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Introduction
New and impressive machine learning methods emerge every
day, often black box models

For this reason, uncertainty quantification is more difficult than
ever – and more important than ever!
Some methods come with a notion of uncertainty, but these are
not necessarily well-calibrated and don’t necessarily have
theoretical guarantees
Conformal prediction (CP) returns prediction sets instead of
point predictions that have theoretical guarantees regardless of
underlying distribution
Introduced by Vovk et al. 2005 and Shafer and Vovk 2007,
recently renewed interest from machine learning communities
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Figure: Some data (X ,Y ).
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Figure: We train some black box model f (X ).

Anders Hjort An Informal Introduction to Conformal Prediction 3 / 20



Intuition

0

10

20

30

40

0 1 2 3
X

Y

Figure: For the new point Xnew we use the model to make a prediction.
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Figure: ... but how certain are we about the prediction?
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With our black box model we ob-
tain a prediction f (Xnew ) for the
new instance Xnew .

In addition to the point prediction, we want to create a prediction set
C(Xnew ) such that

P(Ynew ∈ C(Xnew )) ≥ 1 − α

for some 0 < α < 1.

In simple terms: We want to create a prediction set such that we are
(e.g.) 90% sure that the true value is within the set.
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Idea
Define a score s(Xi ,Yi) that quantifies how well a data point
(Xi ,Yi) conforms with the rest of the data

Calculate the score for every observation in a calibration set
Use the (1 − α)th percentile of the scores on the calibration set
to create prediction intervals for new, unobserved instances
(Xnew , ?)
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Algorithm
Step 0: Prediction algorithm.
Use your favorite (black box) algorithm to obtain f (x).

Step 1: Non-conformity score.
A non-conformity score s(Xi ,Yi) that quantifies how much (Xi ,Yi)
conforms to the rest of the observations. Examples:

s(Xi ,Yi) = |Yi − Ȳ |
s(Xi ,Yi) = |Yi − f (Xi)|

Step 2: Calculate non-conformity scores on calibration set.
Calculate s(Xi ,Yi) for every observation in a calibration set.
Step 3: Find the correct threshold.
Let q90 be the 90th percentile of s(X1,Y1), ..., s(XN ,YN).
Step 4: Prediction. For a new observation (Xnew , ?) from the test set,
the prediction set is

C(Xn+1) = [f (Xnew )− q90, f (Xnew ) + q90]
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A Simple Example
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The 90th percentile of s(Xi ,Yi) = |Yi − f (Xi)| on a calibration is ≈ 3.3,
so the prediction set is C(Xnew ) = [f (Xnew )− 3.3, f (Xnew ) + 3.3].
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Assumptions and proofs
Prediction sets give finite sample coverage guarantee:

P(Ynew ∈ C(Xnew )) ≥ 1 − α,

for any α, as long as (Xnew ,Ynew ) is exchangeable with training
and calibration data.

The rank of s(Xnew ,Ynew ) is uniformly distributed among the
previous s(X1,Y1), ..., s(XN ,YN) as long as they are
exchangeable!
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Example with heteroscedastic errors
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Figure: What if training data has heteroscedastic errors?
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Example with heteroscedastic errors
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Figure: Still 90% coverage, but not so helpful.
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Any non-conformity score is valid!
Interestingly, any choice of non-conformity score s(X ,Y ) gives valid
prediction sets! A common choice to handle heteroscedasticity:

s(Xi ,Yi) =
|Yi − f (Xi)|
σ̂(Xi)

,

where σ̂(Xi) is an estimate of the standard deviation of the errors.

Instead of using

C(Xn+1) = [f (Xnew )± q90],

we can use

C(Xn+1) = [f (Xnew )± σ̂(Xnew ) · q90],

to create adaptive intervals.
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Example with heteroscedastic errors
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Figure: A function σ̂(X ) to estimate
the heteroscedasticity.
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Figure: A histogram of the normalized
residuals s(Xi ,Yi) =

|Yi−f (Xi )|
σ̂(Xi )

.
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Example with heteroscedastic errors
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Figure: Adaptive intervals!
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Conclusion
CP can create prediction sets around your favorite point
prediction method.
CP gives coverage guarantees as long as we have
exchangeable data.
Garbage in, garbage out: Everything depends on a good point
prediction and the choice of non-conformity score.
Exciting topic with lots of potential for researchers and
practitioners!

Recent trends:
Conformal prediction beyond exchangeability (Barber et al. 2022)
Conformalizing other methods, such as Conformalized Quantile
Regression (Romano et al. 2019)
Conformal predictive distributions (Vovk et al. 2017)
Creating tailored non-conformity scores for specific applications
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Application: House price prediction
Goal: Predict house price (Y ) of a house given coordinates, size
(m2), number of bedrooms, neighborhood characteristics, etc.
N ≈ 30 000 from Oslo, 2018-2019 (train/test/calibration: 1/3
each)
Point prediction: Random forest with 500 trees
Three CP methods for uncertainty quantification:

Split Conformal Prediction
Conformalized Quantile Regression (CQR)
Mondrian CQR

Research in collaboration with Eiendomsverdi AS, presented at
COPA 2022
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Application: House price prediction

Table: Results from the Oslo data set at confidence level α = 0.1. Interval
sizes are given in million NOK.

Method Coverage (%) Mean interval size Median interval size
Split CP 89.54 1.85 1.61
CQR 90.25 1.79 1.23
Mondrian CQR 90.40 1.85 1.25
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Application: House price prediction
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