Gaute Linga: Chaotic mixing in intermittent two-phase porous media flows

Abstract: Transport and mixing in multiphase flow through porous media plays a key role in a range of biological, geological, and engineered systems. Here, we use numerical simulations to investigate the effect of intermittent multiphase flow on fluid stretching and folding, a fundamental mechanism driving solute mixing and reaction in porous media. We show that, in contrast to steady single-phase flows, the concurrent flow of two immiscible phases induces chaotic mixing, characterized by exponential stretching in the pore space. The stretching rate is found to decay with increasing capillary number, implying that the increasing flow intermittency observed at lower capillary numbers enhances the mixing efficiency. We propose a mechanistic model to link the basic multiphase flow properties to the chaotic mixing rate, opening new perspectives to understand mixing and reaction in multiphase porous media flows. The results presented here form part of the background for the recently started RCN-funded project M4: Mixing in Multiphase flow through Microporous Media, which will also be introduced.

This talk is part of the Mechanics Lunch Seminar series. Bring-your-own-lunch and lots of questions.

Published Nov. 30, 2021 5:25 PM - Last modified Nov. 30, 2021 5:25 PM