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Abstract

It is well known that rational interpolation sometimes gives better approxima-
tions than polynomial interpolation, especially for large sequences of points, but it
is difficult to control the occurrence of poles. In this paper we propose and study
a family of barycentric rational interpolants that have no real poles and arbitrarily
high approximation orders on any real interval, regardless of the distribution of the
points. These interpolants depend linearly on the data and include a construction of
Berrut as a special case.

Math Subject Classification: 65D05, 41A05, 41A20, 41A25

Keywords: Rational interpolation, polynomial interpolation, blending functions, ap-
proximation order.

1 Introduction

A simple way of approximating a function f : [a, b] → lR is to choose a sequence of points

a = x0 < x1 < · · · < xn = b,

and to fit to f the unique interpolating polynomial pn of degree at most n at these points,
i.e., set

pn(xi) = f(xi), 0 ≤ i ≤ n.

However, as is well-known pn may not be a good approximation to f , and for large n
it can exhibit wild oscillations. For the well-documented example of Runge in which
f(x) = 1/(1 + x2) and the points xi are sampled uniformly from the interval [−5, 5], i.e.,
xi = −5 + 10i/n, the sequence of polynomials (pn) diverges as n → ∞. If we are free to
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choose the distribution of the interpolation points xi, one remedy is to cluster them near
the end-points of the interval [a, b], for example using various kinds of Chebyshev points [6].

On the other hand, if the interpolation points xi are given to us, we have to make
do with them, and then we need to look for other kinds of interpolants. A very popular
alternative nowadays is to use splines (piecewise polynomials) [9], which have become
a standard tool for many kinds of interpolation and approximation algorithms, and for
geometric modelling. However, it has been known for a long time that the use of rational
functions can also lead to much better approximations than ordinary polynomials. In
fact, both polynomial and rational interpolation can exhibit exponential convergence when
approximating analytic functions [1, 23].

In “classical” rational interpolation, one chooses some M and N such that M + N = n
and fits to the values f(xi) a rational function of the form pM/qN where pM and qN

are polynomials of degrees at most M and N respectively. If n is even, it is typical
to set M = N = n/2, and some authors have reported excellent results. The main
drawback, though, is that there is no control over the occurrence of poles in the interval
of interpolation.

Berrut and Mittelmann [5] suggested that it might be possible to avoid poles by using
rational functions of higher degree. They considered algorithms which fit rational functions
whose numerator and denominator degrees can both be as high as n. This is a convenient
class of rational interpolants because, as observed in [5], every such interpolant can be
written in barycentric form

r(x) =
n∑

i=0

wi

x− xi

f(xi)

/ n∑
i=0

wi

x− xi

(1)

for some real values wi. Thus it suffices to choose the weights w0, w1, . . . , wn in order to
specify r, and the idea is to search for weights which give interpolants r that have no poles
and preferably good approximation properties. Various aspects of this kind of interpolation
are surveyed by Berrut, Baltensperger, and Mittelmann [4].

The polynomial interpolant pn itself can be expressed in barycentric form by letting

wi =
n∏

j=0
j 6=i

1

xi − xj

, (2)

a fact first observed by Taylor [22] and Dupuy [10], and the favourable numerical aspects of
this way of evaluating Lagrange interpolants are summarized by Berrut and Trefethen [6].
Thus the weights in (2) prevent poles, but for interpolation points in general position, they
do not yield a good approximation. Another option, suggested by Berrut [3], is simply to
take

wi = (−1)i, k = 0, . . . , n,

giving

r(x) =
n∑

i=0

(−1)if(xi)

x− xi

/ n∑
i=0

(−1)i

x− xi

, (3)
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which is a truly rational function. Berrut showed that this interpolant has no poles in lR.
He also used it to interpolate Runge’s function and his numerical experiments suggest an
approximation order of O(1/n) as n → ∞ for various distributions of points, including
evenly spaced ones.

We independently came across the interpolant (3) while working on a method for inter-
polating height data given over nested planar curves [15]. Without going into details, one
can view the interpolant (3) as a kind of univariate analogue of the bivariate interpolant
of [15]. Our numerical examples confirmed its rather low approximation rate of 1/n, and
this motivated us to seek rational interpolants with higher approximation orders.

The purpose of this paper is to report that there is in fact a whole family of barycentric
rational interpolants with arbitrarily high approximation orders which includes Berrut’s
interpolant (3) as a special case. The construction is very simple. Choose any integer d
with 0 ≤ d ≤ n, and for each i = 0, 1, . . . , n − d, let pi denote the unique polynomial of
degree at most d that interpolates f at the d + 1 points xi, xi+1, . . . , xi+d. Then let

r(x) =

∑n−d
i=0 λi(x)pi(x)∑n−d

i=0 λi(x)
, (4)

where

λi(x) =
(−1)i

(x− xi) · · · (x− xi+d)
. (5)

Thus r is a blend of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d acting as the
blending functions. Note that these functions λi only depend on the interpolations points
xi, so that the rational interpolant r depends linearly on the data f(xi). This construction
gives a whole family of rational interpolants, one for each d = 0, 1, 2, . . . , n, and it turns
out that none of them have any poles in lR. Furthermore, for fixed d ≥ 1 the interpolant
has approximation order O(hd+1) as h → 0, where

h := max
0≤i≤n−1

(xi+1 − xi), (6)

as long as f ∈ Cd+2[a, b], a property comparable to spline interpolation of (odd) degree d
and smoothness Cd−1 [9]. The interpolant r can also be expressed in the barycentric
form (1) and is easy and fast to evaluate in that form.

The concept of blending local approximations to form a global one is certainly not a new
idea in computational mathematics. For example, Catmull and Rom [7] suggested blending
polynomial interpolants using B-splines as the blending functions (see also [2]). Shepard’s
method and its variants [21, 13, 11, 12, 19] for interpolating multivariate scattered data
can also be viewed as blends of local interpolants, where the blending functions are based
on Euclidean distance to the interpolation points. Moving least squares methods [17, 18]
have become quite popular recently, where again a global approximation is formed from
local ones. However, we have not seen the idea of blending developed in the context of
rational interpolation and we have not seen the construction (4) in the literature. Unlike
many blending methods, the blending functions λi in (5) do not have local support. This
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could be seen as a disadvantage, but on the other hand, an advantage of the interpolant r
is that it is infinitely smooth.

In the following sections, we derive the main properties of the interpolant and finish
with some numerical examples. As well as offering an alternative way of interpolating
univariate data, we hope that these interpolants might also lead to generalizations of the
bivariate interpolants of [15].

2 Absence of poles

An important property of the interpolants in (4) is that they are free of poles. In order
to establish this, it will help to rewrite r as a quotient of polynomials. Multiplying the
numerator and denominator in (4) by the product

(−1)n−d(x− x0) · · · (x− xn)

(the factor (−1)n−d simplifies subsequent expressions) gives

r(x) =

∑n−d
i=0 µi(x)pi(x)∑n−d

i=0 µi(x)
, (7)

where
µi(x) = (−1)n−d(x− x0) · · · (x− xn)λi(x), (8)

or

µi(x) =
i−1∏
j=0

(x− xj)
n∏

k=i+d+1

(xk − x). (9)

Here, we understand an empty product to have value 1. Equation (7) shows that the
degrees of the numerator and denominator of r are at most n and n−d, respectively. Since
neither degree is greater than n, r can be put in barycentric form. We will treat this later
in Section 4. Using the form of r in (7) we now show that it is free of poles. For d = 0 this
was shown by Berrut [3].

Theorem 1 For all d, 0 ≤ d ≤ n, the rational function r in (7) has no poles in lR.

Proof. We will show that the denominator of r in (7),

s(x) =
n−d∑
i=0

µi(x), (10)

is positive for all x ∈ lR. Here and later in the paper it helps to define the index set

I := {0, 1, . . . , n− d}.
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We first consider the case that x = xα for some α, 0 ≤ α ≤ n, and we set

Jα := {i ∈ I : α− d ≤ i ≤ α}. (11)

Then it follows from (9) that µi(xα) > 0 for all i ∈ Jα and µi(xα) = 0 for i ∈ I \Jα. Hence,
since Jα is non-empty,

s(xα) =
∑
i∈I

µi(xα) =
∑
i∈Jα

µi(xα) > 0.

Next suppose that x ∈ (xα, xα+1) for some α, 0 ≤ α ≤ n− 1. Then let

I1 := {i ∈ I : i ≤ α−d}, I2 := {i ∈ I : α−d+1 ≤ i ≤ α}, I3 := {i ∈ I : α+1 ≤ i}. (12)

We then split the sum s(x) into three parts,

s(x) = s1(x) + s2(x) + s3(x), with sk(x) =
∑
i∈Ik

µi(x). (13)

For each k = 1, 2, 3, we will show that sk(x) > 0 if Ik is non-empty. Since by definition
sk(x) = 0 if Ik is empty, and since at least one of I1, I2, I3 is non-empty (since their union
is I), it will then follow that s(x) > 0.

To this end, consider first s2. If d = 0 then I2 is empty. If d ≥ 1 then I2 is non-empty
and from (9) we see that µi(x) > 0 for all i ∈ I2 and therefore s2(x) > 0.

Next, consider s3. If α ≥ n − d then I3 is empty. Otherwise, α ≤ n − d − 1 and I3 is
non-empty and

s3(x) = µα+1(x) + µα+2(x) + µα+3(x) + · · ·+ µn−d(x).

Using (9) we see that µα+1(x) > 0, µα+2(x) < 0, µα+3(x) > 0, and so on, i.e., the first term
in s3(x) is positive and after that the terms oscillate in sign. Moreover, one can further
show from (9) that the terms in s3(x) decrease in absolute value, i.e.,

|µα+1(x)| > |µα+2(x)| > |µα+3(x)| > · · · .

To see this suppose i ≥ α + 1 and compare the expression for µi+1,

µi+1(x) =
i∏

j=0

(x− xj)
n∏

k=i+d+2

(xk − x),

with that of µi in (9). Since
xi+d+1 − x > xi+1 − x,

it follows that |µi(x)| > |µi+1(x)|. Hence, by expressing s3(x) in the form

s3(x) =
(
µα+1(x) + µα+2(x)

)
+

(
µα+3(x) + µα+4(x)

)
+ · · · ,
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it follows that s3(x) > 0.
A similar argument shows that s1(x) > 0 if I1 is non-empty, for then we can express s1

as
s1(x) =

(
µα−d(x) + µα−d−1(x)

)
+

(
µα−d−2(x) + µα−d−3(x)

)
+ · · · .

We have now shown that s(x) > 0 for all x ∈ [x0, xn]. Finally, using similar reasoning,
the positivity of s for x < x0 follows from writing it as

s(x) =
(
µ0(x) + µ1(x)

)
+

(
µ2(x) + µ3(x)

)
+ · · · ,

and for x > xn by writing it as

s(x) =
(
µn−d(x) + µn−d−1(x)

)
+

(
µn−d−2(x) + µn−d−3(x)

)
+ · · · .

2

Having established that r has no poles, and in particular no poles at the interpolation
points x0, . . . , xn, it is now quite easy to check that r does in fact interpolate f at these
points. Indeed, if x = xα in (7) for some α with 0 ≤ α ≤ n, let Jα be as in (11). Then
pi(xα) = f(xα) for all i ∈ Jα, and recalling that µi(xα) > 0 for all i ∈ Jα and µi(xα) = 0
otherwise, and that Jα is non-empty,

r(xα) =

∑
i∈Jα

µi(xα)pi(xα)∑
i∈Jα

µi(xα)
= f(xα)

∑
i∈Jα

µi(xα)∑
i∈Jα

µi(xα)
= f(xα).

We also note that r reproduces polynomials of degree at most d. For if f is such a
polynomial then pi = f for all i = 0, . . . , n− d, and so

r(x) = f(x)

∑n−d
i=0 µi(x)∑n−d
i=0 µi(x)

= f(x).

However, r does not reproduce rational functions. Runge’s function f(x) = 1/(1 + x2),
for example, is rational but its interpolant is clearly different, as can be seen from the
numerical tests in Section 5.

3 Approximation error

Next we deal with the approximation power of the rational interpolants. Here we treat the
two distinct cases d = 0 and d ≥ 1 separately. The advantage in the case d ≥ 1 is that the
index set I2 in (12) is non-empty and then we can use the partial sum s2(x) from (13) to
get an error bound. Let ‖f‖ := maxa≤x≤b |f(x)|.

Theorem 2 Suppose d ≥ 1 and f ∈ Cd+2[a, b], and let h be as in (6). If n− d is odd then

‖r − f‖ ≤ hd+1(b− a)
‖f (d+2)‖
d + 2

.
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If n− d is even then

‖r − f‖ ≤ hd+1

(
(b− a)

‖f (d+2)‖
d + 2

+
‖f (d+1)‖
d + 1

)
.

Proof. Since the error f(x)− r(x) is zero whenever x is an interpolation point, it is enough
to treat x ∈ [a, b] \ {x0, x1, . . . , xn}. For such x, the function λi(x) in (5) is well-defined
and we can express the error as

f(x)− r(x) =

∑n−d
i=0 λi(x)(f(x)− pi(x))∑n−d

i=0 λi(x)
.

Using the Newton error formula [16, Chap. 6],

f(x)− pi(x) = (x− xi) · · · (x− xi+d)f [xi, . . . , xi+d, x],

where f [xi, . . . , xi+d, x] denotes the divided difference of f at the points xi, . . . , xi+d, x, we
thus arrive at

f(x)− r(x) =

∑n−d
i=0 (−1)if [xi, . . . , xi+d, x]∑n−d

i=0 λi(x)
. (14)

We will derive an upper bound on the numerator and a lower bound on the denominator
of this quotient. Consider first the numerator,

n−d∑
i=0

(−1)if [xi, . . . , xi+d, x].

This is a sum of n− d + 1 terms and to avoid a bound which depends on n and therefore
also h, we exploit the oscillating signs and go to divided differences of higher order. By
combining the first and second terms, and the third and fourth and so on, we can express
the sum as

−
n−d−1∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, x]

if n− d is odd and

−
n−d−2∑

i=0, i even

(xi+d+1 − xi)f [xi, . . . , xi+d+1, x] + f [xn−d, . . . , xn, x]

if n− d is even. Then, because

n−d−1∑
i=0

(xi+d+1 − xi) =
n−d−1∑

i=0

i+d∑
k=i

(xk+1 − xk) ≤ (d + 1)
n−1∑
k=0

(xk+1 − xk) = (d + 1)(b− a),
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it follows that∣∣∣∣∣
n−d∑
i=0

(−1)if [xi, xi+1, . . . , xi+d, x]

∣∣∣∣∣ ≤ (d + 1)(b− a)
‖f (d+2)‖
(d + 2)!

, n− d odd, (15)

∣∣∣∣∣
n−d∑
i=0

(−1)if [xi, xi+1, . . . , xi+d, x]

∣∣∣∣∣ ≤ (d + 1)(b− a)
‖f (d+2)‖
(d + 2)!

+
‖f (d+1)‖
(d + 1)!

, n− d even. (16)

Next we consider the denominator in (14) and suppose that x ∈ (xα, xα+1) for some α
with 0 ≤ α ≤ n−1. Because d ≥ 1, the set I2 in (13) is non-empty, so let j be any member
of I2. Then

s(x) ≥ s2(x) ≥ µj(x) > 0,

and so, by the definition of µi in (8),∣∣∣∣∣
n−d∑
i=0

λi(x)

∣∣∣∣∣ =
s(x)∏n

i=0 |x− xi|
≥ µj(x)∏n

i=0 |x− xi|
= |λj(x)| = 1

|x− xj| · · · |x− xj+d|
.

Since xj ≤ xα < x < xα+1 ≤ xj+d, one has

|x− xj| · · · |x− xj+d| ≤
α∏

i=j

(xα+1 − xi)

j+d∏
i=α+1

(xi − xα)

≤ (α− j + 1)!(d− α + j)!hd+1

≤ d!hd+1,

hence ∣∣∣∣∣
n−d∑
i=0

λi(x)

∣∣∣∣∣ ≥ 1

d!hd+1
.

The result now follows from this estimate combined with (15) and (16). 2

Thus for d ≥ 1, r converges to f at the rate of O(hd+1) as h → 0, independently of how
the points are distributed, as long as f is smooth enough.

In the remaining case d = 0 we establish a convergence rate of O(h) but only under the
condition that the local mesh ratio

β := max
1≤i≤n−2

min

{
xi+1 − xi

xi − xi−1

,
xi+1 − xi

xi+2 − xi+1

}
remains bounded as h → 0. This agrees with what we have observed in our numerical
tests: for d = 0 the interpolant behaves rather unpredictably when pairs of points are close
together relative to the others. However, when the points are evenly spaced, β reduces to 1,
and we get the unconditional convergence order O(h) (or O(1/n)) that Berrut conjectured
in [3].
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Theorem 3 Suppose d = 0 and f ∈ C2[a, b]. If n is odd then

‖r − f‖ ≤ h(1 + β)(b− a)
‖f ′′‖

2
.

If n is even then

‖r − f‖ ≤ h(1 + β)

(
(b− a)

‖f ′′‖
2

+ ‖f ′‖
)

.

Proof. We again employ the error formula (14). The estimates for the numerator remain
valid for d = 0 and reduce to∣∣∣∣∣

n∑
i=0

(−1)if [xi, x]

∣∣∣∣∣ ≤ (b− a)
‖f ′′‖

2
, n odd,

∣∣∣∣∣
n∑

i=0

(−1)if [xi, x]

∣∣∣∣∣ ≤ (b− a)
‖f ′′‖

2
+ ‖f ′‖, n even.

Thus it remains to show that the denominator in (14) satisfies the lower bound∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ 1

h(1 + β)
. (17)

To this end, suppose x ∈ (xα, xα+1) for some α with 0 ≤ α ≤ n−1. Since d = 0, the partial
sum s2(x) in (13) is zero and we turn to s1(x) and s3(x). Suppose first that α = n − 1.
Then

s(x) ≥ s3(x) = µn(x),

and so ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λn(x)| = 1

xn − x
≥ 1

h
,

which proves (17). Similarly, if α = 0, we have

s(x) ≥ s1(x) = µ0(x),

and so ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λ0(x)| = 1

x− x0

≥ 1

h
,

which again proves (17). Otherwise, 1 ≤ α ≤ n − 2 and we get a bound both from s1

and s3. Using s3, we have

s(x) ≥ s3(x) ≥ µα+1(x) + µα+2(x),
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and then∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ |λα+1(x) + λα+2(x)| = 1

xα+1 − x
− 1

xα+2 − x
=

xα+2 − xα+1

(xα+1 − x)(xα+2 − x)
,

implying ∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ xα+2 − xα+1

h(xα+2 − xα)
=

1

h(1 + (xα+1 − xα)/(xα+2 − xα+1))
.

On the other hand, using s1 we have

s(x) ≥ s1(x) ≥ µα(x) + µα−1(x),

and a similar argument to the above yields∣∣∣∣∣
n∑

i=0

λi(x)

∣∣∣∣∣ ≥ 1

h(1 + (xα+1 − xα)/(xα − xα−1))
.

Taking the maximum of these two lower bounds gives (17). 2

4 The barycentric form

Since the degrees of the numerator and denominator of r in (7) are both at most n, we
know from [5] that r can be put in the barycentric form (1). To derive this, we first write
the polynomial pi in (4) in the Lagrange form

pi(x) =
i+d∑
k=i

i+d∏
j=i,j 6=k

x− xj

xk − xj

f(xk).

Substituting this into the numerator of (4) gives

n−d∑
i=0

λi(x)pi(x) =
n−d∑
i=0

(−1)i

i+d∑
k=i

1

x− xk

i+d∏
j=i,j 6=k

1

xk − xj

f(xk)

=
n∑

k=0

wk

x− xk

f(xk),

where

wk =
∑
i∈Jk

(−1)i

i+d∏
j=i,j 6=k

1

xk − xj

, (18)
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with Jk as in (11). This is already the form we want for the numerator of r. Similarly, for
the denominator, the fact that

1 =
i+d∑
k=i

i+d∏
j=i,j 6=k

x− xj

xk − xj

,

leads to
n−d∑
i=0

λi(x) =
n∑

k=0

wk

x− xk

.

This shows that r has the barycentric form (1) with the weights w0, w1, . . . , wn given
by (18). This form provides an extremely simple and fast method of evaluating r. Moreover,
this form can be used to evaluate derivatives of r using the derivative formulas of Schneider
and Werner [20]. Since we know by Theorem 1 that r has no poles in lR, another result of
Schneider and Werner [20] shows that the weights wk must oscillate in sign. This we can
now verify by observing that wk can be written as

wk = (−1)k−d
∑
i∈Jk

i+d∏
j=i,j 6=k

1

|xk − xj|
.

Now we look at some examples. The case d = 1 gives

wk = (−1)k−1

(
1

xk − xk−1

+
1

xk+1 − xk

)
, for 1 ≤ k ≤ n− 1,

and

w0 =
−1

x1 − x0

, wn =
(−1)n−1

xn − xn−1

.

For general d, when the points xi are uniformly spaced with spacing h, we get

wk =
(−1)k−d

hd

∑
i∈Jk

1

(k − i)!(i + d− k)!
.

Since a uniform scaling of these weights does not change the interpolant r, we can multiply
them by hdd! to give integer weights

wk = (−1)k−d
∑
i∈Jk

(
d

k − i

)
.

By further writing δk = (−1)k−dwk = |wk|, the first few sets of values δ0, . . . , δn are

1, 1, . . . , 1, 1, d = 0,

1, 2, 2, . . . , 2, 2, 1, d = 1,

1, 3, 4, 4, . . . , 4, 4, 3, 1, d = 2,

1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1, d = 3,

1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1, d = 4.
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Thus in the uniform case, most of the weights have the same absolute value; the only
change occurs near the ends of the sequence. Yet as we have shown, this “small” change
increases the approximation order of the method. A similar concept is known in nu-
merical quadrature in the form of “end-point corrections” for the composite trapezoidal
rule [8, Secs. 2.8–2.9]. Note that the weights for the uniform case with d = 1 have also
been advocated in [3] as an improvement of the case d = 0.

5 Numerical examples

We have tested the rational interpolants using the Matlab code for barycentric interpolation
proposed by Berrut and Trefethen in [6, Sec. 7]. The basic approach to evaluating r
at a given x is to check whether x is close to some xk, within machine precision. If
it is then the routine returns f(xk). Otherwise the quotient expression for r(x) in (1)
with (18) is evaluated. This method seems to be perfectly stable in practice. We also note
that Higham [14] has shown that if the Lebesgue constant is small, Lagrange polynomial
interpolation using the barycentric formula is forward stable in the sense that small errors
in the data values f(xk) lead to a small relative error in the interpolant. In view of the
good approximation properties of the rational interpolants r, it seems likely that they too
are stable in the same sense, but this has yet to be verified.

We applied the method first to Runge’s example f(x) = 1/(1+x2) for x ∈ [−5, 5], which
we sampled at the uniformly spaced points xi = −5 + 10i/n, for various choices of n. Fig-
ure 1 shows plots of the rational interpolant with d = 3 for respectively n = 10, 20, 40, 80.
The second column of Table 1 shows the numerically computed errors in this example, for
n up to 640, and the third column the estimated approximation orders, and they support
the fourth order approximation predicted by Theorem 2. Figure 2 shows plots of the ratio-
nal interpolant of the function f(x) = sin(x) at the same equally spaced points as in the
previous example, but this time with d = 4. The fourth and fifth columns of Table 1 show
the computed errors and orders, which support the fifth order approximation predicted by
Theorem 2.

We also tested the method on the function f(x) = |x| which has a discontinuous first
derivative at x = 0. Figure 3 shows the rational interpolant with d = 3 for respectively
n = 10, 20, 40, 80 evenly spaced points in [−5, 5]. The computed errors and orders of
approximation can be found in the sixth and seventh column of Table 1. We found that
for any fixed d, the interpolants converge numerically at the rate of O(h) as h = 1/n → 0,
which indicates that Theorem 2 really depends on f being smooth enough.

One advantage of the rational interpolants is the ease with which we can change the
degree d of the blended polynomials. We can exploit this by finding the value of d which
minimizes the numerically computed approximation error for a given set of points. Table 2
shows the errors in the Runge example, where, for each n, the optimal d was used. As
the table shows, for this function, it is beneficial to increase d as n increases. When
interpolating the sine function at the same equally spaced points it was found that d = n
gives the smallest error.
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Figure 1: Interpolating Runge’s example with d = 3 and n = 10, 20, 40, 80.

n Runge, d = 3 order sine, d = 4 order abs, d = 3 order
10 6.9e-02 1.7e-02 1.9e-01
20 2.8e-03 4.6 3.9e-04 5.5 9.5e-02 1.0
40 4.3e-06 9.4 7.1e-06 5.8 4.8e-02 1.0
80 5.1e-08 6.4 1.3e-07 5.7 2.4e-02 1.0
160 3.0e-09 4.1 2.7e-09 5.6 1.2e-02 1.0
320 1.8e-10 4.0 6.0e-11 5.5 5.9e-03 1.0
640 1.1e-11 4.0 1.5e-12 5.3 3.0e-03 1.0

Table 1: Error in rational interpolant.

n best d value error
10 d = 0 3.6e-02
20 d = 1 1.5e-03
40 d = 3 4.3e-06
80 d = 7 2.0e-10
160 d = 10 1.3e-15

Table 2: Error in Runge’s example, varying d.
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Figure 2: Interpolating the sine function with d = 4 and n = 10, 20, 40, 80.
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Figure 3: Interpolating |x| over [−5, 5] with d = 3 and n = 10, 20, 40, 80.
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n rational, d = 3 cubic spline
10 6.9e-02 2.2e-02
20 2.8e-03 3.2e-03
40 4.3e-06 2.8e-04
80 5.1e-08 1.6e-05
160 3.0e-09 9.5e-07
320 1.8e-10 5.9e-08
640 1.1e-11 3.7e-09

Table 3: Error in rational and spline interpolation of Runge’s function.

n rational, d = 3 cubic spline
10 1.3e-02 3.3e-03
20 1.2e-03 1.7e-04
40 8.4e-05 1.0e-05
80 5.4e-06 6.4e-07
160 3.4e-07 4.0e-08
320 2.1e-08 2.5e-09
640 1.3e-09 1.6e-10

Table 4: Error in rational and spline interpolation of the sine function.

Finally, we make a comparison with C2 cubic spline interpolation using clamped end
conditions (i.e., taking the first derivative of the spline at the end-points equal to the
corresponding derivative of the given function f). The error is O(h4) for f ∈ C4[a, b]
(see [9, Chap. V]), the same order as for the rational interpolant with d = 3 (provided
f ∈ C5[a, b]). Table 3 shows the errors in the Runge example, of the two methods. For
large n, the error in the rational interpolant is smaller than that of the spline interpolant,
by a factor of more than 100, for this data set. On the other hand, when the two methods
are applied to the sine function, the error in the spline interpolant is about 10 times smaller
than that of the rational interpolant, as indicated in Table 4.

Acknowledgement. We wish to thank Tom Lyche for helpful comments concerning a
draft version of this paper.
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