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Abstract. Thinning, insertion, and swapping algorithms for gen-
erating well-distributed hierarchical subsets of scattered data in a given

domain in IRd are proposed. It is found that thinning and insertion yield
approximately similar results but that swapping is in general inferior.

§1. Introduction

In two previous papers [1,2], a thinning algorithm, based on Delaunay tri-
angulations, was used to construct hierarchies of well-distributed subsets of
scattered data in IR2. These hierarchies were subsequently used for mul-
tistep scattered data interpolation using compactly supported radial basis
functions [3].

In this paper we consider a more general setting. We suppose we are
given a non-empty, connected, bounded, open set Ω ⊂ IRd and a set X ⊂ Ω of
N pairwise distinct scattered data points, N ≥ 1. We propose and compare
three general algorithms: thinning, insertion and swapping, for constructing
hierarchical sequences of the form

X1 ⊂ X2 ⊂ · · · ⊂ XN = X, (1)

with #(Xi) = i, such that the subsets Xi are as well distributed in Ω as
possible according to a measure of uniformity.

The new thinning algorithm is more advanced than the algorithm in [1,2].
The new algorithm treats the boundary of the domain differently and it is
greedy, i.e. it maximizes the uniformity at each step. The insertion algorithm
is the dual of the thinning algorithm while the swapping algorithm is based
on an entirely different strategy.
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§2. Uniformity and Hierarchical Sequences

We will be interested in two ways of measuring the density of the points in X
with respect to Ω. Let

s(X) = min
x1∈X

min
x2∈X∪∂Ω

x2 6=x1

‖x1 − x2‖, ℓ(X) = 2max
y∈Ω

min
x∈X∪∂Ω

‖x − y‖, (2)

where ∂Ω denotes the boundary of Ω. Note that the maximum in ℓ(X) is
attained by some y ∈ Ω even though Ω is an open set. In fact we can interpret
ℓ(X) geometrically by observing that it is the diameter of the largest open ball
contained in Ω \ X. We can also interpret s(X), namely as the minimum of
the distance between X and ∂Ω and the shortest distance between the points
in X.

In the case d = 1, Ω will be some interval (a, b) and we denote the points
in X by x1, . . . , xN where a < x1 < x2 < · · · < xN < b. If we then define
x0 = a, xN+1 = b, and ∆j = xj+1 − xj for j = 0, . . . , N , one sees that

s(X) = min
0≤j≤N

∆j , ℓ(X) = max
0≤j≤N

∆j ,

that is, s and ℓ are the lengths of the shortest and longest intervals in Ω \ X
respectively.

By taking the ratio of s and ℓ in (2) we obtain a measure of the uniformity

of X with respect to Ω:
ρ(X) = s(X)/ℓ(X).

Proposition 2.1. For any d ≥ 1, we have 0 < ρ(X) ≤ 1.

Proof: Obviously ρ(X) > 0. Now from (2) we may assume that there exist
x1 ∈ X and x2 ∈ X ∪ ∂Ω, x2 6= x1, such that s(X) = ‖x1 − x2‖. Then
s(X) = minx∈X∪∂Ω ‖x1 − x‖. If we let y0 = (x1 + x2)/2 then y0 ∈ Ω \ X and

‖x − y0‖ ≥ ‖x − x1‖ − ‖x1 − y0‖ ≥ s(X) − s(X)/2 = s(X)/2

for all x ∈ X ∪ ∂Ω. It follows from (2) that ℓ(X) ≥ s(X).

Note that when Ω = B1(0), the open ball in IRd with centre 0 and radius
1, and X = {0}, we see that ρ(X) = 1 for any dimension d ≥ 1 since s(X) =
ℓ(X) = 1. In the case d = 1, ρ(X) = 1 if and only if ∆j is constant.

Our goal is to construct from X a hierarchical sequence of N subsets in
the form (1) such that the Xi are as uniform as possible. To be precise, let
X = (X1, . . . , XN ), define ρ(X ) = (ρ(X1), . . . , ρ(XN )) ∈ IRN and denote by
H(X) the set of all hierarchical sequences (1). We will regard X ∈ H(X) as a
‘good’ hierarchical sequence if, for some p, 1 ≤ p < ∞, the lp norm ||ρ(X )||p
is large. Since there are N ! hierarchical sequences in H(X), it would be very
costly to compute ||ρ(X )||p for all X ∈ H(X) in order to find a sequence
X ∗ ∈ H(X) for which

||ρ(X ∗)||p = max
X∈H(X)

||ρ(X )||p. (3)
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Instead we will discuss three different algorithms which generate hierarchical
sequences in acceptable computation time.

Note that if Y ⊂ X, #Y ≥ 1 and x ∈ Y , then from (2),

s(Y \ {x}) ≥ s(Y ), ℓ(Y \ {x}) ≥ ℓ(Y ).

Thus if (X1, . . . , XN ) ∈ H(X) then the sequences of values s(X1), . . . , s(XN )
and ℓ(X1), . . . , ℓ(XN ) are monotonically decreasing. However the same will
not in general be true of the sequence ρ(X1), . . . , ρ(XN ).

§3. Swapping Algorithm

If we are given a hierarchical sequence X0 = (X1, . . . , XN ) ∈ H(X) with
N ≥ 2, we can, for any i ∈ {1, . . . , N − 1}, form a new hierarchical sequence

X1 = (X1, . . . , Xi−1, Xi−1 ∪ (Xi+1 \ Xi), Xi+1, . . . , XN ),

in H(X), where we define X0 = ∅. We will refer to this change of sequence as
a swap for the following reason. We can identify X0 with the point sequence
SX0

= (y1, . . . , yN ), where Xj \ Xj−1 = {yj}, for j = 1, . . . , N . Now we see
that replacing Xi by Xi−1 ∪ (Xi+1 \Xi) to form X1 is equivalent to swapping
yi and yi+1 in SX0

to form SX1
= (y1, . . . , yi−1, yi+1, yi, yi+2, . . . , yN ). Since

this swap only changes the subset Xi, only the value of ρ(Xi) is changed. This
suggests an algorithm for recursively increasing the norm ||ρ(X )||p, starting
with some arbitrary sequence X0.

Algorithm 3.1 (Swapping Algorithm).
(1) Let X0 ∈ H(X) be any hierarchical sequence and let k = 0.
(2) Suppose Xk = (X1, . . . , XN ). Search for an index i ∈ {1, . . . , N −1} such

that
ρ(Xi−1 ∪ (Xi+1 \ Xi)) > ρ(Xi).

(3) If such an i exists, define Xk+1 from Xk by replacing Xi by Xi−1∪(Xi+1\
Xi), let k = k + 1, and go to step 2.

(4) Let X ∗ = Xk and output X ∗.

In order to discuss the result of this algorithm, let us say that a hierarchical
sequence X ∗ = (X1, . . . , XN ) ∈ H(X) is globally optimal with respect to some
p, 1 ≤ p < ∞, if it satisfies (3). Meanwhile if

ρ(Xi−1 ∪ (Xi+1 \ Xi)) ≤ ρ(Xi) for all i = 1, . . . , N − 1, (4)

then we will say that X ∗ is locally optimal. Note that a globally optimal
sequence is also locally optimal.

Proposition 3.2. The swapping algorithm terminates after finitely many
steps and its output X ∗ is locally optimal.

Proof: In the swapping algorithm we see that

||ρ(X ∗)||p > · · · > ||ρ(Xk)||p > · · · > ||ρ(X1)||p > ||ρ(X0)||p.
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Since there are only a finite number of sequences in H(X) the algorithm has
therefore to stop after a finite number of steps. The fact that X ∗ is locally
optimal follows immediately from the swapping criterion used in Step (2).

The following example shows that the swapping algorithm will not always
yield a globally optimal sequence.

Example 3.3. Let d = 1, Ω = (0, 1), N = 2K − 1 for some K > 1,
and xi = i/(N + 1) for i = 1, . . . , N . Let y2k−1 = k/(N + 1) for k =
1, . . . , (N + 1)/2 and y2k = 1 − k/(N + 1) for k = 1, . . . , (N − 1)/2, and let
X0 = (X1, . . . , XN ) where Xi = {y1, . . . , yi}. Then one can show that X0

is a locally optimal sequence. Hence the swapping algorithm yields X ∗ =
X0 and we find that ρ(X ∗) = (1/N, 1/(N − 1), . . . , 1/2, 1). But if X is
defined by (y1, . . . , yN ) = (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . . , 1/(N +
1), . . . , N/(N + 1)), then ρ(X ) = (1, 1/2, 1, 1/2, 1/2, 1/2, 1, . . . , 1/2, 1) and so
||ρ(X )||p > ||ρ(X ∗)||p for 1 ≤ p < ∞. Thus X ∗ is far from globally optimal.

§4. Thinning and Insertion Algorithms

We now consider two greedy algorithms for generating suitable hierarchical
sequences of X. The basic idea in the first algorithm is to let XN = X and
recursively remove points from X until we obtain X1 containing merely one
point.

Definition 4.1. Let Y ⊂ X, #Y ≥ 2. We will say x ∈ Y is a removable

point if
ρ(Y \ {x}) = max

y∈Y
ρ(Y \ {y}).

Algorithm 4.2 (Thinning Algorithm).
(1) Let XN = X.
(2) For decreasing i = N, . . . , 2

(a) search for a removable point x ∈ Xi,
(b) let Xi−1 = Xi \ {x}

(3) Output X ∗ = (X1, . . . , XN ).

Example 4.3. Let Ω = (0, 1) and xi = 2i−N−1, i = 1, . . . , N , for some N ≥
1. In this case the hierarchical sequence X ∗ = (X1, . . . , XN ) obtained from the
thinning algorithm is unique with Xi = {xN−i+1, . . . , xN} for i = 1, . . . , N .
Further, s(Xi) = 2−i, ℓ(Xi) = 1/2 and thus ρ(Xi) = s(Xi)/ℓ(Xi) = 21−i. So
ρ(X ∗) = (1, 1/2, . . . , 1/2N−1) which is monotonically decreasing.

Example 4.4. Let Ω = (0, 1), N = 3, and xi = i/4 for i = 1, 2, 3 and let
X ∗ be a hierarchical sequence generated by the thinning algorithm. Now the
thinning algorithm may remove x1 or x3 first, in which case ρ(X ∗) = (1, 1/2, 1)
and ||ρ(X ∗)||1 = 5/2. However the algorithm may instead remove x2 first and
then ρ(X ∗) = (1/3, 1/2, 1) and ||ρ(X ∗)||1 = 11/6. So in this example X ∗ and
ρ(X ∗) are not unique.

Instead of recursively removing points from X ⊂ Ω, we now recursively
insert them into Ω.
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Definition 4.5. Let Y ⊂ X, Y 6= X. Then we will say that x ∈ X \ Y is an
insertable point if

ρ(Y ∪ {x}) = max
y∈X\Y

ρ(Y ∪ {y}).

Algorithm 4.6 (Insertion Algorithm).

(1) Let X0 = ∅.
(2) For i = 0, . . . , N − 1

(a) search for an insertable point x ∈ X \ Xi,

(b) let Xi+1 = Xi ∪ {x}
(3) Output X ∗ = (X1, . . . , XN ).

The following examples show that in general either of the thinning and
insertion algorithms can be superior in the sense of maximizing ||ρ(X )||p.

Example 4.7. Consider again the uniform data set of Example 4.4 and let
X ∗ = (X1, X2, X3) be the result of the insertion algorithm. Since X1 = {1/2}
we have that ρ(X ∗) = (1, 1/2, 1) and so ||ρ(X ∗)||1 = 5/2. Thus for this data
set, the insertion algorithm can be superior to the thinning algorithm.

Example 4.8. Let Ω = (0, 1) and consider the set X = {1/3, 1/2, 2/3}. Let
X ∗

1 and X ∗
2 be sequences generated by the thinning algorithm and insertion

algorithm respectively. We observe that ρ(X ∗
1 ) = (1/2, 1, 1/2) while ρ(X ∗

2 ) =
(1, 1/3, 1/2). Therefore ||ρ(X ∗

1 )||p > ||ρ(X ∗
2 )||p for 1 ≤ p < ∞ and so in this

case the thinning algorithm is superior.

We now show that the uniformity of the output of either the thinning or
insertion algorithms cannot be improved by swaps.

Proposition 4.9. Every hierarchical sequence generated by either the thin-
ning algorithm or the insertion algorithm is locally optimal.

Proof: Let X = (X1, . . . , XN ) be a sequence generated by the thinning
algorithm. For j = 1, . . . , N , let yj ∈ X denote the point such that Xj \
Xj−1 = {yj}. Now noting that Xj+1 \ {yj} = Xj−1 ∪ {yj+1}, we find from
Definition 4.1 that for all j = 1, . . . , N − 1,

ρ(Xj) = ρ(Xj+1 \ {yj+1}) ≥ ρ(Xj+1 \ {yj}) = ρ(Xj−1 ∪ (Xj+1 \ Xj))

and so from (4) X is locally optimal. Now suppose X is generated by the
insertion algorithm. Then due to Definition 4.5 we obtain

ρ(Xj) = ρ(Xj−1 ∪ {yj}) ≥ ρ(Xj−1 ∪ {yj+1}) = ρ(Xj−1 ∪ (Xj+1 \ Xj)),

and so X is again locally optimal.
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§5. Numerical Examples

Two numerical examples were computed with d = 1, Ω = (0, 1), N = 200 and
the points x1, . . . , xN ∈ X were chosen (i) randomly and (ii) uniformly, that
is xi = i/(N + 1), i = 1, . . . , N . The figure above shows the graphs of the
sequences ρ(X ∗) generated by thinning, insertion, and swapping for data set
(i) and thinning and insertion for data set (ii).

The table below shows the corresponding values of the norms ||ρ(X ∗)||1
and ||ρ(X ∗)||2 for data sets (i) and (ii) respectively.

(i) thin insert swap
||ρ(X ∗)||1 43.8 45.4 17.2
||ρ(X ∗)||2 3.9 4.2 2.2

(ii) thin insert
||ρ(X ∗)||1 91.3 81.5
||ρ(X ∗)||2 6.6 6.0
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