A proposal for criteria and an assessment procedure to identify Persistent, Mobile and Toxic (PM or PMT) substances registered under REACH

Michael Neumann, Daniel Sättler, Lena Vierke and Ivo Schliebner
Section IV 2.3 – Chemicals
German Environment Agency (UBA), Germany
Preamble

• Our ground- and drinking water need **highest level of protection**

• Sustainable Development Goal 6.3: “*by 2030 to improve water quality by reducing pollution [...] and minimizing release of hazardous chemicals*”

• EU drinking water directive: “*to protect human health from the adverse effects of any contamination of water*”

• EU groundwater directive: "*groundwater is a valuable natural resource and as such should be protected from [...] chemical pollution.*”

• EU water companies' memorandum:
 “*Nobody has a right to pollute water bodies*”
Introduction

• A growing threat to Europe's drinking water sources and aquatic environment
• By the increasing number and volume of chemical substances
• Europe's chemical industry needs to continue to innovate
• Aim of this initiative is to enable industry to easily identify substances that may contaminate the sources of our drinking water
Substances causing an irreversible threat to drinking water

• A substance that is emitted into the environment pose an irreversible threat to the quality of our drinking water if
 – it is persistent (P) in the environment and
 – mobile (M) enough to transport through river banks, groundwater aquifers, and natural and artificial barriers, over time scales of weeks or more, to reach a drinking water source

• If such a substance is toxic (T), it must be considered a serious threat to human health.
Intrinsic substance properties that cause a concern

• **PPOP** or **polar POPs**
 – polar persistent organic pollutant (Giger et al., 2005)

• **P³ substances** or **PPPs**
 – persistent polar pollutants (Reemtsma & Jekel, 2006)

• **NANA**
 – German: nicht abbaubar & nicht adsorbierbar (unknown)
 – [English: not degradable & not adsorbable]

• **PMOCs**
 – persistent mobile organic chemicals (Reemtsma et al., 2016)

Our proposal to call them:

• **PM and PMT substances**
 – persistent in the environment, mobile in the water cycle and toxic
 (Neumann, 2017)
Intrinsic substance properties that cause a concern

- PM and PMT substances can **recirculate within the water cycle** and are **difficult to remove** from the raw water in drinking water production.
- This is, because the **same intrinsic substance properties** that lead to persistence in the environment and mobility in the aquatic environment also **allow for breakthrough** in wastewater and sewage treatment plants as well as raw water treatment processes.
- Many PM/PMT substances **can withstand** ozonation, UV treatment, filtration by activated carbon, or even reverse osmosis.
- Therefore, **contamination** of the water cycle with PM/PMT substances **can be irreparable**.
The hazard of PM and PMT substances

The hazard posed by PM/PMT substances is of an equivalent level of concern to the hazard posed by PBT/vPvB substances

• Both
 – harmful effects not just nearby the point of emissions
 – can persist over time
 – can reach locations far from where they were initially emitted

Only difference: their pathways for environmental exposure and transport

• PBT/vPvB substances
 – human exposure via the diet
 – transport and accumulate via the food chain and biota

• PM/PMT substances
 – exposure through drinking water
 – transport and recirculate with the water cycle
Proposal to identify PM and PMT substances

Stepwise assessment procedure:

Applicability domain?

- NO → N/A
- persistent?
 - NO → No further action
- mobile?
 - NO → N/A

PM substance

- toxic?
 - NO → N/A

PMT substance

Applicability domain

- Inorganic substances, surfactants
 - => CURRENTLY EXCLUDED
- UVCBs and multi constituent substances
 - => ONLY INDIVIDUAL COMPONENTS
- Ionic, zwitterionic or ionizable organic compounds
 - => ONLY MEASURED $\log K_{OC}$

M. Neumann et al.: Proposal for criteria and an assessment procedure to identify PM or PMT substances
Step 1: Assessment of P properties

- **Criteria** adopted from the Annex XIII of the REACH Regulation
- Same tiered approach includes screening and assessment steps
- PBT assessment is included in registration of uses > 10 t/year

=> NO ADDITIONAL WORKLOAD FOR REGISTRANTS

- **Focus on aquatic environment**, however, consistency with the PBT/vPvB assessment procedure: a *proof in any* environmental compartment is sufficient to fulfil “P”
- This has the intention to *reduce workload to the registrants* and to guarantee full consistency to the PBT/vPvB assessment procedure.

A substance fulfils the persistency criterion (P) if:

it fulfils the criteria for persistence in the Annex XIII of REACH

P criteria (half live at at environmentally relevant pH 6-8 and 12°C)

- marine water > 60 d
- fresh water > 40 d
- marine sediment > 180 d
- sediment > 120 d
- soil > 120 d
Mobility

• … is the ability to move **or to be moved**
• First guess: water solubility is extremely important
• **Not exactly** the opposite of potential to **accumulate**
• Second Thought: opposite of potential to **adsorb**

=> **WHICH SUBSTANCE PROPERTY ULTIMATELY DETERMINES MOBILITY IN THE WATER CYCLE?**
Modelling Approach

• common REACH model ECETOC TRA
• calculated concentrations in surface water and groundwater (maximum => drinking water)
• **64 substances**
 – **Identical concentrations** in the inlet of the sewage treatment plant
 – **wide range** of intrinsic substance properties
 – **No Degradation**

<table>
<thead>
<tr>
<th>Molecular Weight g/mol</th>
<th>Log K_{oc}</th>
<th>Water Solubility mg/L</th>
<th>Vapour Pressure Pa</th>
<th>Henrys Law Constant Pa m^3/mol</th>
<th>Log K_{ow}</th>
<th>Degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>76</td>
<td>-0.32</td>
<td>7*10^{-8}</td>
<td>1*10^{-10}</td>
<td>-3.87</td>
<td>no</td>
</tr>
<tr>
<td>Max</td>
<td>781</td>
<td>10.2</td>
<td>910</td>
<td>7.263</td>
<td>17</td>
<td>no</td>
</tr>
</tbody>
</table>

European Centre for Ecotoxicology and Toxicology of Chemicals: The Targeted Risk Assessment (TRA) tool for estimating exposures e.g. to the environment version 3 was launched in April 2012.

M. Neumann et al.: Proposal for criteria and an assessment procedure to identify PM or PMT substances
Vapour Pressure: determinant of mobility?
Water Solubility: determinant of mobility?

Minimum water solubility > 150 µg/L

NOT mobile

mobile
M. Neumann et.al.: Proposal for criteria and an assessment procedure to identify PM or PMT substances

\[\text{log } K_{ow}: \text{ determinant of mobility?} \]

2015 UFOPLAN Project FKZ 371265416
by Fritz Kalberlah, Jan Oltmanns, Markus A. Schwarz (FoBiG GmbH) & Joachim Baumeister, Albrecht Striffler (denkbares GmbH)
log K_{oc}: determinant of mobility?

![Graph showing the relationship between log K_{oc} and the fraction of influent.](image)

- Increasing groundwater concentrations due to sludge application
- Decreasing groundwater concentrations due to strong soil adsorption
- Decreasing surface water concentrations due to removal by sludge adsorption

2015 UFOPLAN Project FKZ 371265416
by Fritz Kalberlah, Jan Oltmanns, Markus A. Schwarz (FoBiG GmbH) & Joachim Baumeister, Albrecht Striffler (denkbare GmbH)
log K_{oc}: determinant of mobility!

2015 UFOPLAN Project FKZ 371265416
by Fritz Kalberlah, Jan Oltmanns, Markus A. Schwarz (FoBiG GmbH) & Joachim Baumeister, Albrecht Striffler (denkbares GmbH)
Step 2: Assessment of M properties

- **Proposal to use** Soil Organic Carbon-Water Partitioning Coefficient as the criterion to identify substances to be mobile in the water cycle.
- Adsorption needs to be assessed in registration of uses > 10 t/year if ionisable or log $K_{ow} \geq 3$

 => **NO ADDITIONAL WORKLOAD FOR REGISTRANTS**
- For chemicals ionisable within environmental relevant pH-range: no calculation of K_{oc} but experimental measurement

A **persistent substance fulfils the mobility criterion (M)** if:

(a) its water solubility is at environmental relevant pH 6-8 and $12 \ ^\circ C \geq 150 \ \mu g/L$

 and

(b) its log K_{OC} at environmental relevant pH 6-8 and $12 \ ^\circ C$ is ≤ 4.5.

Step 3: Assessment of T properties

A substance fulfils the toxicity criterion (T) if:
- it fulfils the human health toxicity criteria from Annex XIII of REACH:
 - carcinogen Cat. 1A, 1B,
 - germ cell mutagen Cat. 1A, 1B
 - reproductive toxicant Cat. 1A, 1B, 2
 - STOT RE Cat. 1 or 2

Proposed additional criteria:
- meets the criteria for classification as
 • carcinogen Cat. 2, germ cell mutagen Cat. 2
 • category for effects on or via lactation"
- For oral exposure (long-term, general population) the (derived no effect level) DNEL is ≤ 9 µg/kg body weight and day

To discuss:
- should the T criteria in the PMT assessment also account for ecotoxicity?
Proposed Plan for Implementation 1/2

• The **long-term goal** of this initiative by the German Environment Agency (UBA) is that industry, through REACH and ECHA’s REACH guidance, will be able to more easily fulfil its obligation **to ensure that substances registered under REACH do not compromise the sources of our drinking water** by initiating voluntary measures **to minimize emissions into the environment**.

• This **proposal** of PMT criteria and assessment procedure to identify PM/PMT substances is available for **consultation, discussion and commenting**.

• A **research project** has been set up to include the expansion of the chemical **applicability domain**, data quality considerations and to **refine the T criteria**.
Proposed Plan for Implementation 2/2

• In late 2017 the German Environment Agency (UBA) intends to publish a first draft of a list of substances registered under REACH that are considered to fulfil the PM/PMT criteria or are candidate PM/PMT substances.

• In early 2018, the German Environment Agency (UBA) will hold a workshop in Berlin.

• If PMT criteria are agreed on, the German competent authority intends to propose the first PMT substances for candidate listing as substance of very high concern (SVHC) in 2018.
Announcements

• ICCE Poster 352
 Using REACH registration data for the identification of persistent, mobile and toxic (PMT) substances
 Ivo Schliebner et al.

• ICCE Oral Presentation 156
 by Thorsten Reemtsma
 Wednesday 11:15 in Auditorium 2

• Workshop “Persistent and Mobile Organic Chemicals in the Water Cycle:
 Linking science, technology and regulation to protect drinking water quality”
 23 - 24 November 2017, Leipzig, Germany organized by PROMOTE
Thank you for your attention

Michael Neumann, Daniel Sättler, Lena Vierke and Ivo Schliebner

Michael.Neumann@uba.de

German Environment Agency (UBA)
Section IV 2.3 Chemicals
Wörlitzer Platz 1, 06855 Dessau-Roßlau, Germany

www.umweltbundesamt.de/mobile-chemikalien