Stabilization or mobilisation of PFAS at firefighting sites in Norway – feasibility for remediation

Åse Høisæter, Sarah Hale, Gøril Aasen Slinde, Hans Peter Arp, Emma Jane Wade, Gijs D. Breedveld, Norwegian Geotechnical Institute (NGI)
Kamilla Grotthing Moe, Bengt Fredrik Straith, Morten Jartun, Oslo Airport Avinor

16TH INTERNATIONAL CONFERENCE ON CHEMISTRY AND THE ENVIRONMENT
Poly- and Perfluoroalkyl Substances (PFASs)
Outline:

- Background
- Site location: AFFF at OSL airport
- Groundwater remediation
 - Pump and treat
- Unsaturated zone remediation
 - Stabilisation?
 - Soil washing?
 - Landfilling?
- Discussion
Background:

- AFFF used historically at Norwegian civil and military airports
- PFAS in soil, groundwater, rivers, lakes, fjords and in biota
- Investigating fate and transport PFAS in the environment
- Investigating cost-effective remediation for PFAS in soil and water
Site location: Oslo Airport, Gardermoen

- Military airport since 1912
- Norway’s largest groundwater reservoir
- Groundwater level at 2 to 30 m depth
- Historic use of AFFF without barriers
- PFAS in soil leach to groundwater and are transported to nearby waterbodies (rivers)
- New Oslo Airport opened in 1998
Oslo Airport fire fighting training site

- 6 training platforms
- Surface cover/Barriers
- Runoff collection systems
- Runoff to WWTP 1998-2015
- Runoff treatment since 2015
- AC-filter
PFOS source determination at the site

- The use of AFFF at the site
- Estimated PFAS in the soil
PFOS in the unsaturated zone (0-3m)
Co-contaminants at the site (hydrocarbons)
Groundwater remediation: Pump and treat

- Groundwater pumping wells downgradient
- Cleaned water re-infiltrated into wells
- Maintain groundwater level in area
- AC filters in series remove PFAS
- Spent AC filters are incinerated
- How long is pump and treat needed?
PFAS treatment efficiency in AC-filter at OSL

PFOS-concentration in groundwater and the amount PFOS removed in the AC filters since oktober 2015

[Graph showing PFOS concentration and removal efficiency over time from 2015 to 2017]
Laboratory testing of sorbent amendment to sandy PFAS contaminated soil

- Soil classified as sandy
- PFOS dominates with concentrations from 9 to 2600 μg/kg
- Leaching quantified with one step aqueous batch leaching test
- Sorbent amendment
 - activated carbon (AC)
 - compost soil (C)
 - montmorillonite (MM)
Measured K_D-values for PFOS in sand

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sampling depth</th>
<th>Total PFOS concentration</th>
<th>Leaching-concentration PFOS</th>
<th>K_D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$C_{PFOS, soil}$ µg/kg</td>
<td>$C_{PFOS, porewater}$ µg/L</td>
<td></td>
</tr>
<tr>
<td>PR. 4</td>
<td>0-1</td>
<td>645</td>
<td>108</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>1340</td>
<td>114</td>
<td>11.81</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>1650</td>
<td>128</td>
<td>12.89</td>
</tr>
<tr>
<td></td>
<td>3-3,8</td>
<td>956</td>
<td>73</td>
<td>13.13</td>
</tr>
<tr>
<td>PR. 5</td>
<td>0-1</td>
<td>98.6</td>
<td>20</td>
<td>4.87</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>1620</td>
<td>92</td>
<td>17.55</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>598</td>
<td>69</td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td>3-3,4</td>
<td>477</td>
<td>57</td>
<td>8.42</td>
</tr>
<tr>
<td>PR. 6</td>
<td>0-1</td>
<td>1280</td>
<td>212</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>1760</td>
<td>157</td>
<td>11.21</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>595</td>
<td>91</td>
<td>6.57</td>
</tr>
<tr>
<td></td>
<td>3-3,8</td>
<td>145</td>
<td>87</td>
<td>1.67</td>
</tr>
<tr>
<td>PR. 10</td>
<td>0-1</td>
<td>42</td>
<td>3</td>
<td>12.87</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>27</td>
<td>7</td>
<td>3.96</td>
</tr>
<tr>
<td>PR. 17</td>
<td>0-1</td>
<td>1650</td>
<td>139</td>
<td>11.90</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>2400</td>
<td>130</td>
<td>18.41</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>1420</td>
<td>95</td>
<td>14.92</td>
</tr>
<tr>
<td>PR. 21</td>
<td>0-1</td>
<td>1720</td>
<td>87</td>
<td>19.75</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>50</td>
<td>7</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>6</td>
<td>1</td>
<td>5.53</td>
</tr>
<tr>
<td>PR. 14</td>
<td>Fines between gravel</td>
<td>376</td>
<td>9</td>
<td>42.95</td>
</tr>
</tbody>
</table>

Average K_D for PFOS in sandy soil 10 L/kg
Reduction in PFOS leachate concentration after sorbent amendment and K_D soil+sorbent

K_D soil+sorbent (L/kg)

- 18.81 ± 1.47
- 16 960 ± 0
- 18.25 ± 1.40
- 6.04 ± 0.41
- 7 287 ± 6 292
- 5.52 ± 0.08
- 7.80 ± 0.28
- 1 906 ± 1 132
- 9.20 ± 0.19

C – compost soil; AC – activated carbon; MM - montmorillonite
Enhanced remediation based on contaminant properties and site specific conditions

- Stabilization or mobilization?
- Pump and treat barrier for PFAS transport by groundwater
- Soil washing at the training areas
 - Above the membran barrier sites
 - Collection of runoff water
 - Treatment in AC filter
- Soil washing at hotspots outside training areas
 - Pumping groundwater
 - Treatment in local AC filter and downstream AC filter
 - Enhancing the groundwater concentration to be extracted by downstream remediation pumps and treated with AC filter
Discussion

- Quantify the PFAS source
- Hydrogeological site investigation
- Identify the leaching paths from the source
- Transport mechanisms in the unsaturated zone
 - adsorption and desorption in the porewater
 - degree of soil saturation
- Transport mechanisms in the groundwater
 - advective transport
 - adsorption and desorption
 - dispersion and diffusion
- Contribution to recipient: concentration (ng/l) and flux (g/year)
- Risk assessment (EQS-values for water, sediment and biota)
- Determine remediation action
Thank you for your attention 😊
Questions?