Introduction to pulse programs and experimental setup on Bruker Spectrometers

Dr. Robert Peterson

NMR Facility Manager
UCLA-DOE NMR Core Facility
UCLA Institute for Genomics and Proteomics
and Dept. of Chemistry and Biochemistry

Summary

How to read pulse programs
-basic rules
-definitions
-pulses
-delays
-phases
-translating Bruker pulse programming language into pulse sequence diagrams
-new features in Bruker pulse programming language
-quadrature detection

Tips on setting up NMR experiments
-incremented delays and nd0/nd10

- gradients and gradient selection
-water suppression
-common setup problems
-other helpful information

Bruker Pulse Program Syntax

Basic Rules

*A semicolon at the beginning of a line indicates a comment. The compiler ignores these lines.

Delays are denoted by d\# (0-31).
All pulses have an associated phase program
The lines of the pulse program are executed sequentially. All the instructions on each line are finished completely before the instructions on the next line are begun.

Separate commands on the same line are begun simultaneously.

Example:

```
"d28=(p4-p2)/2"
(p1 ph1):f1
d4
(d28 p2 ph0):f1 (p4 ph0):f2
d4
(p1 ph2):f1
d13
p16:gp1
d16
(p3 ph3):f2
```


Definitions

At the top of each pulse program is a list of equations in quotes.
These are simply definitions of some of the parameters used by the pulse program. For example, "p2=p1*2" defines the length of $p 2$ to be twice the length of p 1 . By setting the value of the parameter p 1 , the user automatically has set the length of p 2 . (usually p 1 is the ${ }^{1} \mathrm{H} 90^{\circ}$ pulse and p 2 is the ${ }^{1} \mathrm{H}$ 180° pulse)

If a definition of a parameter is in the pulse program, you may not set it manually. For example, if p1 is set to $10 \mu \mathrm{sec}, \mathrm{p} 2$ will be $20 \mu \mathrm{sec}$ even if you manually set it to some other value.
" $13=(\operatorname{td} 1 / 2)$ " sets the loop counter 13 to half the value of $\operatorname{td} 1 / 2$. This allows

```
"p2=p1*2"
"p4=p3*2"
"d11=30m"
"d12=20u"
"d13=4u"
"d14=d4-d13-p14"
"d16=200u"
"d21=d20-d12"
"d22=d20"
"d23=d20-p13-d16"
"d24=d20-d12"
"d28=p3-p1"
"|3=(td1/2)"
``` the user to set the number of increments using eda. If this definition is not present, then you have to set the loop counter manually. For example, if you wanted 512 t1 increments, you would set l3 to 256.

Some delays are based on other delays. Usually this is because the pulse sequence requires that two pulses have a particular delay between them. In this short example, the definition of d23 (above) ensures that the pulses p 2 and p 4 are separated by exactly d20 (which is set by the user). By rearranging the equation, you can see that \(d 20=d 23+p 13+d 16\).

\section*{Pulses}

All pulses are designated \(\mathrm{p} \#(0-31)\). If the pulse is p 10 , then the parameter p 10 is the length of the pulse. The default unit is \(\mu \mathrm{sec}\).

For rectangular pulses, power levels are specified by pl\# (0-31). Any pulse number can have any power level number (e.g. p10 could have pl5). The power level of a pulse on a given channel must be set by a pl command, with a delay, on a previous line.
For example:
```

d12 pl1:f1
(p3 ph0):f2
d13
p11:gp1
d16
(p1 ph0):f1

```
```

If no power level is specified in
the pulse program, the defaults
are pl1 for f1, pl2 for f2, and pl3
for f3.
If no channel is specified for a
pulse, the default is f1.

```

In this case, the power level of p 1 is pl 1 .
Shaped pulses are specified like this: (p15:sp5 ph12):f2
For shaped pulses, the length is still specified by p\#, but the power level is set by sp\#. In this case the length is p15 and the power level is sp5. Shaped pulses also have other parameters:
spoffs5: the offset from the carrier frequency in Hz
spnam5: the name of the shape file
Gradient pulses are specified as: p\#:gp\# (p11:gp1 in the example above). As with other pulses, p11 is the length. Each gradient has several parameters:
gpnam1: the name of the gradient shape file
gpx1: the \(X\) gradient strength
gpy1: the Y gradient strength
gpz1: the \(Z\) gradient strength

\section*{Delays}

Delays are designated \(\mathrm{d} \#(0-31)\). The default unit for delays is seconds.
Fixed length delays can also be specified: e.g. \(3 \mathrm{u}, 10 \mathrm{~m}\), etc.

In addition to delays specified by the pulse sequence, delays are needed to allow the hardware time for changing power levels, changing phase, and writing to disk. Delays are also used to allow sample cooling (like during cpd or tocsy sequences) and to allow eddy currents generated by the gradient coils to dissipate.

You should generally use at least \(3 \mu \mathrm{sec}\) for power level switches or phase changes, although the hardware may not need that long. The hardware on the 800 needs less than 100 nsec to make amplitude or phase changes, but the other instruments (which are older) need longer. Write statements must be behind a delay of at least \(10 \mu \mathrm{sec}\), but you should use at least 10 msec (the actual time required depends on the computer and the hard drive).

Pulse and delay lengths can be manipulated in the pulse program:
p1*1.5 generates a pulse 1.5 times the length of p 1 (often used in cpd or tocsy sequences)
d12*0.5 generates a delay half the length of d12

\section*{Phases}

Pulse phases are relative phases with respect to the reference phase for signal detection. The phase programs are specified behind the pulse statements, and defined at the end of the pulse program.

Phases are normally specified by \(0\left(X ; 0^{\circ}\right), 1\left(Y ; 90^{\circ}\right), 2\left(-X ; 180^{\circ}\right), 3\left(-Y, 270^{\circ}\right)\).
For example:
ph3 \(=0022\)

At the start of the pulse program, the first phase in each phase program is used. The next phase becomes valid with the next scan or dummy scan.

\section*{-NOTE- The phase pointer is not zeroed after the dummy scans. Both ds and ns should be a multiple of the number of phases in the longest phase program.}

If the last phase in a phase program is reached, it starts over again. For example, with the following phase programs, and with ns=16:

Phase programs as
written in the pulse program:
ph0 \(=0\)
ph1 \(=02\)
ph2 = 1133
ph3 \(=00002222\)
ph31=0220 2002

Phases actually used for all 16 scans:
ph0 \(=0000000000000000\)
ph1 = 0202020202020202
ph2 = 1133113311331133
ph3 \(=0000222200002222\)
ph31=0220200202202002

\section*{Translating pulse programs into pulse sequence diagrams}

\section*{Example 1: SD_ct.ce.hsqchc}
;CT-CE-HSQC foe 1JCH in labeled samples 2D H-1/C13 correlation - HSQC
;decoupling in t2
;HC coupling in t1
;carbon high power X channel
;phase sensitive States-TPPI
;7/26/02 LT
\#include <Avance.incl>
```

;*****Set in21=in22=in23=in0
*******************************************)

```
"p2=p1*2"
"p4=p3*2"
"d11=30m"
"d12=20u"
"d13=4u"
"d14=d4-d13-p14"
"d16=200u"
"d21=d20-d12"
"d22=d20"
"d23=d20-p13-d16"
"d24=d20-d12"
"d28=p3-p1"
"|3=(td1/2)"
1 ze
2 d11*2 do:f2 do:f3
3 d11
4 d11*0.5 pl9:f1
 d11*0.5 pl2:f2 pl13:f3
 LOCKH OFF
d12 fq1: \(\overline{f 1}\)
(p18*0.8 ph28):f1
d13
(p18*0.2 ph29):f1
d12 fq1:f1
LOCKH_ON
d12 pl1:f1
(p3 ph0):f2
d13
p11:gp1
d16
(p1 ph0):f1

\section*{d4}
(d28 p2 ph0):f1 (p4 ph0):f2
d4
(p1 ph1):f1
d13
p12:gp2
d16
(p3 ph2):f2
d12 cpd3:f3
d21
; decrementation
(p4 ph3):f2
d2
(p2 pho):f1
d23
p13:gp3*EA
d16
(p4 ph0):f2
d24
d12 do:f3
(p3 ph0):f2 (p1 ph0):f1
d13
p14:gp4
d14
(d28 p2 ph0):f1 (p4 ph0):f2
d13
p14:gp5
d14 pl12:f2
go=2 ph31 cpd2:f2 cpd3:f3
d11 do:f2 do:f3 wr \#0 if \#0 ip2 zd
d11*0.5 ip2
d11*0.5 igrad EA
lo to 3 times 2
d11*0.25 id0
d11*0.25 id22
d11*0.25 dd21
d11*0.25 dd23
lo to 4 times 13
LOCKH_OFF
exit
\(\mathrm{ph} 0=0\)
ph1 \(=13\)
ph2 \(=0022\)
ph3 \(=00001111\)
ph28 \(=0\)
ph29 \(=1\)
ph31=02202002
;pl1: H-1 power level
;pl2: C-13 power level
;p19: H-1 power level for water presat ;pl12:C-13 power level for \(\mathrm{C}-13\) decoupling
;p1: 90 degree pulse
;p2 : 180 degree pulse
;p3: 90 degree decoupler pulse
;p4:180 degree decoupler pulse ;pcpd2: decoupler pulse for GARP decoupling
;d4 : 1/4J(HC) (~1.25-1.6 ms)
;d0 : (in0-p2-p3*4/pi)/2
;p16: gradient pulse (600 us)
;d11: I/O delay for disc (30 ms)
;d12: delay for power switching
;d13: delay compensation 4us
;in0: 1/2SW(X)
;nd0: 2
;NS: *16, minimum 2
;td1: \# of t1-experiments
;MC2: States-TPPI

\section*{SD_ct.ce.hsqchc}

d0 and d22: incremented delays
d 21 and d23: decremented delays
phase 2: cycled for States-TPPI quadrature detection
= location of frequency switches

\section*{Newer features in Bruker pulse programming language}

Alignment of parallel pulse trains:
Older method of centering pulses
Newer method of centering pulses
"d28=(p4-p2)/2"
(d28 p2 ph0):f1 (p4 ph0):f2
(center (p2 ph0):f1 (p4 ph0):f2)
New alignment commands
(center (p2 ph0):f1 (p4 ph0):f2)

(ralign (p2 ph0):f1 (p4 ph0):f2)

(Ialign (p2 ph0):f1 (p4 ph0):f2)

\section*{Newer features in Bruker pulse programming language}

Comparison operator "larger"
"DELTA3=d0*2+larger(p14,p22)-p14"
This allows the delay DELTA3 to be calculated correctly, regardless of whether p14 or p22 is larger.

A clever way to set offset frequencies of shaped pulses
"spoff5=bf2*(cnst21/1000000)-o2"
In this example, o2 is the offset frequency of the carbon channel, which would be set near 40ppm for protein experiments. Shaped pulses using sp5 are used to hit the carbonyls, and so require an offset frequency (spoffs5). If this definition is present, all you have to do is set cnst21 to 175 (the frequency, in ppm, of the carbonyls).

Note that this method allows you to specify the offset frequency in ppm, making the whole setup independent of field strength.
\begin{tabular}{ll}
Conditional execution of labeled pulse program commands & ;\#define REFOCUS \\
\hline The "ifdef" and "else" statements are used to select sections \\
of the pulse program for conditional execution. In the past, in & \(\ldots\) \\
\begin{tabular}{l}
order to change which section of the program was active, the
\end{tabular} & \#ifdef REFOCUS \\
\begin{tabular}{l}
user had to comment or uncomment a "define" statement.
\end{tabular} & \\
(pho):f1 \\
This often leads to permission problems.
\end{tabular}

The new feature regarding conditionals is that the user can define conditionals on the command line together with the "zg" command. For example:
```


# ifdef LABEL_CN

"DELTA=p16+d16+larger(p2,p22)+d0*2

# else

"DELTA=p16+d16+p2+d0*2"

# endif /*LABEL_CN*/

```
```


# ifdef LABEL_CN

```
ifdef LABEL_CN
(center (p2 ph5) (p22 ph1):f3)
(center (p2 ph5) (p22 ph1):f3)
else
else
(p2 ph5)
(p2 ph5)
endif /*LABEL_CN*/
```


# endif /*LABEL_CN*/

```

If the sample is nitrogen labeled, then defining LABEL_CN will result in decoupling nitrogen, as well as proton, during the \(t_{1}\) time. To define it, the user can type " \(z g\)-DLABEL_CN when starting the experiment. Alternatively, -DLABEL_CN can be stored under ZG_OPTNS, and it will be defined when "zg" is entered (you can set it in ASED or in EDA).

\section*{Newer features in Bruker pulse programming language}
\begin{tabular}{ll}
\(\qquad\) Method of quadrature detection & \begin{tabular}{l}
go=2 ph31 cpd3:f3 \\
d11 do:f3 wr \#0 if \#0 zd \\
d11 ip5*2 igrad EA
\end{tabular} \\
In the old style programming, the looping & \begin{tabular}{l}
lo to 3 times 2 \\
d11 id10
\end{tabular} \\
for quadrature detection was written explicitly. & d11 d30 \\
This has the advantage that you can see in & lo to 4 time l13 \\
the pulse program exactly how the loops work. & d11 rd10 ip3
\end{tabular}

Below is the way the same loop structure is written in the new style:
```

go=2 ph31 cpd3:f3
d11 do:f3 mc \#0 to 2
F1PH(rd10 \& rd30 \& ip3, id0 \& id20 \& dd29)
F2EA(igrad EA \& ip5*2, id10 \& dd30)

```

The advantage of the new method is its flexibility. In the new method, the parameter "FnMODE" must be set. This allows the same pulse program to have different methods of quadrature detection. In the above example, FnMODE can be States-TPPI, States, TPPI, \&etc in F1, but must be echo-antiecho in F2 (any time "EA" appears in the parentheses, FnMODE must be echo-antiecho). You should be familiar with both styles, because you will undoubtedly encounter both in your work.

BE CAREFUL! If the old style looping is used, FnMODE must be set to "undefined".

How does the looping for quadrature detection actually work?
States-TPPI looping
"I1=td1/2"

2 d11*2
3 d11*2
4 d12 do:f3
\begin{tabular}{|c|c|c|c|}
\hline Increment & \(\Phi_{4}\) & \(\mathrm{t}_{1}\) value & \(\underline{\text { receiver }}\) \\
\hline 1 & X & 0 & X \\
\hline 2 & y & 0 & x \\
\hline 3 & -x & \(2 \Delta\) & -X \\
\hline 4 & -y & \(2 \Delta\) & -x \\
\hline
\end{tabular}
go=2 ph31 cpd3:f3
d11 do:f3 wr \#0 if \#0 zd
d11 ip1
lo to 3 times 2
d11 id0
d11 (ip31*2)
lo to 4 times I1
30m BLKGRAD
exit
The part following acquisition consists of 3 nested loops
1) \(\mathrm{go}=2\)
loops times (ns-1)
2) lo to 3 times 2
loops back to 3 one time
3) lo to 4 times 11
loops to 4 (11-1) times.

The definition at the top defines 11 to be \(1 / 2\) of td1 (TD in F1 that can be entered in eda). If the pulse sequence does not contain this definition you must set 11 manually.

This schematic shows the complete looping of a States-TPPI-style 2D pulse sequence with ns=2 and \(11=4\) (TD1=8).

\section*{Translating pulse programs into pulse sequence diagrams}

\section*{Example 2: hncacbgp3d (Bruker standard hncacb)}
d0
(center (p14:sp5 ph1):f2 (p22 ph8):f3)
d0
4u
(p14:sp3 ph1):f2
DEITA3
(p14:sp5 ph1):f2
4u
(p13:sp2 ph9):f2
d28
(p14:sp3 ph1):f2
d28
(p13:sp8 ph10):f2
(p21 ph1):f3
d30
(p14:sp5 ph1):f2
d30
center (p14:sp3 ph1):f2 (p22 ph8):f3)
d10
(p14:sp5 ph1):f2
d29
4u do:f1
(p26 ph7):f1
\(4 u\)
p16:gp2*EA
d16
DELTA4 pl1:f1
(center (p1 ph1) (p21 ph5):f3)
d26
(center (p2 ph1) (p22 ph1):f3)
d26
(center (p1 ph2) (p21 ph6):f3)
d26
(center (p2 ph1) (p22 ph1):f3)
d26
(p1 ph1)
DELTA1
(p2 ph1)
d13
p16:gp3
d16 pl16:f3
4u BLKGRAD
go=2 ph31 cpd3:f3
d11 do:f3 mc \#0 to 2
F1PH(rd10 \& rd29 \& rd30 \& ip9 \& ip10, id0 \& dp9*2)
F2EA(igrad EA \& ip6*2, id10 \& id29 \& dd30)
ph1=0
ph2=1
ph3=0000000022222222
ph4=0
ph5=0 022
ph6=3 311
ph7=3
ph8=0 0002222
ph9=3 1
ph10=0 2
ph31=0 220022020022002

\section*{;pl0: 120dB}
;pl1 : f1 channel - power level for pulse (default)
;pl3: f3 channel - power level for pulse (default)
;pl16: f3 channel - power level for CPD/BB decoupling
;pl19: f1 channel - power level for CPD/BB decoupling
;sp1: f1 channel - shaped pulse 90 degree (H2O on resonance)
;sp2: f2 channel - shaped pulse 90 degree (Cali on resonance)
;sp3: f2 channel - shaped pulse 180 degree (Cali on resonance)
;sp5: f2 channel - shaped pulse 180 degree (\(\mathrm{C}=\mathrm{O}\) off resonance)
;sp8: f2 channel - shaped pulse 90 degree (Cali on resonance)
for time reversed pulse
;p1 : f1 channel - 90 degree high power pulse
;p2 : f1 channel - 180 degree high power pulse
;p11: f1 channel - 90 degree shaped pulse
;p13: f2 channel - 90 degree shaped pulse
;p14: f2 channel - 180 degree shaped pulse
;p16: homospoil/gradient pulse
;p21: f3 channel - 90 degree high power pulse
;p22: f3 channel - 180 degree high power pulse
;p26: f1 channel - 90 degree pulse at pl19
; d0 : incremented delay (F1 in 3D)
[3 usec]
;d1 : relaxation delay; 1-5 * T1
;d10: incremented delay \((F 2\) in 3D \()=\) d23/2-p14/2
;d11: delay for disk l/O [30 msec]
;d13: short delay [4 usec]
;d16: delay for homospoil/gradient recovery
;d21: 1/(2J(NH)
[5.5 msec]

\section*{hncacbgp3d}

d0, d10, and d29: incremented delays
d30: decremented delay
phases 6, 9, and 10: cycled for States-TPPI quadrature detection

\section*{Tips On Setting Up NMR Experiments}

\section*{Tip \#1: Look at your pulse sequence!}

\section*{Incremented delays}

If any of the indirect dimensions is constant time, you have to make sure to set all the in values for that dimension the same. Usually there are comments telling you which ones have to be equal. Or you can looks at the quadrature loops to see which ones go together.

If you set the sweep widths with the sw parameter in eda, that will automatically set in0 (for \(\mathrm{f}_{1}\)) or in10 (for \(\mathrm{f}_{2}\)). You then have to set the other in values to match.
*In xwinnmr, SWH \(=\frac{1}{\text { INO*NDO }}\)
nd0

If you are using States-TPPI or echo-antiecho quadrature detection (almost all experiments do), then nd0 is simply the number of times d0 appears in the pulse sequence.

For the simplest evolution:
d0 \(\qquad\)
d0
set nd0 to 1.
f2

If the evolution has a \(180^{\circ}\) decoupling pulse:
d0
(p2 ph0):f1
d0
Set nd0 to 2
f2 \(\qquad\)

\section*{nd0}

If the evolution is constant time, it's a little more complicated. In general, if the evolution looks like this:
```

d0
(p2 ph2):f1
d0
d28
p16:gp1
d16
(p4 ph4):f2
d29

```

with in0, dd28, and dd29 in the quadrature looping, nd0 should be set to 2. And of course, in28 and in29 should be set equal to in0.

If the evolution looks like this:
```

d30
(p14:sp5 ph1):f2
d30
(center (p14:sp3 ph1):f2 (p22 ph8):f3 )
d10
(p14:sp5 ph1):f2
d29
4u do:f1
(p26 ph7):f1
4u
p16:gp2*EA
d16
DELTA4 pl1:f1

```


This is a combined chemical shift evolution, and antiphase
-> in-phase evolution for the C -> N INEPT transfer
with dd30, id10, and id29 in the quadrature looping, nd10 should be set to 4 (and in30 and in29 set equal to in10).

\section*{Gradient Selection}

How can I tell if my experiment uses gradient selection?
Look into the pulse program and search for \(E A\). If \(E A\) appears in the body of the pulse program, then gradient selection is used.

If your pulse program does use gradient selection, then the selection gradients must be in the right ratio (\(4: 1\) for \({ }^{13} \mathrm{C}, 10: 1\) for \({ }^{15} \mathrm{~N}\)). In Bruker sequences, the selection gradients will normally be the one multiplied by EA, and the final gradient. It can occasionally be tricky - for example in the experiment
SD_ct.ce.hsqchc, shown above, the selection gradients are the last three gradients. The first of these (multiplied by EA) dephases the magnetization while it's on carbon, and the last two rephase the magnetization on proton. Therefore the gradient ratios must be \(8: 1:-1\).

In Bruker standard pulse programs, the correct ratios should be in the comments.

But for purposes other than coherence selection, the exact length and strength of gradients is not so important.

If the gradient appears inside a fixed-length delay, you have to make sure the gradient will fit inside the delay.

The cryoprobes and the QXI probe only have \(Z\) gradients.
The recovery delay after gradients should be at least \(100 \mu \mathrm{sec}\).
*Gradient shapes need more than \(5 \mu \mathrm{sec}\) per point in order to run properly. So, for example, a gradient with shape sine. 100 (a shape file with 100 points) needs to be longer than \(500 \mu \mathrm{sec}\).

\section*{Water Suppression}

Presaturation:
The length of the presat (p18 or d1) should be the same as you would use for d1 (1-2 seconds). The power (usually pl9) should be around 50 dB for water, 70 dB for \(\mathrm{D}_{2} \mathrm{O}\).

\section*{Water-Flip-Back and WATERGATE:}

For setup purposes, you only have to adjust the selective \(90^{\circ}\) pulses. In the pulse program, these pulses will either look something like this:
(p11 ph11:r):f1
or like this:
(p11:sp1 ph11:r):f1

They are selective \(90^{\circ}\) pulses on water, so of course they will always be on channel 1.

To optimize the WFB WATERGATE water suppression, you should start the experiment in gs mode. In this mode you can interactively optimize the relevant parameters. The parameters you should optimize are:

01
power levels: each power level associated with one of the selective 90s (the pulse length should be at least 1 msec)
phcor: Any time the phase program has a :r behind it, the phase can be changed by small amounts. Usually the selective 90s on water are written this way, and they should all be optimized in gs mode. In the above example, phcor11 should be optimized. (I often look for selective 90s on water in the pulse program by searching for ":r")

\section*{Common Setup Problems}

If your experiment has a constant time evolution, you can only have as many increments in that dimension as will fit. For example, in the hncacbgp3d experiment above, the delay d30 is decremented in the \(t_{2}\) dimension. It is defined as follows: "d30=d23/2-p14/2", and d23 is defined to be 12.4 msec . So d30 will have a defined length (say 12.2 msec) that can't be changed by the user. If the nitrogen sweep width is 2050 Hz , it would only be possible to have 202 increments in \(\mathrm{t}_{2}\).
\(1 /(4 * S W H Z)=D W \sim 122 \mu \mathrm{sec}\) and \(100 * 122 \mu \mathrm{sec}=12.2 \mathrm{msec}\)
(d30 is decremented only every other increment - so with 202 total \(t_{2}\) values, d30 will be decremented 100 times)

If you had more than 202 increments, d30 would become negative, which is of course not possible. So if you set td2 to more than 202 and type \(z g\) or expt, you will get an error that d30 becomes negative by too many dd30 commands. In this case the only things you can do are to increase the sweep width in that dimension, or to reduce the number of increments.

There's another problem that gives the same type of error. If the incremented delays d0 or d10 are defined in the pulse program by a formula,
"d0=(in0/2)-(p5*2/3.14)-p1"
*This is done so that the phases in \(\mathrm{f}_{1}\) are known in advance. In this case ph0=90 and ph1=-180.
you will sometimes get an error that d0 becomes negative by too many dd0 commands. In this case the error is a red herring because there are no dd0 commands. The reason you get this error is that (in0/2)-(p5*2/3.14)-p1 is negative (or because \(p 5^{*} 2 / 3.14+p 1\) is larger than in0/2). The easiest way around this is to decrease p 5 or p 1 by going to higher power. If that isn't possible, you can redefine d0:
(next page)
"d0=in0-(p5*2/3.14)-p1"
In this case, ph0 will be 180 and ph1 will be -360 .
or
"d0=(in0*3/2)-(p5*2/3.14)-p1"
In this case, ph0 will be 270 and ph1 will be -540 .
Or you can define d0 like this:
"d0=3u"

And then you will have to manually phase the indirect dimension.
Of course, you can't redefine d0 unless you have write permission, which you probably don't. In that case, the only thing you can do is to save the (new) pulse program under a new name, and change the parameter PULPROG to the new name.

\section*{***Most important!***}

Check the power levels for all long pulses or pulse trains! Examples are presaturation pulses, TOCSY pulse trains, ROESY mixing pulses, and cpd decoupling pulse trains.

Presaturation pulses are either written using the cw command, or as a conventional pulse:

In this version, the length of the presaturation is d1, and the power is pl9:

In this version, the length is p18, and the power is pl9:
```

d12 pl9:f1
p18 ph29
d12 pl1:f1

```

Presaturation pulses are usually long (1-2 sec), so the power has to be relatively weak. The presaturation power shouldn' \(t\) be higher than 50 dB (i.e. 45 dB is too high).

Good values to use are 50 dB for \(\mathrm{H}_{2} \mathrm{O}\) samples, and 70 dB for \(\mathrm{D}_{2} \mathrm{O}\) samples.

If your experiment has a TOCSY pulse train, you need to identify it in the pulse sequence. It will be a long series of pulses, often multiplied by strange numbers, and with a looping statement at the end.

Here is the beginning of the dipsi2 TOCSY sequence from the experiment "dipsi2etgp":
```

p1 ph3
d20 pl10:f1
4 p6*3.556 ph23
p6*4.556 ph25
p6*3.222 ph23
p6*3.167 ph25
p6*0.333 ph23
p6*2.722 ph25
p6*4.167 ph23
p6*2.944 ph25
p6*4.111 ph23
lo to 4 times I1

```

The important things here are the pulse length (p6), the power level (pl10), and the overall length of the dipsi2 sequence (d9). P6 should normally not be less than \(25 \mu \mathrm{sec}\), and pl10 should be calibrated for a \(90^{\circ}\) pulse of length p6.

If your experiment is a ROESY, there is one very long pulse which is the ROESY spin-lock. Here's part of a simple ROESY pulse sequence:
```

d12 pl9:f1
d1 cw:f1 ph29
d13 do:f1
d12 pl1:f1
p1 ph1
d0
4u pl11:f1
p15 ph2
go=2 ph31

```

The ROESY spin-lock is p15, and the power level is pl11. Usually for experimental purposes, the spin-lock should be 200 msec or less. But you have to be very careful not to apply too much power. For the cryoprobes, the field strength of the spin-lock pulse can't be higher than 2.5 KHz - or the power corresponding to a \(100 \mu \mathrm{sec} 90^{\circ}\) pulse.

Of the various ways you can overpower the probe, probably the most dangerous is composite pulse decoupling (cpd). The reason cpd is so dangerous is that you can only set the length of the decoupling in a somewhat roundabout way. This kind of decoupling runs during the entire acquisition, so the only way to change the length of the decoupling is to change the length of the acquisition.

Here are the last few lines of a typical pulse program that uses cpd decoupling on carbon and nitrogen during the acquisition:
```

d12
length of decoupling is aq
p16:gp2
d17 pl12:f2 pl13:f3
d12 BLKGRAD
go=2 ph31 cpd2:f2 cpd3:f3
d11 do:f2 do:f3 wr \#0 if \#0 zd

```

Here the power level for cpd2 is pl12 and the power level for cpd3 is pl13. The lengths of the decoupling pulses are pcpd2 and pcpd3. Typical values are pcpd2 \(=70 \mu \mathrm{sec}\left({ }^{13} \mathrm{C}\right)\), and pcpd3=170 \(\mu \mathrm{sec}\left({ }^{15} \mathrm{~N}\right)\), with corresponding power levels (pcpd2 and pcpd3 are \(90^{\circ}\) pulses). To find the current acquisition time, you can type "aq". But to change the acquisition time, you can only increase the sweep width (of the directly detected dimension), or decrease TD (the number of points acquired in the directly detected dimension).
*On cryoprobes, acquisition is not allowed to be longer than 140 msec , if decoupling is being used. And if there is decoupling on both channels (as above), you must reduce the power. You can use \(\operatorname{pcpd} 2=100 \mu \mathrm{sec}\), and \(\mathrm{pcpd} 3=200 \mu \mathrm{sec}\), with corresponding power levels.```

