitrogen containing compounds such as peptides.

1.2 Processing

¹⁵N f2 HSQC and HSQC-DIPSI2 experiments are phase sensitive experiments which should be phased **before** using the **abs1** and **abs2** commands.

The ¹⁵N f2 HMBC experiment is an absolute value experiment. Phasing is not required.

2.0 Experiments and Parameter Sets

The following aw coded ¹⁵N⁻¹H **f2** HSQC, HSQC-DIPSI2 and HMBC parameter sets are available on the Neo-400 MHz spectrometer.

- 2.1 ¹⁵N f2 HSQC
- 2.2 ¹⁵N f2 HSQC-DIPSI2
- 2.3 ¹⁵N f2 HMBC

2.1 ¹H-¹⁵N HSQC spectrum

Parameter set: aw15nf2hsqc (+ get prosol) Pulse program: hsqcetgpsi

SW ¹H = 14 ppm (or other suitable value). SW ¹⁵N = 400 ppm (or other suitable value).

TD ${}^{1}H = 2K$, TD ${}^{15}N = 128-160$ (your choice). NS = multiple of 8, DS = 8 or 16.

Type **ased** (enter) and review other parameters used in the job. **O1P** = ¹**H** spectral window midpoint = 6.5 ppm other value of your choice. **O2P** = ¹⁵**N** spectral window midpoint = 150 ppm other value of your choice. **D1** = repetition delay = 1-2 sec or other time of your choice. **CNST2** = ¹*J* ¹⁵**N**-¹**H** coupling constant = 90 Hz or other value of your choice. **ZGOPTNS** = Not used.

Type **ased** (enter) and review parameters used in the job. Check D24 = 1/8J (~ 1.39 msec) for CNST2 = 90 Hz.

This value is not auto-calculated using Topspin's hsqcdiedetgpsisp.2 pp. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1KWDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

2.2 ¹H-¹⁵N HSQC-DIPSI2 spectrum

Parameter sets: aw15nf2hsqc-dipsi2 (+ getprosol) Pulse programme: hsqcdietgpsi

SW ¹H = 14 ppm (or other suitable value). SW ¹⁵N = 400 ppm (or other suitable value). TD ¹H = 2K, TD ¹⁵N = 128-160 (your choice). NS = multiple of 8 or 16, DS = 16.

O1P = ¹**H** spectral window midpoint = 6.5 ppm other value of your choice. **O2P** = ¹⁵**N** spectral window midpoint = 150 ppm other value of your choice. **D1** = repetition delay = **1.0 sec** or other time of your choice. **CNST2** = ¹*J* ¹⁵**N**-¹**H** coupling constant = **90 Hz** or other value of your choice. **ZGOPTNS** = Not used.

Type ased (enter) and review parameters used in the job.

Check D24 = 1/8J (~ 1.39 msec for CNST2 = 90 Hz).

This values is not auto-calculated using Topspin's hsqcdietgpsi pp. Check gradients and shaped pulses are OK.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K WDW(F1) = WDW(F2) = QSINE SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

¹⁵N **f2 HSQC-DIPSI2** spectrum of an aromatic NH containing compound.

¹⁵N F2 HMBC spectrum

Parameter sets: **aw15nf2hmbc+ getprosol)** Pulse programme: **hmbcfgpndqf**

Type eda (enter) and review the following default parameters $SW {}^{1}H = 9 \text{ ppm}, SW {}^{15}N = 400 \text{ ppm}$ (or other suitable values). $TD {}^{1}H = 2K, TD {}^{15}N = 128\text{-}160$ (your choice). NS = multiple of 8 or 16, DS = 16.

 $O1P = {}^{1}H$ spectral window midpoint = 4.79 ppm other value of your choice. $O2P = {}^{15}N$ spectral window midpoint = 100 ppm other value of your choice. D1 = repetition delay = 1.0 sec or other time of your choice. CNST13 = 5 Hz (long range coupling constant). ZGOPTNS = Not used.

Check gradient settings.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K SI(F1) = 512 or 1K WDW(F1) = WDW(F2) = SINE SSB(F2) = SSB(F1) = 0xfb and abs1 + abs2

¹⁵N f2 HMBC spectrum of an aromatic NH and quaternary N containing compound.