# Annette Cazaubiel: Wave turbulence on the surface of a fluid in a high-gravity environment

**Abstract:** We report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to 20 times Earth’s gravity. The transition frequency between the gravity and capillary regimes is thus increased up to one decade as predicted theoretically. A frequency power-law wave spectrum is observed in each regime and is found to be independent of the gravity level and of the wave steepness. While the timescale separation required by weak turbulence is well verified experimentally regardless of the gravity level, the nonlinear and dissipation timescales are found to be independent of the scale, as a result of the finite size effects of the system (large-scale container modes) that are not taken currently into account theoretically.

This talk is part of the Mechanics Lunch Seminar series. That means 20min talks plus discussion in an informal setting.

**Zoom: **To obtain the Zoom meeting details please contact Timo Koch (timokoch at math.uio.no).