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Statistics meets machine learning: the example of statistical boosting

Data science, statistics, machine learning: what is “data science”?

Carmichael & Marron (2018) stated: “Data science is the business
of learning from data”, immediately followed by “which is
traditionally the business of statistics”.

What is your opinion?

‚ “data science is simply a rebranding of statistics”
(“data science is statistics on a Mac”, Bhardwaj, 2017)

‚ “data science is a subset of statistics”
(“a data scientist is a statistician who lives in San Francisco”,
Bhardwaj, 2017)

‚ “statistics is a subset of data science”
(“statistics is the least important part of data science”,
Gelman, 2013)
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Data science, statistics, machine learning: what is “data science”?
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Data science, statistics, machine learning: statistics vs machine learning

What about differences between statistics and machine learning?

‚ “Machine learning is essentially a form of applied statistics”;

‚ “Machine learning is glorified statistics”;

‚ “Machine learning is for Computer Science majors who
couldn’t pass a Statistics course”;

‚ “Machine learning is statistics scaled up to big data”;

‚ “The short answer is that there is no difference”;

Actually...

‚ “I don’t know what Machine Learning will look like in ten
years, but whatever it is I’m sure Statisticians will be whining
that they did it earlier and better”.

(https://www.svds.com/machine-learning-vs-statistics)
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Data science, statistics, machine learning: statistics vs machine learning

“The difference, as we see it, is not one of algorithms or practices
but of goals and strategies.
Neither field is a subset of the other, and neither lays exclusive
claim to a technique. They are like two pairs of old men sitting in
a park playing two different board games. Both games use the
same type of board and the same set of pieces, but each plays by
different rules and has a different goal because the games are
fundamentally different. Each pair looks at the other’s board with
bemusement and thinks they’re not very good at the game.”

“Both Statistics and Machine Learning create models from data,
but for different purposes.”

(https://www.svds.com/machine-learning-vs-statistics)
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Data science, statistics, machine learning: statistics vs machine learning

Statistics

‚ goal is approximating (understanding) the data-generating
process;

‚ the models provide the mathematical framework needed to
make estimations and predictions;

‚ each choice made in the analysis must be defensible;

‚ the analysis is the final product: documentation, assumptions,
diagnostic tests, . . .
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Data science, statistics, machine learning: statistics vs machine learning

Machine Learning

‚ the predominant task is predictive modeling;

‚ the model is only instrumental to its performance;

‚ the proof of the model is in the test set;

‚ no worries about assumptions or diagnostics (only a problem if
they cause bad predictions);

‚ if the population changes, all bets are off.
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Data science, statistics, machine learning: statistics vs machine learning

“As a typical example, consider random forests and boosted
decision trees. The theory of how these work is well known and
understood. [. . . ] Neither has diagnostic tests nor assumptions
about when they can and cannot be used. Both are “black box”
models that produce nearly unintelligible classifiers. For these
reasons, a Statistician would be reluctant to choose them. Yet
they are surprisingly – almost amazingly – successful at prediction
problems.”

(https://www.svds.com/machine-learning-vs-statistics)
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Some theory: statistical decision theory

Statistical decision theory gives a mathematical framework for
finding the optimal learner.

Let:

‚ X P IRp be a p-dimensional random vector of inputs;

‚ Y P IR be a real value random response variable;

‚ ppX,Y q be their joint distribution;

Our goal is to find a function fpXq for predicting Y given X:

‚ we need a loss function LpY, fpXqq for penalizing errors in
fpXq when the truth is Y ,

§ example: squared error loss, LpY, fpXqq “ pY ´ fpXqq2.
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Some theory: statistical decision theory

Given ppx, yq, we can derive the expected prediction error of fpXq:

Errpfq “ EX,Y rLpY, fpXqqs “

ż

x,y
Lpy, fpxqqppx, yqdxdy;

‚ criterion for choosing a learner: f which minimizes Errpfq;
§ e.g., for the square loss, fpxq “ ErY |X “ xs.

In practice, fpxq must be estimated. E.g, for linear regression:

‚ assumes a function linear in its arguments, fpxq « xTβ;

‚ argminβErpY ´X
Tβq2s Ñ β “ ErXXT s´1ErXY s;

‚ replacing the expectations by averages over the training data
leads to β̂ Ñ f̂pXq.
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Some theory: the bias–variance decomposition

Consider Y “ fpXq ` ε, Erεs “ 0, Varrεs “ σ2. Then we can
decompose the expected prediction error of f̂pXq at a point
X “ x0

Errpx0q “ ErpY ´ f̂pXqq2|X “ x0s

“ ErY 2s ` Erf̂px0q
2s ´ 2ErY f̂px0qqs

“ VarrY s ` fpx0q
2 ` Varrf̂px0qs ` Erf̂px0qs

2 ´ 2fpx0qErf̂px0qs

“ σ2ε ` bias2pf̂px0qq ` Varrf̂px0qs

“ irreducible error` bias2 ` variance

IDEA: reduce the expected prediction error by reducing the
variance, allowing an increase in the bias.

Workshop of the 16th Applied Statistics 2019 International Conference 12/ 71



Statistics meets machine learning: the example of statistical boosting

Some theory: Hastie et al. (2009, Fig. 7.1)
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Towards boosting: trees (Hastie et al., 2009, Fig. 9.2)
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Towards boosting: trees

Advantages:

‚ fast to construct, interpretable models;

‚ can incorporate mixtures of numeric and categorical inputs;

‚ immune to outliers, resistant to irrelevant inputs.

Disadvantages:

‚ lack of smoothness;

‚ difficulty in capturing additive structures;

‚ highly unstable (high variance).
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Towards boosting: Galton (1907)

© 1907 Nature Publishing Group
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Towards boosting: Galton (1907)

In 1907, Sir Francis Galton visited a country fair:

A weight-judging competition was carried on at the annual show of
the West of England Fat Stock and Poultry Exhibition recently
held at Plymouth. A fat ox having been selected, competitors
bought stamped and numbered cards [. . . ] on which to inscribe
their respective names, addresses, and estimates of what the ox
would weigh after it had been slaughtered and “dressed”. Those
who guessed most successfully received prizes. About 800 tickets
were issued, which were kindly lent me for examination after they
had fulfilled their immediate purpose.
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Towards boosting: Galton (1907)

After having arrayed and analyzed the data, Galton (1907) stated:

It appears then, in this particular instance, that the vox populi is
correct to within 1 per cent of the real value, and that the
individual estimates are abnormally distributed in such a way that
it is an equal chance whether one of them, selected at random,
falls within or without the limits of -3.7 per cent and +2.4 per cent
of their middlemost value.

Concept of “Wisdom of Crowds” (or, as Schapire & Freund,
2014, “how it is that a committee of blockheads can somehow
arrive at a highly reasoned decision, despite the weak judgement of
the individual members.”)
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Towards boosting: wisdom of crowds (Hastie et al., 2009, Figure 8.11)
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Towards boosting: translate this message into trees

How do can we translate this idea into tree-based methods?

‚ we can fit several trees, then aggregate their results;

‚ problems:
§ “individuals” are supposed to be independent;
§ we have only one dataset . . .

How can we mimic different datasets while having only one?

‚ Bootstrap!
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Towards boosting: Hastie et al. (2009, Fig. 7.12)
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Towards boosting: bootstrap trees (Hastie et al., 2009, Fig. 8.9)
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Towards boosting: bootstrap trees (Hastie et al., 2009, Fig. 8.9)
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Towards boosting: bagging

The procedure so far:

‚ generate bootstrap samples;

‚ fit a tree on each bootstrap sample;

‚ obtain B trees.

At this point, aggregate the results. How?

‚ majority: Ĝpxq “ argmaxk qkpxq, k P t1, . . . ,Ku,
§ where qkpxq is the proportion of trees voting for the category k;

‚ probability: Ĝpxq “ argmaxk B
´1

řB
b“1 p

rbs
k pxq,

k P t1, . . . ,Ku,

§ where p
rbs
k pxq is the probability assigned by the b-th tree to

category k;
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Towards boosting: bagging

In general, consider the training data Z “ tpy1, x1q, . . . , pyN , xN qu.
The bagging (boostrap aggregating) estimate is define by

f̂bagpxq “ EP̂ rf̂
˚pxqs,

where:

‚ P̂ is the empirical distribution of the data pyi, xiq;

‚ f̂˚pxq is the prediction computed on a bootstrap sample Z˚;

‚ i.e., py˚i , x
˚
i q „ P̂.

The empirical version of the bagging estimate is

f̂bagpxq “
1

B

B
ÿ

b“1

f̂˚b pxq,

where B is the number of bootstrap samples.
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Towards boosting: bagging

Bagging has smaller prediction error because it reduces the
variance component,

EP rpY ´ f̂
˚pxqq2s “ EP rpY ´ fbagpxq ` fbagpxq ´ f̂

˚pxqq2s

“ EP rpY ´ fbagpxqq
2s ` EP rpfbagpxq ´ f̂

˚pxqq2s

ě EP rpY ´ fbagpxqq
2s,

where P is the data distribution.

Note that this does not work for 0-1 loss:

‚ due to non-additivity of bias and variance;

‚ bagging makes better a good classifier, worse a bad one.
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Towards boosting: from bagging to random forests

The average of B identically distributed r.v. with variance σ2 and
positive pairwise correlation ρ has variance

ρσ2 `
1´ ρ

B
σ2.

‚ as B increases, the second term goes to 0;

‚ the bootstrap trees are p. correlated Ñ first term dominates.

Ó

construct bootstrap tree as less correlated as possible

Ó

random forests
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Towards boosting: a different way of improving bagging

We can use the information on the prediction obtained on the
previous step to improve the prediction on the following step

Ó

boosting

(https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/)
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Boosting: the first (practically used) boosting algorithm, AdaBoost
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Boosting: the first (practically used) boosting algorithm, AdaBoost

Consider a two-class classification problem, yi P t´1, 1u, xi P R
p:

1. initialize the weights, wr0s “ p1{N, . . . , 1{Nq;

2. for m from 1 to mstop,

(a) fit the weak estimator Gp¨q to the weighted data;

(b) compute the weighted in-sample missclassification rate,

errrms “
řN
i“1 w

rm´1s
i 1pyi ‰ Ĝrmspxiqq;

(c) compute the voting weights, αrms “ logpp1´ errrmsq{errrmsq;

(d) update the weights

§ w̃i “ w
rm´1s
i exptαrms1pyi ‰ Ĝrmspxiqqu;

§ w
rms
i “ w̃i{

řN
i“1 w̃i;

3. combine the results, ĜAdapxiq “ signp
řmstop

m“1 α
rmsĜrmspxiqq.
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Boosting: the first (practically used) boosting algorithm, AdaBoost

(Schapire & Freund, 2014, Figure 1.1)
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Boosting: the first (practically used) boosting algorithm, AdaBoost

First iteration:

‚ apply the classier Gp¨q on observations with weights:

1 2 3 4 5 6 7 8 9 10

wi 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

‚ observations 1, 2 and 3 are misclassified ñ errr1s “ 0.3;

‚ compute αr1s “ 0.5 logpp1´ errr1sq{errr1sq « 0.42;

‚ set wi “ wi exptαr1s1pyi ‰ Ĝr1spxiqqu:

1 2 3 4 5 6 7 8 9 10

wi 0.15 0.15 0.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Workshop of the 16th Applied Statistics 2019 International Conference 32/ 71



Statistics meets machine learning: the example of statistical boosting

Boosting: the first (practically used) boosting algorithm, AdaBoost

(Schapire & Freund, 2014, Figure 1.1)
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Boosting: the first (practically used) boosting algorithm, AdaBoost

Second iteration:

‚ apply classifier Gp¨q on re-weighted observations (wi{
ř

iwi):

1 2 3 4 5 6 7 8 9 10

wi 0.17 0.17 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07

‚ observations 6, 7 and 9 are misclassified ñ errr2s « 0.21;

‚ compute αr2s “ 0.5 logpp1´ errr2sq{errr2sq « 0.65;

‚ set wi “ wi exptαr2s1pyi ‰ Ĝr2spxiqqu:

1 2 3 4 5 6 7 8 9 10

wi 0.09 0.09 0.09 0.04 0.04 0.14 0.14 0.04 0.14 0.04
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Boosting: the first (practically used) boosting algorithm, AdaBoost

(Schapire & Freund, 2014, Figure 1.1)
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Boosting: the first (practically used) boosting algorithm, AdaBoost

Third iteration:

‚ apply classifier Gp¨q on re-weighted observations (wi{
ř

iwi):

1 2 3 4 5 6 7 8 9 10

wi 0.11 0.11 0.11 0.05 0.05 0.17 0.17 0.05 0.17 0.05

‚ observations 4, 5 and 8 are misclassified ñ errr3s « 0.14;

‚ compute αr3s “ 0.5 logpp1´ errr3sq{errr3sq « 0.92;

‚ set wi “ wi exptαr3s1pyi ‰ Ĝr3spxiqqu:

1 2 3 4 5 6 7 8 9 10

wi 0.04 0.04 0.04 0.11 0.11 0.07 0.07 0.11 0.07 0.02
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Boosting: the first (practically used) boosting algorithm, AdaBoost

(Schapire & Freund, 2014, Figure 1.2)
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Boosting: AdaBoost (Hastie et al., 2009, Fig. 10.2)
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Boosting: functional gradient descent algorithm

Friedman et al. (2000) showed that AdaBoost simply minimizes a
specific (exponential) loss function,

Lpy, fpXqq “ Ere´fpXqys,

through a functional gradient descent algorithm:

1. inizialize f̂pXqr0s, e.g. f̂pXqr0s ” 0;

2. for m “ 1, . . . ,mstop,

2.1 compute the negative gradient,

um “ ´
BLpy,fpXqq
BfpXq

ˇ

ˇ

ˇ

fpXq“f̂m´1pXq
;

2.2 fit the weak estimator to the negative gradient, ĥmpum, Xq;

2.3 update the estimate, f̂ rmspXq “ f̂ rm´1spXq ` νĥmpum, Xq;

3. final estimate, f̂boostpXq “
řmstop

m“1 νĥmpum, Xq.
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Boosting: functional gradient descent algorithm

The statistical view of boosting:

‚ allows to interpret the results;

‚ by studying the properties of the exponential loss;

It is easy to show that

f˚pxq “ argminfpxqEY |X“xre
´Y fpxqs “

1

2
log

PrpY “ 1|X “ xq

PrpY “ ´1|X “ xq
,

i.e.

PrpY “ 1|X “ xq “
1

1` e´2f˚pxq
;

therefore AdaBoost estimates 1/2 the log-odds of PrpY “ 1|xq.
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Boosting: functional gradient descent algorithm

In this form the algorithm can be generalized:

‚ not only different loss functions for classification,
§ 0-1 loss, binomial deviance, . . .

‚ but to generic statistical problems,
§ by using the negative (log-)likelihood as a loss function;
§ or negative partial (log-)likelihood (e.g., Cox regression).

The weak estimator (base-learner) can also be generic:

‚ tree, spline, ordinary least square, . . .
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Boosting: example with linear Gaussian regression

Consider the linear Gaussian regression case, with, w.l.g. ȳ “ 0:

‚ Lpy, fpXqq “ 1
2

řN
i“1pyi ´ fpxiqq

2;
‚ hpy,Xq “ XpXTXq´1XT y.

Therefore:

‚ initialize the estimate, e.g., f̂0pXq “ ȳ “ 0;
‚ m “ 1,

§ u1 “ ´
BLpy,fpXqq
BfpXq

ˇ

ˇ

ˇ

fpXq“f̂0pXq
“ py ´ 0q “ y;

§ h1pu1, Xq “ XpXTXq´1XT y;
§ f̂1pxq “ 0` νXpXTXq´1XT y.

‚ m “ 2,
§ u2 “ ´

BLpy,fpXqq
BfpXq

ˇ

ˇ

ˇ

fpXq“f̂1pXq
“ py ´ νXpXTXq´1XT yq;

§ h2pu2, Xq “ XpXTXq´1XT py ´ νXpXTXq´1XT yq;
§ update the estimate, f̂2pX,βq “ νXpXTXq´1XT y `
νXpXTXq´1XT py ´ νXpXTXq´1XT yq.
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Statistical Boosting: Gradient boosting

Gradient boosting algorithm:

1. initialize the estimate, e.g., f0pxq “ 0;

2. for m “ 1, . . . ,mstop,

2.1 compute the negative gradient vector,

um “ ´
BLpy,fpxqq
Bfpxq

ˇ

ˇ

ˇ

fpxq“f̂m´1pxq
;

2.2 fit the base learner to the negative gradient vector, hmpum, xq;

2.3 update the estimate, fmpxq “ fm´1pxq ` νhmpum, xq.

3. final estimate, f̂mstoppxq “
řmstop

m“1 νhmpum, xq

Note:

‚ X must be centered;

‚ f̂mstoppxq is a GAM.
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Boosting: parametric version

Note that, using fpX,βq “ XTβ, it makes sense to work with β:

1. initialize the estimate, e.g., β̂0 “ 0;

2. for m “ 1, . . . ,mstop,

2.1 compute the negative gradient vector,

um “ ´
BLpy,fpX,βqq
BfpX,βq

ˇ

ˇ

ˇ

β“β̂m´1

;

2.2 fit the base learner to the negative gradient vector,
bmpum, Xq “ pX

TXq´1XTum;

2.3 update the estimate, β̂m “ β̂m´1 ` νbmpum, xq.

3. final estimate, f̂mstoppxq “ XT β̂m.
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Boosting: properties

Consider a linear regression example,

yi “ fpxiq ` εi, i “ 1, . . . , N,

in which:

‚ εi i.i.d. with Erεis “ 0, Varrεis “ σ2;
‚ we use a linear learner S : RN Ñ RN (Sy “ ŷ);

§ e.g., S “ νXpXTXq´1XT .

Note that, using an L2 loss function,

‚ f̂mpxq “ f̂m´1pxq ` Sum;
‚ um “ y ´ f̂m´1pxq “ um´1 ´ Sum´1 “ pI ´ Squm´1;
‚ iterating, um “ pI ´ Sqm, m “ 1, . . . ,mstop.

Because f̂mpxq “ Sy, then f̂mstoppxq “
řmstop

m“0 SpI ´ Sqmy, i.e.,

f̂mstoppxq “ pI ´ pI ´ Sqm`1q
looooooooomooooooooon

boosting operator Bm

y.
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Boosting: properties

Consider a linear learner S (e.g., least square). Then

Proposition 1 (Bühlmann & Yu, 2003): The eigenvalues of the
L2Boost operator Bm are

 

1´ p1´ λkq
mstop`1, k “ 1, . . . , N

(

.

If S “ ST (i.e., symmetric), then Bm can be diagonalized with an
orthonormal transformation,

Bm “ UDmU
T , Dm “ diagp1´ p1´ λkq

mstop`1q

where UUT “ UTU “ I.
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Boosting: properties

We can now compute:

‚ bias2pm,S; fq “ N´1
N
ÿ

i“1

pErf̂mpxiqs ´ fq
2

“ N´1fTUdiagpp1´ λkq
2m`2qUT f ;

‚ Varpm,S;σ2q “ N´1
N
ÿ

i“1

pVarrf̂mpxiqsq

“ σ2N´1
N
ÿ

i“1

p1´ p1´ λkq
m`1q2;

and

‚ MSEpm,S; f, σ2q “ bias2pm,S; fq ` Varpm,S;σ2q.
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Boosting: properties

Assuming 0 ă λk ď 1, k “ 1, . . . , N , note that:

‚ bias2pm,S; fq decays exponentially fast for m increasing;

‚ Varpm,S;σ2q increases exponentially slow for m increasing;

‚ limmÑ8 MSEpm,S; f, σ2q “ σ2;

‚ if Dk : λk ă 1 (i.e., S ‰ I), then Dm : MSEpm,S; f, σ2q ă σ2;

‚ if @k : λk ă 1, µk
σ2 ą

1
p1´λkq2

´ 1, then MSEBm ăMSES ,

where µ “ UT f (µ represents f in the coordinate system of
the eigenvectors of S).

(for the proof, see Bühlmann & Yu, 2003, Theorem 1)
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Boosting: properties

About µk
σ2 ą

1
p1´λkq2

´ 1:

‚ a large left side means that f is relatively complex compared
with the noise level σ2;

‚ a small right side means that λk is small, i.e. the learner
shrinks strongly in the direction of the k-th eigenvector;

‚ therefore, to have boosting bringing improvements:
§ there must be a large signal to noise ratio;
§ the value of λk must be sufficiently small;

Ó

use a weak learner!!!
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Boosting: properties

There is a further intersting theorem in Bühlmann & Yu (2003),

Theorem 2: Under the assumption seen till here and 0 ă λk ď 1,
k “ 1, . . . , N , and assuming that Er|ε1|

ps ă 8 for p P N,

N´1
N
ÿ

i“1

Erpf̂mpxiq ´ fpxiqq
ps “ Erεp1s `Ope

´Cmq, mÑ8

where C ą 0 does not depend on m (but on N and p).

This theorem can be used to argue that boosting for classification
is resistant to overfitting (for mÑ8, exponentially small
overfitting).
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Boosting: high-dimensional settings

The boosting algorithm is working in high-dimension frameworks:

‚ forward stagewise additive modelling;

‚ at each step, only one dimension (component) of X is updated
at each iteration;

‚ in a parametric setting, only one β̂j is updated;

‚ an additional step in which it is decided which component to
update must be computed at each iteration.

Workshop of the 16th Applied Statistics 2019 International Conference 51/ 71



Statistics meets machine learning: the example of statistical boosting

Boosting: component-wise boosting algorithm

Component-wise boosting algorithm:

1. initialize the estimate, e.g., f̂
r0s
j pxq ” 0, j “ 1, . . . , p;

2. for m “ 1, . . . ,mstop,
§ compute the negative gradient vector,

u “ ´ BLpy,fpxqq
Bfpxq

ˇ

ˇ

ˇ

fpxq“f̂ rm´1spxq
;

§ fit the base learner to the negative gradient vector, ĥjpu, xjq,
for the j-th component only;

§ select the best update j˚ (usually that minimizes the loss);
§ update the estimate, f̂

rms
j˚ pxq “ f̂

rm´1s
j˚ ` νĥj˚pu, xj˚q;

§ all the other componets do not change.

3. final estimate, f̂mstoppxq “
řp
j“1 f̂

rmstops

j pxq.
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Boosting: component-wise boosting with linear learner

Component-wise boosting algorithm with linear learner:

1. initialize the estimate, e.g., β̂r0s “ p0, . . . , 0q;

2. for m “ 1, . . . ,mstop,
§ compute the negative gradient vector,

u “ ´ BLpy,fpx,βqq
Bfpx,βq

ˇ

ˇ

ˇ

β“β̂rm´1s
, for the j-th component only;

§ fit the base learner to the negative gradient vector, ĥjpu, xjq;
§ select the best update j˚ (usually that minimizes the loss);
§ include the shrinkage factor, b̂j “ νĥpu, xjq;

§ update the estimate, β̂
rms
j˚ “ β̂

rm´1
j˚ ` b̂j˚ .

3. final estimate, f̂mstoppxq “ XT β̂rmstops (for linear regression).

Workshop of the 16th Applied Statistics 2019 International Conference 53/ 71



Statistics meets machine learning: the example of statistical boosting

Boosting: minimization of the loss function
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Boosting: parameter estimation
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Boosting: parameter estimation
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Boosting: parameter estimation
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Boosting: tuning parameters

‚ The update step is regulated by the shrinkage parameter ν;

‚ as long as its magnitude is reasonable, the choice of the
penalty parameter does not influence the procedure;

‚ the choice of the number of iterations mstop is highly relevant;

‚ mstop (complexity parameter) influences variable selection
properties and model sparsity;

‚ mstop controls the amount of shrinkage;
§ mstop too small results in a model which is not able to

describe the data variability;
§ an excessively large mstop causes overfitting and causes the

selection of irrelevant variables.

‚ there is no standard approach Ñ repeated cross-validation
(Seibold et al., 2016).
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Boosting: likelihood-based

A different version of boosting is the so-called likelihood-based
boosting (Tutz & Binder, 2006):

‚ based on the concept of GAM as well;

‚ loss function as a negative log-likelihood;

‚ uses standard statistical tools (Fisher scoring, basically a
Newton-Raphson algorithm) to minimize the loss function;

‚ likelihood-based boosting and gradient boosting are equal only
in Gaussian regression (De Bin, 2016).
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Boosting: likelihood-based

The simplest implementation of the likelihood-based boosting is
BoostR, based on the ridge estimator:

see also Tutz & Binder (2007).

In the rest of the lecture we will give the general idea and see its
implementation as a special case of gradient boosting.
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Likelihood-based Boosting: introduction
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Following the statistical
interpretation of boosting:

maximize the
log-likelihood `pβq
(equivalently, ´`pβq is the
loss function to minimize);

prediction Ñ shrinkage
aim at β̂shrink, not β̂MLE ;

best solution is “between”
0 and β̂MLE .
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Boosting: likelihood-based
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starting point...
maximize a log-likelihood...

ó

Newton-Raphson method
(or Fisher scoring).

Basic idea:
- apply Newton-Raphson;
- stop early enough to end
in β̂shrink and not in β̂MLE .
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Boosting: likelihood-based

General Newton-Raphson step:

β̂rms “ β̂rm´1s `
´

´`ββpβq|β“β̂rm´1s

¯´1
`βpβq|β“β̂rm´1s ,

where:

‚ `βpβq “
B`pβq
Bβ ;

‚ `ββpβq “
B2`pβq
BβT Bβ

.

For convenience, let us rewrite the general step as

β̂rms ´ β̂rm´1s
looooooomooooooon

improvement at step m

“ 0`

ˆ

´`ββpβ|β̂
rm´1sq

ˇ

ˇ

ˇ

β“0

˙´1

`βpβ|β̂
rm´1sq

ˇ

ˇ

ˇ

β“0
.
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Boosting: likelihood-based

Control the Newton-Raphson algorithm:

‚ we need to force the estimates to be between 0 and β̂MLE ;

‚ we need to be able to stop at β̂shrink.

ñ we need smaller “controlled” improvements.

Solution: penalize the log-likelihood!

‚ p`pβq Ð `pβq ´ 1
2λ||β||

2
2;

‚ p`βpβq Ð `βpβq ´ λ||β||1;

‚ p`ββpβq Ð `ββpβq ´ λ;

Now the general step is:

β̂rms ´ β̂rm´1s
looooooomooooooon

improvement at step m

“

ˆ

´`ββpβ|β̂
rm´1sq

ˇ

ˇ

ˇ

β“0
` λ

˙´1

`βpβ|β̂
rm´1sq

ˇ

ˇ

ˇ

β“0
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Boosting: likelihood-based
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As long as λ is ‘big enough’,
the boosting learning path
is going to hit β̂shrink.

We must stop at that point:
the number of boosting
iterations (mstop) is crucial!
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Boosting: likelihood-based

In the likelihood-based boosting we:

‚ repeatedly implement the first step of Newton-Raphson;

‚ update at each step estimates and likelihood.

Small improvements:

‚ parabolic approximation;

‚ fit the negative gradient on the data by a base-learner (e.g.,
least-square estimator)

β̂rms ´ β̂rm´1s “
`

XTX ` λ
˘´1

XT B`pηpβ,Xqq

Bηpβ,Xq

ˇ

ˇ

ˇ

ˇ

β̂rm´1s
looooooooooomooooooooooon

negative gradient
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Boosting: likelihood-based vs gradient

Substituting

ν “
`

XTX ` λ
˘´1

XTX

one obtains the expression of the L2Boost for (generalized) linear
models seen before,

β̂rms ´ β̂rm´1s “ ν
`

XTX
˘´1

XT B`pηpβ,Xqq

Bηpβ,Xq

ˇ

ˇ

ˇ

ˇ

β̂rm´1s

‚ gradient boosting is a much more general algorithm;

‚ likelihood-based boosting and gradient boosting are equal in
Gaussian regression because the log-likelihood is a parabola;

‚ both have a componentwise version.
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Boosting: likelihood-based vs gradient

Alternatively (more correctly) we can see the likelihood-based
boosting as a special case of the gradient boosting (De Bin, 2016):

1. initialize β̂ “ p0, . . . , 0q;

2. for m “ 1, . . . ,mstop

§ compute the negative gradient vector, u “ B`pfpx,βqq
Bfpx,βq

ˇ

ˇ

ˇ

β“β̂
§ compute the update,

b̂LB “

˜

Bfpx, βq

Bβ

ˇ

ˇ

ˇ

ˇ

J

β“0

u

¸

{

¨

˝´
B
Bfpx,βq
Bβ

Bβ

ˇ

ˇ

ˇ

ˇ

ˇ

J

β“0

u` λ

˛

‚;

§ update the estimate, β̂rms “ β̂rm´1s ` b̂LB .

3. compute the final prediction, e.g., for lin. regr. ŷ “ XT β̂rmstops
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Boosting: comparison with lasso (Hastie et al., 2009, Fig. 16.3)
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Boosting: back to trees

The base (weak) learner in a boosting algorithm can be a tree:

‚ largely used in practice;

‚ very powerful and fast algorithm;

‚ R package XGBoost;

‚ we lose part of the statistical interpretation.
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Boosting: importance of “weakness” (Hastie et al., 2009, Fig. 10.9)
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Boosting: importance of “shrinkage” (Hastie et al., 2009, Fig. 10.11)
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Boosting: comparison (Hastie et al., 2009, Fig. 15.1)
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