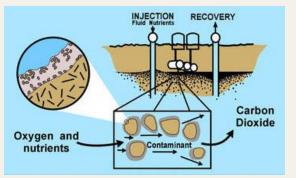

Is bioremediation of PAHcontaminated soils worth it? Implications for human health and cancer risk

Cleo Davie-Martin, Kelly Stratton, Justin Teeguarden, Katrina Waters, and Staci Massey Simonich

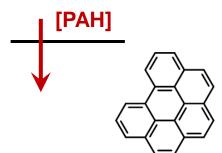

ICCE Conference, 18-June-2017

Introduction to Bioremediation

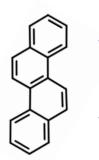
Polycyclic aromatic hydrocarbons (PAHs) are common pollutants in soils

Bioremediation utilizes microorganisms to facilitate the degradation of PAHs into less toxic materials (e.g., CO₂, methane, water)

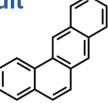
http://bioremediationmadesimple.weebly.com/

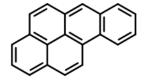

- Amendments such as nutrients, surfactants, and exotic microbes boost degradation
- Inexpensive + 'greener' + less infrastructure than alternative remediation technologies

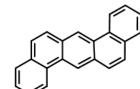
Utilized at only **6%** of Superfund source treatment projects (*in situ* and *ex situ*) between 2009-2011 (USEPA, 2013)

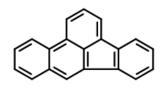

Bioremediation often fails to sufficiently degrade the most carcinogenic PAHs and can initiate formation of more polar metabolites

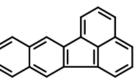
Monitoring Bioremediation Success

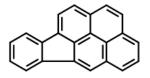

- 1. Targeted measurements of Σ_{16} PAH concentrations
- 2. Risk assessment generally includes calculation of an excess lifetime cancer risk (ELCR):




→ Predicts an 'incidence' rate of cancer in exposed populations




- Non-dietary ingestion is the primary exposure route for adult workers exposed to industrial soils
 - Focuses on **eight B2 group PAHs (4-6 rings)** highlighted as known, possible, or probable carcinogens



We collated data from the literature to investigate human health outcomes regarding the cancer risk associated with PAH-contaminated soils.

OBJECTIVES

- 1. Identify the most effective bioremediation strategies for degrading carcinogenic PAHs
- Determine if the cancer risk associated with PAH-contaminated soils is reduced following bioremediation
- 3. Assess the human health implications of remediated soil using cancer risk estimates

Collate data from literature: [PAH] pre- and postbioremediation

Collated Literature Dataset

26 manuscripts = 180 soil

Criteria:

bioremediation treatments

- Published after 1997
- Bioremediation of contaminated soils only ([PAH]_{total} >50 mg kg⁻¹)
- PAHs quantified using well-established analytical techniques
- [PAH]_{soil} reported pre- and post-bioremediation
- Mean concentrations ± SD reported for *individual* PAHs
- At least 5 of the 8 carcinogenic B2 group PAHs were reported

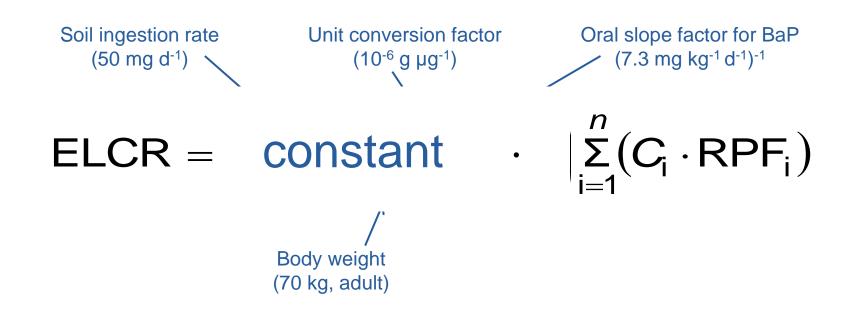
When criteria weren't (quite) met:

- Authors were asked to provide original datasets (post-2010 publications)
- Follow-up emails were sent after 2 weeks without a response
- 12 authors contacted (regarding15 manuscripts)
- 3 authors provided the necessary data

Define different bioremediation treatment types

Collate data from literature: [PAH] pre- and postbioremediation

Bioremediation Treatment Types


Lowest degradation potential

- 1. Killed control: sterilized soil (autoclaving/mercuric chloride)
- 2. No additions: indigenous microbiota (moisture/aeration only)
- 3. Biostimulation: addition of nutrient fertilizers
- 4. Bioaugmentation: soil inoculated with bacterial/fungal colonies
- 5. Surfactant: addition of (bio)surfactants
- 6. Composting: addition of organic matter

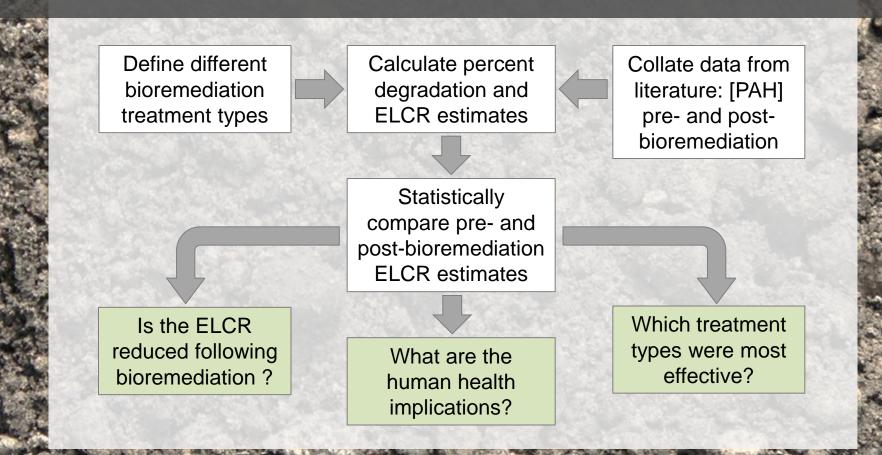
Highest degradation potential

Define different bioremediation treatment types Calculate percent degradation and ELCR estimates Collate data from literature: [PAH] pre- and postbioremediation

Excess Lifetime Cancer Risk (ELCR)

Exposure factor (EF) for adults & industrial land:

- 5 days/week
- 50 weeks/year
- For 25 years
- With a life expectancy of 70 years

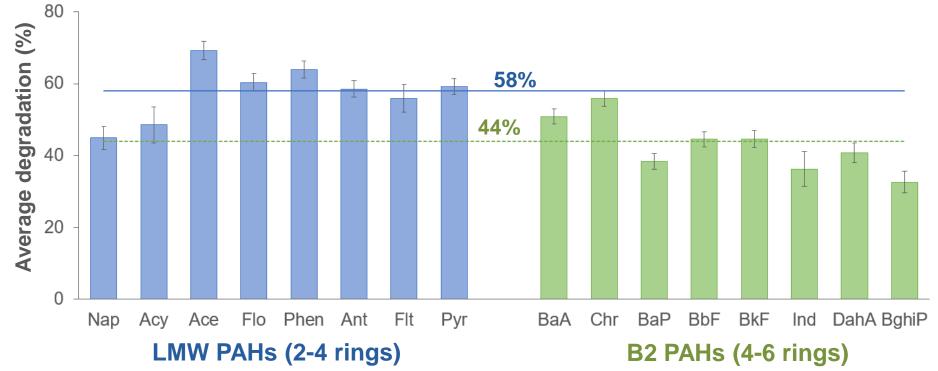

Excess Lifetime Cancer Risk (ELCR)

Essentially calculating a "BaP-equivalent" concentration									
ELCR = C	onstant	$\cdot \sum_{i=1}^{n} (C_{i} \cdot RPF_{i})$							
		PAH _i concentration Relative potency factor for PAH _i (relative to BaP)							
B2 group PAHs	RPFs	(µg g⁻¹)							
Benzo(a)pyrene (BaP)	1								
Dibenzo(a,h)anthracene	10								
Benzo(b)fluoranthene	0.8								
Benzo(a)anthracene	0.2	'Acceptable' health risk							
Indeno(1,2,3-c,d)pyrene	0.07	<1 in 1 million people							
Benzo(k)fluoranthene	0.03	(10 ⁻⁶) or an ELCR < 1							
Chrysene	0.1								
Benzo(ghi)perylene	0.009								

Define different bioremediation treatment types Calculate percent degradation and ELCR estimates

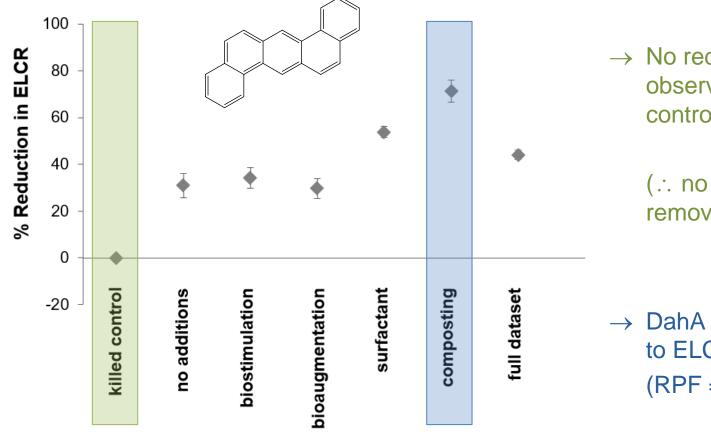
Collate data from literature: [PAH] pre- and postbioremediation

Statistically compare pre- and post-bioremediation ELCR estimates


RESULTS

Degradation of Σ_{16} PAHs

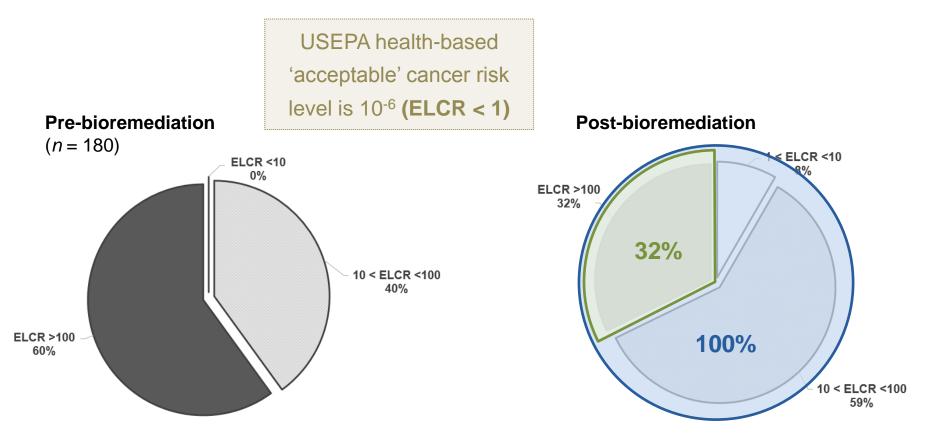
 Σ_{16} PAH concentrations in soil \downarrow following bioremediation, irrespective of treatment type:


- $\rightarrow\,$ 2- to 4-ringed LMW PAHs showed the greatest degradation
- \rightarrow 4- to 6-ringed carcinogenic (B2 group) PAHs were degraded to a lesser extent

Reduction in Cancer Risk

Cancer risk was significantly reduced ($p \le 0.05$) in **160** of the **180** treated soils (89%) following bioremediation

→ Composting treatments were most effective at biodegrading carcinogenic PAHs


→ No reductions in ELCR observed in the killed controls

(∴ no substantial abiotic removal/degradation)

→ DahA largest contributor to ELCR estimates (RPF = 10)

Implications for Human Health

Despite ELCR estimates \downarrow post-bioremediation, considerable health risks remain...

- All soils had post-bioremediation ELCR values above the 'acceptable' risk level
- 32% of treated soils exceeded USEPA guidelines by >2 orders of magnitude

Implications for Human Health

[B2 PAHs] in most of the *treated* soils **exceeded** the USEPA 'acceptable' cancer risk concentrations (based on 10⁻⁶ incidence)

PAHs	# ^a	Industrial	%	Residential	% exceeded	Ingestion exposure	%
		soil (mg kg ⁻¹)	exceeded	soil (mg kg ⁻¹)	(residential)	(residential soil)	exceeded
			(industrial)			(mg kg ⁻¹)	(ingestion)
Acenaphthene	96	45000	0	3600	0		
Anthracene	140	230000	0	18000	0		
Benzo(a)anthracene	179	2.9	85	0.16	100	0.21	100
Benzo(a)pyrene	179	0.29	100	0.016	100	0.021	100
Benzo(b)fluoranthene	166	2.9	92	0.16	100	0.21	100
Benzo(k)fluoranthene	142	29	25	1.6	97	2.1	92
Chrysene	169	290	2	16	54	21	44
Dibenz(a,h)anthracene	131	0.29	90	0.016	100	0.021	100
Fluoranthene	168	30000	0	2400	0		
Fluorene	122	30000	0	2400	0		
Indeno(1,2,3-cd)pyrene	77	2.9	70	0.16	100	0.21	100
Naphthalene	113	17	53	3.8	75		
Pyrene	169	23000	0	1800	0		

^a The number of measurements for each PAH in our collated dataset following bioremediation.

Conclusions

- Composting treatments were most effective at biodegrading PAHs and reducing cancer risk, likely due to the nutrients and exotic microflora introduced with compost
- While bioremediation strategies ultimately lower cancer risk, considerable health risks remain:
 - → Often unable to successfully remove carcinogenic PAHs to concentrations below the USEPA health-based 'acceptable' guidelines
- Current strategies for risk assessment focus on the 16 priority PAHs
 - → Mounting evidence that other PAHs and their transformation products may significantly contribute to cancer risk and adverse human health outcomes
- Highlights the need for future bioremediation studies that focus on:
 - \rightarrow Methods for the enhanced degradation of the most carcinogenic PAHs
 - → Routine measurement and identification of potential transformation products (and their inclusion in future risk assessments)

ACKNOWLEDGEMENTS

20

Statistical Comparisons: Simulation Strategy

