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FLUID FLOW IN POROUS SYSTEMS

P. MANSFIELD AND M. BENCSIK

Magnetic Resonance Centre, Department of Physics, University of Nottingham, Nottingham, UK

Nuclear magnetic resonance (NMR) measurements of water velocity flowing through glass bead packs with a
bead diameter of 10 mm have been made using thep echo-planar imaging (PEPI) sequence. These results
indicate that for various flow rates the flow variance is proportional to the mean flow velocity in agreement with
the Mansfield-Issa equation. The velocity distributions are approximately Gaussian. Investigation of the slopes of
the variance vs. velocity curves as a function of slice thickness indicate some coherence effects in the connectivity
of the glass bead system. An extension of an earlier intervoxel coupling model is presented, which seems to explain
the observed coherence effects. © 1998 Elsevier Science Inc.
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INTRODUCTION

The p echo-planar imaging (PEPI) method of flow im-
aging1 has recently been applied successfully to measure
fluid flow and in particular the velocity distribution
across a transaxial slice in Bentheimer and Clashach
sandstone, and more recently in glass bead phantoms. In
all cases the velocity distributions obtained are charac-
terised by an approximate Gaussian distribution curve
and a velocity variance proportional to mean flow veloc-
ity, which agrees with theoretical predictions based on a
stochastic model of flow.2

In a microscopic model of flow a complementary
description of the coupling process between adjacent
pixels is used to evaluate the velocity variance. This
model also leads to the velocity variance being propor-
tional to mean flow velocity, i.e., the Mansfield–Issa
equation.3 In all flow velocity distributions the mean
velocity of course obeys Darcy’s Law.

The change in variance with mean flow velocity has
been attributed to the presence of transverse flow orthog-
onal to the main flow pressure gradient. This transverse
flow has been ascribed to an intervoxel coupling mech-
anism comprising Bernoulli flow channels, which allow
non-dissipative transverse flow across the slice. Using
this model, the coupling mechanism is further investi-
gated for an isolated voxel pair. It is shown that the
characteristic way in which the fluid velocity in a par-

ticular voxel changes with slice thickness depends on the
dimensions of the voxel.

THEORETICAL BACKGROUND

We have shown elsewhere3 that, for a set of isolated
pairs of voxels of cross-sectional areadA each with a
single nondissipative flow channel or Bernoulli pathway
of cross-sectional areaDaj forming the coupling path for
fluid transfer between voxels, the velocity variance cal-
culated for all pairs is given by:
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wherev# is the mean flow velocity,N is the number of
voxels in the slice,k is the sample resistivity,r the fluid
density, Dkj a small resistive element, and where the
subscriptj is used to tag the characteristics of thej th

voxel.
For this approximation to hold, we require (Daj/dA)2

, 1, a situation which obtains naturally in the real
system, because the in-plane resolution is 1.9 mm per
pixel and the pore diameter is of the order of 20mm.

TakingDaj 5 Da, Eq. (1) leads to the Mansfield-Issa
equation, where from Eqs. (1) and (2) the connectivity,
^C&, is given by:
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The Gaussian velocity distribution derived previously2 is
expressed as a percentage of the numbern of voxels with
flow velocity v to the total number of voxels,N, and is
given by:

n/N 5
@100dv#

aÎ2p
exp[2~v 2 v# !2/ 2a2], (3)

wheredv is the flow interval used in plotting the histo-
gram data.

Extension of Model
In a straightforward extension of the above voxel

coupling model, we introducem additional coupling
pathways. For a single pathway we have shown previ-
ously3 that the spatial correlation function,f( z), describ-
ing the intervoxel connectivity is given by:

f~ z! 5 e2uzu/l, (4)

wherel is the mean misregistration length of entry and
exit orifices measured along thez-axis.

The normalised distribution ofN/ 2 voxel pairs, each
having a single connecting Bernoulli flow channel with
entry and exit orifices displaced by z, is from the above
discussion equal to:

F~ z! 5
1
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N

l
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In modeling the single coupling channel, we used a
resistive network, two arms of which correspond to dis-
sipative or Poiseuille flow, while the non-dissipative link
or Bernoulli flow channel was modeled by a non-linear
impedance element. Addition of further coupling links
turns the model into a ladder network. For 1# m # 3
we assert that the circuit behaves as an adding network.
By a straightforward extension of Eq. (6), the contingent
distribution of voxel pairs having m connecting Ber-
noulli flow channels with entry and exit orifices dis-
placed by the independent variablesz1, z2, z3 . . . is
given by:

F9m~ z1, z2, . . . zm! 5 K9meu~ z11z21 . . . zm!u/l, (6)

whereK9m is the normalisation constant andl is the mean
pathway between flow channels along thez-axis.

By noting that the flow resistivity elementDk is
proportional toz, we can change the variable fromz to C

by using Eq. (3) and the fact thatzm9/l 5 Dkm9/kc 5
Cm9/ 2z to obtain an expression equivalent to Eq. (7),
namely:

Fm~C1, C2, . . . Cm! 5 Km e2u~C11C21 . . . Cm)u/2z, (7)

where we have replacedK9m by Km. The quantitykc

introduced in the coordinate transformation is a charac-
teristic flow resistance, for the single Bernoulli flow
channel casez 5 ^C&.

As a generalisation of the connectivity equation, Eq.
(3), we write the extended version as:
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where 1 # m9 # m, j refers to the summation over
voxels, andm9 refers to the summation overm coupling
pathways for thej th voxel.

Using the distribution function, Eq. (7), converting
Eq. (8) from a discrete to a continuous sum, and taking
into account the coordinate transformation from velocity
space to connectivity space, we have:
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which leads to the connectivity terms^C&1, ^C&2, and
^C&3 for 1, 2, and 3 Bernoulli pathways, respectively.

RESULTS

In natural porous media such as Bentheimer sandstone
the pore size is typically 20mm. In order to investigate
the connectivity variation with slice thickness, it would
be necessary in natural materials to have extremely thin
slice thicknesses and very high-resolution flow maps. At
the present time this is not possible with our equipment.
In order to test the theory, therefore, we have constructed
model systems comprising glass bead packs with various
macroscopic-sized beads ranging from 3–10 mm in di-
ameter. Due to signal-to-noise ratio limitations, the thin-
nest slice that we are currently able to study is 10 mm.
Our initial experiments are, therefore, confined to glass
beads of 10-mm diameter.

Fig. 1 shows six velocity-distribution graphs mea-
sured using 10-mm glass beads. The continuous curves
correspond to the theoretical velocity distribution, Eq.
(3), fitted to each experimental distribution using thex2
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test. The mean area under the data curves was used
throughout and onlya was varied in the fitting process.
The mean velocityv# was taken from the mean value of
the data in all cases. As a precursor to this study, we have
found that the Mansfield–Issa equation holds true in such
model systems. This is demonstrated in Fig. 2, which

shows the variance versusv# for a slice thickness of 40
mm. The variance values were calculated from the raw
data. Fig. 3 shows the slope of the variance plot,^C&k/r
5 ^C9& versus the slice thickness,. This shows a con-
siderable variation in̂C9&, which we ascribe to coher-
ence effects.

Fig. 1. Graphs of number of pixels having a fluid velocityv (expressed as a percentage) vs.v for the various flow rates indicated.
The continuous curves correspond to the Gaussian curve, Eq. (4). The slice thickness, 5 30 mm for all graphs.
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Because of the basic periodicity of the bead pack, we
assume that for a slice thickness, 5 10 mm equal to the
bead diameter,̂C9& corresponds essentially tôC9&1.
Similarly for , 5 20 mm there will be on average two
beads falling within the slice thickness, so that the con-
nectivity will be dominated essentially bŷC9&2; like-
wise for ^C9&3. From Fig. 3 the connectivity for, 5 10
mm is given by^C9&1 5 151.8 mm/s, ^C9&2 5 125

mm/s, and^C9&3 5 139.5 mm/s. Using Eq. (9) and
starting with the measured value for^C9&1, we find
theoretical values of̂C9&2 5 123.6mm/s and^C9&3 5
142.9 mm/s.

For very large slice thicknesses, we expect the initial
coherence shown in Fig. 3 to be replaced by a drop in
^C9&, which varies inversely as=,. Further experimen-
tal work is required on 10-mm bead packs in order to
substantiate this point.

DISCUSSION AND CONCLUSIONS

The sample container consists of a cylindrical volume
with diameter 75 mm and length 150 mm. One of the
difficulties with bead packs comprising large diameter
beads contained in a finite sample volume is that there
are relatively few beads in the statistical assembly. There
is, therefore, a clear possibility that the beads will form
into regular, close-packed arrays rather than a random
arrangement as called for by the theoretical model. Go-
ing to a smaller bead size would obviate this difficulty.
However, experiments on 5- or 3-mm beads would re-
quire a correspondingly thinner slice thickness.

Other concerns are connected with the voxel resolu-
tion. We have specifically coarsened the voxel resolution
so that it corresponds approximately to the bead diame-
ter. This means that with the 10-mm bead packs, the
number of voxels in a given slice is reduced to typically
16 3 32 voxels. Such small array sizes can call into
question the validity of the statistics used in the devel-
opment of the stochastic theory.

Despite these concerns, the data do seem to agree with
most aspects of the theory, in particular the velocity
distributions, which are reasonably Gaussian-like in pro-
file, the linearity of the Mansfield–Issa equation, and the
expected variation of connectivity with slice thickness.

With the above provisos, we are cautiously optimistic
that the model system is behaving as expected. However,
it remains to be seen whether these results can be repro-
duced for smaller bead sizes.
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Fig. 2. Graph ofa2 vs. v# for a glass bead pack comprising
10-mm beads. The slice thickness, 5 40 mm for these data.

Fig. 3. Graph of̂ C&k/r vs. slice thickness, for a glass bead
pack comprising 10-mm diameter beads.
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