Espen Sande
Doctoral Research Fellow

Differential Equations and Computational Mathematics
Norwegian version of this page
Email
espsand@math.uio.no
Username
Visiting address
Moltke Moes vei 35
Niels Henrik Abels hus
0851 OSLO
Postal address
Postboks 1053 Blindern
0316 OSLO
Other affiliations
Faculty of Mathematics and Natural Sciences
(Student)
Published papers
 M. S. Floater and E. Sande, Optimal spline spaces for L^{2} nwidth problems with boundary conditions, Constr. Approx. (2018). [arxiv] [journal]
 M. S. Floater and E. Sande, Optimal spline spaces of higher degree for L^{2} nwidths, J. Approx. Theory 216 (2017), 115. [pdf] [journal]
Preprints
 S. H. Christiansen, K. Hu and E. Sande, Poincaré Path Integrals for Elasticity. [arxiv]
 A Bressan and E. Sande, Approximation in FEM, DG and IGA: A Theoretical Comparison. [arxiv]
 A. M. Ruf, E. Sande and S. Solem, The optimal convergence rate of monotone schemes for conservation laws in the Wasserstein distance. [arxiv]
Teaching
 Spring 2017: Plenary exercises in MATINF3360  Introduction to Partial Differential Equations.
Publications
 Floater, Michael S. & Sande, Espen (2018). Optimal spline spaces for L2 nwidth problems with boundary conditions. Constructive approximation. ISSN 01764276. . doi: 10.1007/s0036501894275
 Floater, Michael S. & Sande, Espen (2017). Optimal spline spaces of higher degree for L2 nwidths. Journal of Approximation Theory. ISSN 00219045. 216, s 1 15 . doi: 10.1016/j.jat.2016.12.002 Full text in Research Archive. Show summary
 Floater, Michael S. & Sande, Espen (2017). Optimal spline spaces for L2 nwidths. Show summary
 Sande, Espen & Floater, Michael S. (2017). Optimal spline spaces of higher degree for L2 nwidths.
 Sande, Espen & Floater, Michael S. (2017). Optimal spline spaces of higher degree for L2 nwidths.
 Floater, Michael S. & Sande, Espen (2016). Optimal spline spaces for L2 nwidths.
 Floater, Michael S. & Sande, Espen (2016). Optimal spline spaces of higher degree for L2 nwidths.
Published Aug. 7, 2015 9:08 AM
 Last modified Aug. 17, 2018 3:20 PM