

Gabriel Sigmund

Caroline Poyntner, Guadalupe Piñar, Melanie Kah, Thilo Hofmann

Compost and biochar for the remediation of PAH and NSO-PAH contaminated soils

Residual soil contaminations

- Hotspots are typically excavated
- Residual soil can remain diffusely contaminated
- Ex-situ treatment too laborious and costly

Compost

- Decomposed biomass
- Recycling of organic waste
- Rich in soil nutrients, so it increases soil fertility
- Can enhance **degradation** of some organic contaminants

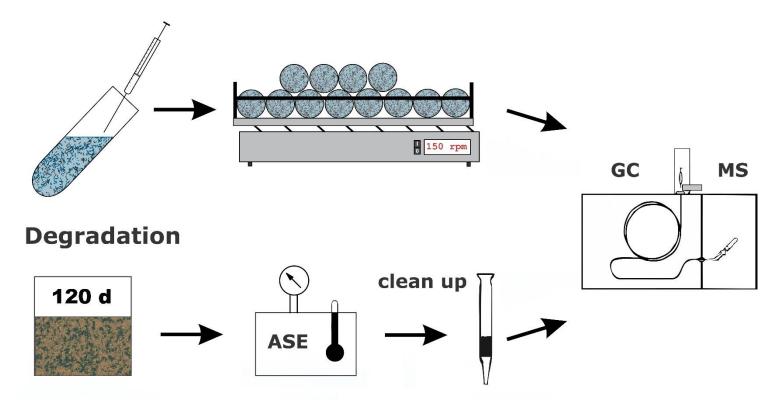
Biochar

- Biomass pyrolysis (< 700°C)
- Increases soil water holding capacity
- Carbon sink
- Strong **sorption potential** for organic contaminants

AIM

Investigate the remediation potential of compost & biochar, specifically effects on

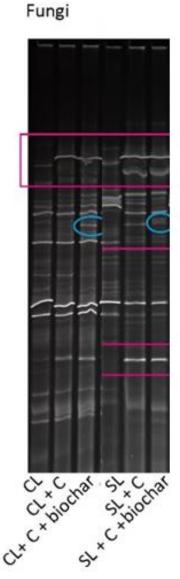
- i. **Sorption** of PAHs and NSO-PAHs
- ii. Changes in **microbial community structure**
- iii. **Degradation** of PAH and NSO-PAH


Materials

	pyrene	phenanthrene	fluorene	carbazole	DBT	DBF
log K _{ow}	4.88	4.46	4.18	3.37	4.38	4.12
structure			Ŕ		ÓÒ	OL)
CL		CL		C	CL	С
SL		SL		C	SL	С

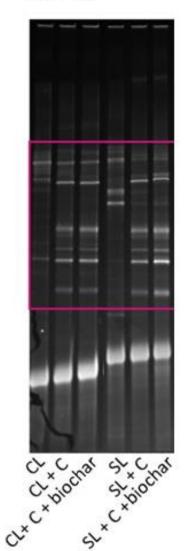
Methods

Sorption batch

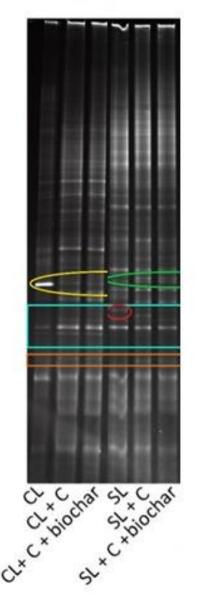

Sorption 10000 Increased with OC \Leftrightarrow 1000 KD [L/kg] • Carbazole \leq Pyrene Θ ₽ Pyrene ≤ Phenantrene < Phenanthrene 100 A Flurenen ~ DBT ~ Fluorene Carbazole DBT DBF SL+C+biochar 10 CL+C+biochar SL C1-

DBF

Microbial composition


Bacteria

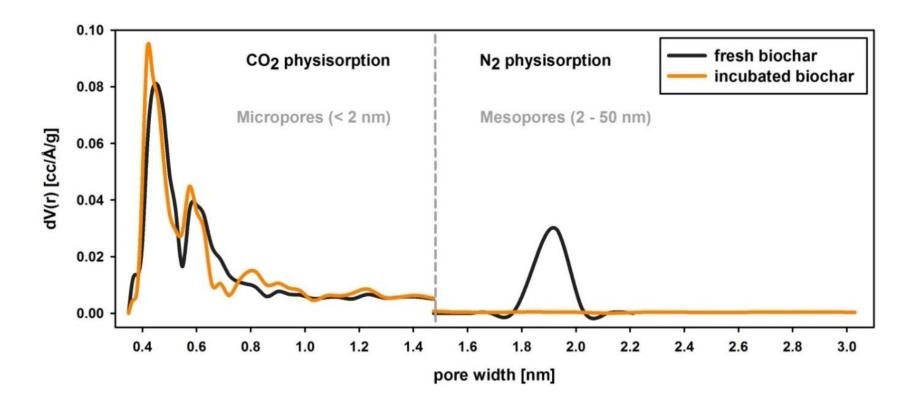
Archaea


9

Bacterial composition

- Additional bands after compost addition
- Only small changes after further BC addition
- Pseudomonas Ct biochar stra

Sphingomonas


Degradation

- Increased 2*
 with compost
- Decreased 10* with biochar
- Changed order after BC addition

Biochar poresize distribution

Conclusion

- Sorption increased with both compost and biochar
- Microbial diversity increased with compost
- Degradation increased twofold with compost and decreased up to tenfold with biochar, thus desorption was a rate limiting step

Thank you for your attention!

Funding

MINISTERIUM FÜR EIN LEBENSWERTES ÖSTERREICH

14