# On the topological structure of the set of composition operators 

F. Bayart - in collaboration with M. Wang and X. Yao
${ }^{1}$ Université Clermont Auvergne

Dirichlet series and operator theory

Let $\mathcal{H}$ be the (Hilbert) Hardy space of Dirichlet series:

$$
\mathcal{H}=\left\{\sum_{n \geq 1} a_{n} n^{-s}:\|f\|_{\mathcal{H}}^{2}=\sum_{n \geq 1}\left|a_{n}\right|^{2}<+\infty\right\}
$$

Let also $\mathcal{G}$ be the set of symbols $\varphi: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}_{1 / 2}$ inducing a bounded composition operator $C_{\varphi}$ on $\mathcal{H}$.

Let $\mathcal{H}$ be the (Hilbert) Hardy space of Dirichlet series:

$$
\mathcal{H}=\left\{\sum_{n \geq 1} a_{n} n^{-s}:\|f\|_{\mathcal{H}}^{2}=\sum_{n \geq 1}\left|a_{n}\right|^{2}<+\infty\right\}
$$

Let also $\mathcal{G}$ be the set of symbols $\varphi: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}_{1 / 2}$ inducing a bounded composition operator $C_{\varphi}$ on $\mathcal{H}$.

Recall (Gordon - Hedenmalm) that $\varphi: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}_{1 / 2}$ belongs to $\mathcal{G}$ if and only if $\varphi(s)=c_{0} s+\psi(s)$, where $c_{0}$ is a non-negative integer (called the characteristic of $\varphi$, i.e., $\operatorname{char}(\varphi)=c_{0}$ ), and $\psi(s)=\sum_{n=1}^{\infty} c_{n} n^{-s}$ converges uniformly in $\mathbb{C}_{\epsilon}$ for every $\epsilon>0$ and has the following properties:
(a) If $c_{0}=0$, then $\psi\left(\mathbb{C}_{0}\right) \subseteq \mathbb{C}_{1 / 2}$.
(b) If $c_{0} \geq 1$, then either $\psi \equiv 0$ or $\psi\left(\mathbb{C}_{0}\right) \subseteq \mathbb{C}_{0}$.

Let $\mathcal{H}$ be the (Hilbert) Hardy space of Dirichlet series:

$$
\mathcal{H}=\left\{\sum_{n \geq 1} a_{n} n^{-s}:\|f\|_{\mathcal{H}}^{2}=\sum_{n \geq 1}\left|a_{n}\right|^{2}<+\infty\right\}
$$

Let also $\mathcal{G}$ be the set of symbols $\varphi: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}_{1 / 2}$ inducing a bounded composition operator $C_{\varphi}$ on $\mathcal{H}$.

Recall (Gordon - Hedenmalm) that $\varphi: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}_{1 / 2}$ belongs to $\mathcal{G}$ if and only if $\varphi(s)=c_{0} s+\psi(s)$, where $c_{0}$ is a non-negative integer (called the characteristic of $\varphi$, i.e., $\operatorname{char}(\varphi)=c_{0}$ ), and $\psi(s)=\sum_{n=1}^{\infty} c_{n} n^{-s}$ converges uniformly in $\mathbb{C}_{\epsilon}$ for every $\epsilon>0$ and has the following properties:
(a) If $c_{0}=0$, then $\psi\left(\mathbb{C}_{0}\right) \subseteq \mathbb{C}_{1 / 2}$.
(b) If $c_{0} \geq 1$, then either $\psi \equiv 0$ or $\psi\left(\mathbb{C}_{0}\right) \subseteq \mathbb{C}_{0}$.

We shall denote by $\mathcal{C}(\mathcal{H})=\left\{C_{\varphi}: \varphi \in \mathcal{G}\right\} \subset \mathcal{L}(\mathcal{H})$.

## Main question for this talk

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$ ?

## Main question for this talk

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$ ? In particular,

- When do two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$ ?
- When are two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ equal modulo some compact operator?


## Main question for this talk

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$ ? In particular,

- When do two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$ ?
- When are two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ equal modulo some compact operator?
First result on the unit disc.
Theorem (Shapiro - Sundberg (1990))
The set of compact composition operators is an arcwise connected set in $\mathcal{C}\left(H^{2}(\mathbb{D})\right)$.


## Main question for this talk

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$ ? In particular,

- When do two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$ ?
- When are two composition operators $C_{\varphi_{1}}$ and $C_{\varphi_{2}}$ equal modulo some compact operator?
First result on the unit disc.
Theorem (Shapiro - Sundberg (1990))
The set of compact composition operators is an arcwise connected set in $\mathcal{C}\left(H^{2}(\mathbb{D})\right)$.

The characteristic of a symbol (which is an integer) prevents this result from extending to $\mathcal{H}$.

## Proposition

The map $\mathcal{C}(\mathcal{H}) \rightarrow \mathbb{N}_{0}, \varphi \mapsto \operatorname{char}(\varphi)$ is continuous.
Proof.
Let $\left(\varphi_{k}\right)_{k}, \varphi \in \mathcal{G}$ such that $C_{\varphi_{k}} \rightarrow C_{\varphi}$ and assume that $\operatorname{char}\left(\varphi_{k}\right) \neq \operatorname{char}(\varphi)$ for all $k$.

## Proposition

The map $\mathcal{C}(\mathcal{H}) \rightarrow \mathbb{N}_{0}, \varphi \mapsto \operatorname{char}(\varphi)$ is continuous.
Proof.
Let $\left(\varphi_{k}\right)_{k}, \varphi \in \mathcal{G}$ such that $C_{\varphi_{k}} \rightarrow C_{\varphi}$ and assume that $\operatorname{char}\left(\varphi_{k}\right) \neq \operatorname{char}(\varphi)$ for all $k$.
First case : $\operatorname{char}(\varphi)=0$.
Let $K_{s}$ be the reproducing kernel at $s \in \mathbb{C}_{1 / 2}$. Then $C_{\varphi}^{*}\left(K_{s}\right)=K_{\varphi(s)}$.

## Proposition

The map $\mathcal{C}(\mathcal{H}) \rightarrow \mathbb{N}_{0}, \varphi \mapsto \operatorname{char}(\varphi)$ is continuous.
Proof.
Let $\left(\varphi_{k}\right)_{k}, \varphi \in \mathcal{G}$ such that $C_{\varphi_{k}} \rightarrow C_{\varphi}$ and assume that $\operatorname{char}\left(\varphi_{k}\right) \neq \operatorname{char}(\varphi)$ for all $k$.
First case : $\operatorname{char}(\varphi)=0$.
Let $K_{s}$ be the reproducing kernel at $s \in \mathbb{C}_{1 / 2}$. Then $C_{\varphi}^{*}\left(K_{s}\right)=K_{\varphi(s)}$. When $\sigma \rightarrow+\infty$ one has $\varphi(\sigma) \rightarrow c_{1}$ and $\Re e\left(\varphi_{k}(\sigma)\right) \rightarrow+\infty$ for $k \geq 1$.

## Proposition

The map $\mathcal{C}(\mathcal{H}) \rightarrow \mathbb{N}_{0}, \varphi \mapsto \operatorname{char}(\varphi)$ is continuous.

## Proof.

Let $\left(\varphi_{k}\right)_{k}, \varphi \in \mathcal{G}$ such that $C_{\varphi_{k}} \rightarrow C_{\varphi}$ and assume that $\operatorname{char}\left(\varphi_{k}\right) \neq \operatorname{char}(\varphi)$ for all $k$.
First case : $\operatorname{char}(\varphi)=0$.
Let $K_{s}$ be the reproducing kernel at $s \in \mathbb{C}_{1 / 2}$. Then $C_{\varphi}^{*}\left(K_{s}\right)=K_{\varphi(s)}$. When $\sigma \rightarrow+\infty$ one has $\varphi(\sigma) \rightarrow c_{1}$ and $\Re e\left(\varphi_{k}(\sigma)\right) \rightarrow+\infty$ for $k \geq 1$. Hence, $K_{\varphi(\sigma)} \rightarrow K_{c_{1}}$ whereas $K_{\varphi_{k}(\sigma)} \rightarrow 1$. Therefore,

$$
\begin{aligned}
\left\|C_{\varphi}-C_{\varphi_{k}}\right\| & =\left\|C_{\varphi}^{*}-C_{\varphi_{k}}^{*}\right\| \\
& \geq \limsup _{\sigma \rightarrow+\infty}\left\|C_{\varphi}^{*}\left(K_{\sigma}\right)-C_{\varphi_{k}}^{*}\left(K_{\sigma}\right)\right\| /\left\|K_{\sigma}\right\| \\
& \geq \limsup _{\sigma \rightarrow+\infty}\left\|K_{\varphi(\sigma)}-K_{\varphi_{k}(\sigma)}\right\| \\
& \geq\left\|K_{c_{1}}-1\right\|>0 .
\end{aligned}
$$

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.
Write $\varphi(s)=c_{0} s+c_{1}+\sum_{n \geq 2} c_{n} n^{-s}$. Then

$$
2^{-\varphi(s)}=2^{-c_{0} s} 2^{-c_{1}} 2^{-\sum_{n \geq 2} c_{n} n^{-s}}
$$

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.
Write $\varphi(s)=c_{0} s+c_{1}+\sum_{n \geq 2} c_{n} n^{-s}$. Then

$$
\begin{aligned}
2^{-\varphi(s)} & =2^{-c_{0} s} 2^{-c_{1}} 2^{-\sum_{n \geq 2} c_{n} n^{-s}} \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2} \exp \left(-c_{n} n^{-s} \log 2\right)
\end{aligned}
$$

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.
Write $\varphi(s)=c_{0} s+c_{1}+\sum_{n \geq 2} c_{n} n^{-s}$. Then

$$
\begin{aligned}
2^{-\varphi(s)} & =2^{-c_{0} s} 2^{-c_{1}} 2^{-\sum_{n \geq 2} c_{n} n^{-s}} \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2} \exp \left(-c_{n} n^{-s} \log 2\right) \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2}\left(1+\sum_{k} d_{k, n}\left(n^{k}\right)^{-s}\right) .
\end{aligned}
$$

In particular, writing $2^{-\varphi(s)}=\sum_{n \geq 1} a_{n} n^{-s}$, one has $a_{2^{j}}=0$ provided $j<c_{0}$ and $a_{2} c_{0}=2^{-c_{1}}$.

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.
Write $\varphi(s)=c_{0} s+c_{1}+\sum_{n \geq 2} c_{n} n^{-s}$. Then

$$
\begin{aligned}
2^{-\varphi(s)} & =2^{-c_{0} s} 2^{-c_{1}} 2^{-\sum_{n \geq 2} c_{n} n^{-s}} \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2} \exp \left(-c_{n} n^{-s} \log 2\right) \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2}\left(1+\sum_{k} d_{k, n}\left(n^{k}\right)^{-s}\right) .
\end{aligned}
$$

In particular, writing $2^{-\varphi(s)}=\sum_{n \geq 1} a_{n} n^{-s}$, one has $a_{2^{j}}=0$ provided $j<c_{0}$ and $a_{2} c_{0}=2^{-c_{1}}$.
Similarly, writing $2^{-\varphi_{k}(s)}=\sum_{n \geq 1} b_{n}(k) n^{-s}$, one has $b_{2} c_{0}(k)=0$ for those $k$ such that $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$. This contradicts $b_{2} c_{0}(k) \rightarrow a_{2} c_{0}$.

Second case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$ for an infinite number of integers $k$.
Write $\varphi(s)=c_{0} s+c_{1}+\sum_{n \geq 2} c_{n} n^{-s}$. Then

$$
\begin{aligned}
2^{-\varphi(s)} & =2^{-c_{0} s} 2^{-c_{1}} 2^{-\sum_{n \geq 2} c_{n} n^{-s}} \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2} \exp \left(-c_{n} n^{-s} \log 2\right) \\
& =2^{-c_{0} s} 2^{-c_{1}} \prod_{n \geq 2}\left(1+\sum_{k} d_{k, n}\left(n^{k}\right)^{-s}\right) .
\end{aligned}
$$

In particular, writing $2^{-\varphi(s)}=\sum_{n \geq 1} a_{n} n^{-s}$, one has $a_{2^{j}}=0$ provided $j<c_{0}$ and $a_{2} c_{0}=2^{-c_{1}}$.
Similarly, writing $2^{-\varphi_{k}(s)}=\sum_{n \geq 1} b_{n}(k) n^{-s}$, one has $b_{2} c_{0}(k)=0$ for those $k$ such that $\operatorname{char}\left(\varphi_{k}\right)>c_{0}$. This contradicts $b_{2} c_{0}(k) \rightarrow a_{2} c_{0}$.
Third case : $\operatorname{char}(\varphi)=c_{0}>0$ and $\operatorname{char}\left(\varphi_{k}\right)<c_{0}$ for all $k$.

## With a fixed characteristic

Theorem
Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators with characteristic equal to $c_{0}$ is arcwise connected.

## Preliminaries - Hedenmalm, Lindqvist, Seip

(1) $\mathbb{T}^{\infty}$ can be identified with the dual group of $\left(\mathbb{Q}_{+}, \cdot\right)$ by

$$
z \in \mathbb{T}^{\infty} \mapsto \chi_{z}, \chi_{z}(2)=z_{1}, \chi_{z}(3)=z_{2}, \ldots, \chi_{z}\left(p_{m}\right)=z_{m} .
$$

## Preliminaries - Hedenmalm, Lindqvist, Seip

(1) $\mathbb{T}^{\infty}$ can be identified with the dual group of $\left(\mathbb{Q}_{+}, \cdot\right)$ by

$$
z \in \mathbb{T}^{\infty} \mapsto \chi_{z}, \chi_{z}(2)=z_{1}, \chi_{z}(3)=z_{2}, \ldots, \chi_{z}\left(p_{m}\right)=z_{m} .
$$

(2) For $\chi \in \mathbb{T}^{\infty}$ and $f=\sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s)=\sum_{n} a_{n} \chi(n) n^{-s}$.

## Preliminaries - Hedenmalm, Lindqvist, Seip

(1) $\mathbb{T}^{\infty}$ can be identified with the dual group of $\left(\mathbb{Q}_{+}, \cdot\right)$ by

$$
z \in \mathbb{T}^{\infty} \mapsto \chi_{z}, \chi_{z}(2)=z_{1}, \chi_{z}(3)=z_{2}, \ldots, \chi_{z}\left(p_{m}\right)=z_{m} .
$$

(2) For $\chi \in \mathbb{T}^{\infty}$ and $f=\sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s)=\sum_{n} a_{n} \chi(n) n^{-s}$.

## Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $\left(\tau_{k}\right) \subset \mathbb{R}, f\left(\cdot+i \tau_{k}\right) \rightarrow F$ uniformly on compact subsets of $\mathbb{C}_{1 / 2}$.
- There exists $\chi \in \mathbb{T}^{\infty}, F=f_{\chi}$.


## Preliminaries - Hedenmalm, Lindqvist, Seip

(1) $\mathbb{T}^{\infty}$ can be identified with the dual group of $\left(\mathbb{Q}_{+}, \cdot\right)$ by

$$
z \in \mathbb{T}^{\infty} \mapsto \chi_{z}, \chi_{z}(2)=z_{1}, \chi_{z}(3)=z_{2}, \ldots, \chi_{z}\left(p_{m}\right)=z_{m} .
$$

(2) For $\chi \in \mathbb{T}^{\infty}$ and $f=\sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s)=\sum_{n} a_{n} \chi(n) n^{-s}$.

## Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $\left(\tau_{k}\right) \subset \mathbb{R}, f\left(\cdot+i \tau_{k}\right) \rightarrow F$ uniformly on compact subsets of $\mathbb{C}_{1 / 2}$.
- There exists $\chi \in \mathbb{T}^{\infty}, F=f_{\chi}$.
(3) Let $f \in \mathcal{H}$. For almost all $\chi \in \mathbb{T}^{\infty}, f_{\chi}$ converges in $\mathbb{C}_{0}$, $f_{\chi}(i t)=\lim _{\sigma \rightarrow 0} f_{\chi}(\sigma+i t)$ exists for almost all $t \in \mathbb{R}$ and

$$
\|f\|^{2}=\int_{\mathbb{T}^{\infty}} \int_{\mathbb{R}}\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
$$

## Preliminaries - Hedenmalm, Lindqvist, Seip, Gordon

(9) Let $f \in \mathcal{H}, \varphi=c_{0} s+\psi \in \mathcal{G}$. Define $\varphi_{\chi}=c_{0} s+\psi_{\chi}$. Then

$$
(f \circ \varphi)_{\chi}=f_{\chi} c_{0} \circ \varphi_{\chi} .
$$

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Let $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0}+\psi_{1}$ be two compact composition operators on $\mathcal{H}$.

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Let $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0}+\psi_{1}$ be two compact composition operators on $\mathcal{H}$. Define $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Let $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0}+\psi_{1}$ be two compact composition operators on $\mathcal{H}$. Define $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?
Fix $f \in \mathcal{H}$ and let us estimate $\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|$.

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq \iint\left|\left(f \circ \varphi_{\lambda}\right)_{\chi}(i t)-\left(f \circ \varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
$$

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Let $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0}+\psi_{1}$ be two compact composition operators on $\mathcal{H}$. Define $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?
Fix $f \in \mathcal{H}$ and let us estimate $\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|$.

$$
\begin{aligned}
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} & \leq \iint\left|\left(f \circ \varphi_{\lambda}\right)_{\chi}(i t)-\left(f \circ \varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \\
& \leq \iint\left|f_{\chi} c_{0} \circ\left(\varphi_{\lambda}\right)_{\chi}(i t)-f_{\chi^{c_{0}} \circ} \circ\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} d \mu d m
\end{aligned}
$$

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Let $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0}+\psi_{1}$ be two compact composition operators on $\mathcal{H}$. Define $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?
Fix $f \in \mathcal{H}$ and let us estimate $\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|$.

$$
\begin{aligned}
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} & \leq \iint\left|\left(f \circ \varphi_{\lambda}\right)_{\chi}(i t)-\left(f \circ \varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \\
& \leq \iint\left|f_{\chi} c_{0} \circ\left(\varphi_{\lambda}\right)_{\chi}(i t)-f_{\chi^{c_{0}}} \circ\left(\varphi_{\lambda^{\prime}}\right) \chi(i t)\right|^{2} d \mu d m
\end{aligned}
$$

Assume that $\varphi_{0}\left(\mathbb{C}_{+}\right), \varphi_{1}\left(\mathbb{C}_{+}\right) \subset \mathbb{C}_{a}$ for some $a>1 / 2$. Then $\left(\varphi_{\lambda}\right)_{\chi}(i t) \in \overline{\mathbb{C}_{a}}$ for all $\chi$ and all $\lambda$ so that

$$
\left|f_{\chi}^{c_{0}} \circ\left(\varphi_{\lambda}\right)_{\chi}(i t)-f_{\chi} c_{0} \circ\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} \leq C_{a}\|f\|^{2}\left|\left(\varphi_{\lambda}\right)_{\chi}(i t)-\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right|^{2} .
$$

Recall that $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Then

$$
\left(\varphi_{\lambda}\right)_{\chi}(i t)-\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)=\left(\lambda-\lambda^{\prime}\right)\left(\left(\psi_{0}\right)_{\chi}(i t)-\left(\psi_{1}\right)_{\chi}(i t)\right) .
$$

Recall that $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Then

$$
\left(\varphi_{\lambda}\right)_{\chi}(i t)-\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)=\left(\lambda-\lambda^{\prime}\right)\left(\left(\psi_{0}\right)_{\chi}(i t)-\left(\psi_{1}\right)_{\chi}(i t)\right)
$$

Therefore,

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq C_{a}\left|\lambda-\lambda^{\prime}\right|^{2}\|f\|^{2} \iint\left|\left(\psi_{0}\right)_{\chi}(i t)-\left(\psi_{1}\right)_{\chi}(i t)\right|^{2} d \mu d m
$$

Recall that $\varphi_{\lambda}=c_{0} s+(1-\lambda) \psi_{0}+\lambda \psi_{1}$. Then

$$
\left(\varphi_{\lambda}\right)_{\chi}(i t)-\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)=\left(\lambda-\lambda^{\prime}\right)\left(\left(\psi_{0}\right)_{\chi}(i t)-\left(\psi_{1}\right)_{\chi}(i t)\right)
$$

Therefore,
$\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq C_{a}\left|\lambda-\lambda^{\prime}\right|^{2}\|f\|^{2} \iint\left|\left(\psi_{0}\right)_{\chi}(i t)-\left(\psi_{1}\right)_{\chi}(i t)\right|^{2} d \mu d m$.

If $\left|\psi_{0}\right|$ and $\left|\psi_{1}\right|$ are bounded, we finally find

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq M\left|\lambda-\lambda^{\prime}\right|^{2} \cdot\|f\|^{2} .
$$

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Until now we have shown that, if $\varphi_{0}=c_{0} s+\psi_{0}$ and $\varphi_{1}=c_{0} s+\psi_{1}$ are such that

- $\varphi_{0}\left(\mathbb{C}_{+}\right), \varphi_{1}\left(\mathbb{C}_{+}\right) \subset \mathbb{C}_{a}$ for some $a>1 / 2$;
- $\psi_{0}, \psi_{1}$ are bounded
then there is a continuous arc of compact composition operators between $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$.


## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Until now we have shown that, if $\varphi_{0}=c_{0} s+\psi_{0}$ and $\varphi_{1}=c_{0} s+\psi_{1}$ are such that

- $\varphi_{0}\left(\mathbb{C}_{+}\right), \varphi_{1}\left(\mathbb{C}_{+}\right) \subset \mathbb{C}_{a}$ for some $a>1 / 2$;
- $\psi_{0}, \psi_{1}$ are bounded
then there is a continuous arc of compact composition operators between $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$.

Let $\varphi$ inducing a compact composition operator. Find a continuous arc of compact composition operators between $C_{\varphi}$ and $C_{\tilde{\varphi}}$ where $\tilde{\varphi}$ satisfies the above assumptions.

## Theorem

Let $c_{0} \in \mathbb{N}_{0}$. The set of compact composition operators wich characteristic equal to $c_{0}$ is arcwise connected.

Until now we have shown that, if $\varphi_{0}=c_{0} s+\psi_{0}$ and $\varphi_{1}=c_{0} s+\psi_{1}$ are such that

- $\varphi_{0}\left(\mathbb{C}_{+}\right), \varphi_{1}\left(\mathbb{C}_{+}\right) \subset \mathbb{C}_{a}$ for some $a>1 / 2$;
- $\psi_{0}, \psi_{1}$ are bounded
then there is a continuous arc of compact composition operators between $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$.

Let $\varphi$ inducing a compact composition operator. Find a continuous arc of compact composition operators between $C_{\varphi}$ and $C_{\tilde{\varphi}}$ where $\tilde{\varphi}$ satisfies the above assumptions.

Consider for $\sigma \in[0,1], \varphi_{\sigma}=\varphi(\cdot+\sigma)$. Then $\varphi_{1}$ satisfies the above assumptions. Is the map $\sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ continuous?

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.
Lemma
The $\operatorname{map} \sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.
Lemma
The $\operatorname{map} \sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.
Proof.
For $\sigma \geq 0$ define $T_{\sigma}(f)=f(\cdot+\sigma)$, so that $C_{\varphi_{\sigma}}=T_{\sigma} \circ C_{\varphi}$. Now,

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.
Lemma
The map $\sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.
Proof.
For $\sigma \geq 0$ define $T_{\sigma}(f)=f(\cdot+\sigma)$, so that $C_{\varphi_{\sigma}}=T_{\sigma} \circ C_{\varphi}$. Now,
(1) For a fixed $g \in \mathcal{H}, T_{\sigma}(g) \rightarrow T_{\sigma_{0}}(g)$ as $\sigma \rightarrow \sigma_{0}$.

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.

## Lemma

The map $\sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.
Proof.
For $\sigma \geq 0$ define $T_{\sigma}(f)=f(\cdot+\sigma)$, so that $C_{\varphi_{\sigma}}=T_{\sigma} \circ C_{\varphi}$. Now,
(1) For a fixed $g \in \mathcal{H}, T_{\sigma}(g) \rightarrow T_{\sigma_{0}}(g)$ as $\sigma \rightarrow \sigma_{0}$.
(2) The family $\left\{T_{\sigma}: \sigma \in[0,1]\right\}$ is equicontinuous.

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.

## Lemma

The map $\sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.
Proof.
For $\sigma \geq 0$ define $T_{\sigma}(f)=f(\cdot+\sigma)$, so that $C_{\varphi_{\sigma}}=T_{\sigma} \circ C_{\varphi}$. Now,
(1) For a fixed $g \in \mathcal{H}, T_{\sigma}(g) \rightarrow T_{\sigma_{0}}(g)$ as $\sigma \rightarrow \sigma_{0}$.
(2) The family $\left\{T_{\sigma}: \sigma \in[0,1]\right\}$ is equicontinuous.
(3) The set $\left\{C_{\varphi}(f):\|f\| \leq 1\right\}$ has compact closure.

Let $\varphi \in \mathcal{G}$ such that $C_{\varphi}$ is compact and let $\varphi_{\sigma}=\varphi(\cdot+\sigma)$.
Lemma
The map $\sigma \in[0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.
Proof.
For $\sigma \geq 0$ define $T_{\sigma}(f)=f(\cdot+\sigma)$, so that $C_{\varphi_{\sigma}}=T_{\sigma} \circ C_{\varphi}$. Now,
(1) For a fixed $g \in \mathcal{H}, T_{\sigma}(g) \rightarrow T_{\sigma_{0}}(g)$ as $\sigma \rightarrow \sigma_{0}$.
(2) The family $\left\{T_{\sigma}: \sigma \in[0,1]\right\}$ is equicontinuous.
(3) The set $\left\{C_{\varphi}(f):\|f\| \leq 1\right\}$ has compact closure.

The lemma follows from a (standard) compactness argument.

## Two general statements

Theorem (Positive characteristic)
Let $\varphi_{0}$ and $\varphi_{1} \in \mathcal{G}$ with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right)=: c_{0} \geq 1$ and write them $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0} s+\psi_{1}$. Assume moreover that there exists $C>0$ such that

- $\left|\varphi_{0}-\varphi_{1}\right| \leq C \min \left(\Re e \varphi_{0}, \Re e \varphi_{1}\right)$;
- $\left|\psi_{0}\right|,\left|\psi_{1}\right| \leq C$;
- $\left|\psi_{0}^{\prime}\right|,\left|\psi_{1}^{\prime}\right| \leq C$.

Then $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$.

## Two general statements

Theorem (Positive characteristic)
Let $\varphi_{0}$ and $\varphi_{1} \in \mathcal{G}$ with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right)=: c_{0} \geq 1$ and write them $\varphi_{0}=c_{0} s+\psi_{0}, \varphi_{1}=c_{0} s+\psi_{1}$. Assume moreover that there exists $C>0$ such that

- $\left|\varphi_{0}-\varphi_{1}\right| \leq C \min \left(\Re e \varphi_{0}, \Re e \varphi_{1}\right)$;
- $\left|\psi_{0}\right|,\left|\psi_{1}\right| \leq C$;
- $\left|\psi_{0}^{\prime}\right|,\left|\psi_{1}^{\prime}\right| \leq C$.

Then $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$.

## Theorem (Zero characteristic)

Let $\varphi_{0}$ and $\varphi_{1} \in \mathcal{G}$ with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right)=0$. Assume that there exists $C>0$ such that $\left|\varphi_{0}-\varphi_{1}\right| \leq C \min \left(\frac{\Re e \varphi_{0}-1 / 2}{\left|1+\varphi_{0}\right|^{2}}, \frac{\Re e \varphi_{1}-1 / 2}{\left|1+\varphi_{1}\right|^{2}}\right)$. Then $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$.

## Idea for the proof

Let $\varphi_{0}, \varphi_{1} \in \mathcal{G}$. As before, define $\varphi_{\lambda}=(1-\lambda) \varphi_{0}+\lambda \varphi_{1}$. Write

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq \iint\left|f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda}\right)_{\chi}(i t)\right)-f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right)\right|^{2} d \mu d m .
$$

## Idea for the proof

Let $\varphi_{0}, \varphi_{1} \in \mathcal{G}$. As before, define $\varphi_{\lambda}=(1-\lambda) \varphi_{0}+\lambda \varphi_{1}$. Write

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq \iint\left|f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda}\right)_{\chi}(i t)\right)-f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right)\right|^{2} d \mu d m
$$

Observe that

$$
\begin{array}{r}
f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda}\right)_{\chi}(i t)\right)-f_{\chi} c_{0}\left(\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right)=\left(\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right) \times \\
\\
\quad \int_{\lambda}^{\lambda^{\prime}} f_{\chi^{c_{0}}}^{\prime}\left(\left(\varphi_{r}\right)_{\chi}(i t)\right) d r
\end{array}
$$

## Idea for the proof

Let $\varphi_{0}, \varphi_{1} \in \mathcal{G}$. As before, define $\varphi_{\lambda}=(1-\lambda) \varphi_{0}+\lambda \varphi_{1}$. Write

$$
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq \iint\left|f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda}\right)_{\chi}(i t)\right)-f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right)\right|^{2} d \mu d m .
$$

Observe that

$$
\begin{array}{r}
f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda}\right)_{\chi}(i t)\right)-f_{\chi^{c_{0}}}\left(\left(\varphi_{\lambda^{\prime}}\right)_{\chi}(i t)\right)=\left(\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right) \times \\
\\
\quad \int_{\lambda}^{\lambda^{\prime}} f_{\chi^{c_{0}}}^{\prime}\left(\left(\varphi_{r}\right)_{\chi}(i t)\right) d r
\end{array}
$$

By Jensen's inequality,

$$
\begin{aligned}
\left\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda^{\prime}}}(f)\right\|^{2} \leq\left|\lambda^{\prime}-\lambda\right|^{2} \int_{\lambda}^{\lambda^{\prime}} & \int_{\mathbb{T}_{\infty}} \int_{\mathbb{R}}\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2} \\
& \times\left|f_{\chi^{c_{0}}}^{\prime}\left(\left(\varphi_{r}\right)_{\chi}(i t)\right)\right|^{2} d \mu(t) d m(\chi) d r .
\end{aligned}
$$

Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in[0,1]$,

$$
\begin{array}{r}
\iint\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2}\left|\left(f^{\prime} \circ \varphi_{r}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \leq \\
C \iint\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
\end{array}
$$

Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in[0,1]$,

$$
\begin{array}{r}
\iint\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2}\left|\left(f^{\prime} \circ \varphi_{r}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \leq \\
C \iint\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
\end{array}
$$

Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in[0,1]$,

$$
\begin{array}{r}
\iint\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2}\left|\left(f^{\prime} \circ \varphi_{r}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \leq \\
C \iint\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
\end{array}
$$

One wants to prove that

$$
\left\|\left(\varphi_{1}-\varphi_{0}\right) C_{\varphi_{r}}\left(f^{\prime}\right)\right\|_{\mathcal{H}} \leq C\|f\|_{\mathcal{H}}
$$

Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in[0,1]$,

$$
\begin{array}{r}
\iint\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2}\left|\left(f^{\prime} \circ \varphi_{r}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \leq \\
C \iint\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
\end{array}
$$

One wants to prove that

$$
\left\|\left(\varphi_{1}-\varphi_{0}\right) C_{\varphi_{r}}\left(f^{\prime}\right)\right\|_{\mathcal{H}} \leq C\|f\|_{\mathcal{H}}
$$

$\mathcal{A}=\left\{f=\sum_{n} a_{n} n^{-s}:\|f\|_{\mathcal{A}}^{2}:=\int_{\mathbb{T}^{\infty}} \int_{\mathbb{R}} \int_{0}^{1}\left|f_{\chi}(s)\right|^{2} \sigma d \sigma d \mu d m<+\infty\right\}$.
Lemma
$f \in \mathcal{H} \Longleftrightarrow f^{\prime} \in \mathcal{A}$.

Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in[0,1]$,

$$
\begin{array}{r}
\iint\left|\left(\varphi_{1}\right)_{\chi}(i t)-\left(\varphi_{0}\right)_{\chi}(i t)\right|^{2}\left|\left(f^{\prime} \circ \varphi_{r}\right)_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi) \leq \\
C \iint\left|f_{\chi}(i t)\right|^{2} d \mu(t) d m(\chi)
\end{array}
$$

One wants to prove that

$$
\begin{gathered}
\left\|\left(\varphi_{1}-\varphi_{0}\right) C_{\varphi_{r}}\left(f^{\prime}\right)\right\|_{\mathcal{H}} \leq C\|f\|_{\mathcal{H}} \\
\mathcal{A}=\left\{f=\sum_{n} a_{n} n^{-s}:\|f\|_{\mathcal{A}}^{2}:=\int_{\mathbb{T}^{\infty}} \int_{\mathbb{R}} \int_{0}^{1}\left|f_{\chi}(s)\right|^{2} \sigma d \sigma d \mu d m<+\infty\right\} .
\end{gathered}
$$

Lemma
$f \in \mathcal{H} \Longleftrightarrow f^{\prime} \in \mathcal{A}$.
Therefore, it suffices to prove that

$$
\left\|\left(\varphi_{1}-\varphi_{0}\right) C_{\varphi_{r}}\left(f^{\prime}\right)\right\|_{\mathcal{H}} \leq C\left\|f^{\prime}\right\|_{\mathcal{A}}
$$

## General problem: boundedness of weighted composition operators from $\mathcal{A}$ to $\mathcal{H}$

Let $w: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w C_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from $\mathcal{A}$ to $\mathcal{H}$ ?

## General problem: boundedness of weighted composition operators from $\mathcal{A}$ to $\mathcal{H}$

Let $w: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w C_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from $\mathcal{A}$ to $\mathcal{H}$ ?

The assumptions we have made give an answer when $w=\varphi_{1}-\varphi_{0}$ and $\varphi=\varphi_{r}$.

## General problem: boundedness of weighted composition operators from $\mathcal{A}$ to $\mathcal{H}$

Let $w: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w C_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from $\mathcal{A}$ to $\mathcal{H}$ ?

The assumptions we have made give an answer when $w=\varphi_{1}-\varphi_{0}$ and $\varphi=\varphi_{r}$.

Two different proofs:

- For $c_{0}=0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.


## General problem: boundedness of weighted composition operators from $\mathcal{A}$ to $\mathcal{H}$

Let $w: \mathbb{C}_{1 / 2} \rightarrow \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w C_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from $\mathcal{A}$ to $\mathcal{H}$ ?

The assumptions we have made give an answer when $w=\varphi_{1}-\varphi_{0}$ and $\varphi=\varphi_{r}$.

Two different proofs:

- For $c_{0}=0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.
- For $c_{0} \geq 1$, we work directly with Dirichlet series in $\mathcal{A}$ and in $\mathcal{H}$ and use some Nevanlinna counting functions.


## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.

## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.
For $\delta>0$ sufficiently small, define

$$
\varphi_{1}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}+\delta\left(c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}\right)^{2}
$$

$C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ are in the same component.

## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.
For $\delta>0$ sufficiently small, define

$$
\varphi_{1}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}+\delta\left(c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}\right)^{2}
$$

$C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ are in the same component. Moreover, if $\varphi_{0}$ has unrestricted range then :

- $C_{\varphi_{0}}$ is not compact


## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.
For $\delta>0$ sufficiently small, define

$$
\varphi_{1}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}+\delta\left(c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}\right)^{2}
$$

$C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ are in the same component. Moreover, if $\varphi_{0}$ has unrestricted range then :

- $C_{\varphi_{0}}$ is not compact
- $C_{\varphi_{1}}$ is not compact


## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.
For $\delta>0$ sufficiently small, define

$$
\varphi_{1}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}+\delta\left(c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}\right)^{2}
$$

$C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ are in the same component. Moreover, if $\varphi_{0}$ has unrestricted range then :

- $C_{\varphi_{0}}$ is not compact
- $C_{\varphi_{1}}$ is not compact
- $C_{\varphi_{1}}-C_{\varphi_{0}}$ is not compact.


## Application 1: linear symbols

Let $\left(q_{j}\right)_{j=1, \ldots, d}$ be multiplicatively independent positive integers and let $\varphi_{0}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s} \in \mathcal{G}, c_{0} \geq 1$.
For $\delta>0$ sufficiently small, define

$$
\varphi_{1}=c_{0} s+c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}+\delta\left(c_{1}+\sum_{j=1}^{d} c_{q_{j}} q_{j}^{-s}\right)^{2}
$$

$C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ are in the same component. Moreover, if $\varphi_{0}$ has unrestricted range then :

- $C_{\varphi_{0}}$ is not compact
- $C_{\varphi_{1}}$ is not compact
- $C_{\varphi_{1}}-C_{\varphi_{0}}$ is not compact.

This disproves a conjecture of Shapiro and Sundberg in this setting (already disproved on $H^{2}(\mathbb{D})$ by Bourdon and by Moorhouse and Tonge).

## Application 2: coefficients of the Bohr lift

Let $\varphi(s)=c_{0} s+\psi(s) \in \mathcal{G}, \psi(s)=\sum_{n=1}^{N} c_{n} n^{-s}$ be a Dirichlet polynomial symbol with $c_{0} \geq 1$. Define the Bohr lift $\mathcal{B} \psi$ of $\psi$ by

$$
\mathcal{B} \psi(z)=\sum_{n=p_{1}^{\alpha_{1} \ldots p_{d}^{\alpha_{d}}=1}}^{N} c_{n} z_{1}^{\alpha_{1}} \cdots z_{d}^{\alpha_{d}}
$$

Then $\mathcal{B} \psi$ maps $\mathbb{D}^{d}$ into $\mathbb{C}_{+}$.

## Application 2: coefficients of the Bohr lift

Let $\varphi(s)=c_{0} s+\psi(s) \in \mathcal{G}, \psi(s)=\sum_{n=1}^{N} c_{n} n^{-s}$ be a Dirichlet polynomial symbol with $c_{0} \geq 1$. Define the Bohr lift $\mathcal{B} \psi$ of $\psi$ by

$$
\mathcal{B} \psi(z)=\sum_{n=p_{1}^{\alpha_{1} \ldots p_{d}^{\alpha_{d}}=1}}^{N} c_{n} z_{1}^{\alpha_{1}} \cdots z_{d}^{\alpha_{d}} .
$$

Then $\mathcal{B} \psi$ maps $\mathbb{D}^{d}$ into $\mathbb{C}_{+}$. Let $\Gamma(\mathcal{B} \psi)=\left\{z \in \mathbb{T}^{d}: \Re e(B \psi(z))=0\right\}$.

## Definition

Let $z \in \Gamma(\mathcal{B} \psi)$. We say that $\varphi$ has Dirichlet contact of order $n$ at $z$ if there exists a neighbourhood $\mathcal{U}$ of $z$ in $\mathbb{T}^{d}$ such that, for all $w \in \mathcal{U}$,

$$
\left|\Im m\left(\mathcal{B}_{\psi}(w)-\mathcal{B}_{\psi}(z)\right)\right|^{2 n} \lesssim \Re e\left(\mathcal{B}_{\psi}(w)\right) .
$$

## Coefficients of the Bohr lift

## Corollary

Let $\varphi_{0}, \varphi_{1} \in \mathcal{G}$ be Dirichlet polynomial symbols with
$\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right) \geq 1$. Assume that $\Gamma\left(\mathcal{B} \psi_{0}\right)=\Gamma\left(\mathcal{B} \psi_{1}\right)$ and that, for all $z \in \Gamma\left(\mathcal{B} \psi_{0}\right)$, there exists $n \in \mathbb{N}$ such that

- $\mathcal{B} \psi_{0}(z)=\mathcal{B} \psi_{1}(z)$;
- $\varphi_{0}$ and $\varphi_{1}$ have a Dirichlet contact of order $2 n$ at $z$;
- for $|\alpha| \leq 2 n-1, \partial_{\alpha} \mathcal{B} \psi_{0}(z)=\partial_{\alpha} \mathcal{B} \psi_{1}(z)$.

Then $C_{\varphi_{0}}$ and $C_{\varphi_{1}}$ belong to the same component of $\mathcal{C}(\mathcal{H})$.

## Open questions and work in progress

(1) How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_{0}(s)=s+1-2^{-s}$ and $\varphi_{1}(s)=s+1-3^{-s}$ ?

## Open questions and work in progress

(1) How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_{0}(s)=s+1-2^{-s}$ and $\varphi_{1}(s)=s+1-3^{-s}$ ?
(2) Do there exist isolated composition operators on $\mathcal{H}$ ? (true on $H^{2}(\mathbb{D})$ by a result of Berkson)

## Open questions and work in progress

(1) How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_{0}(s)=s+1-2^{-s}$ and $\varphi_{1}(s)=s+1-3^{-s}$ ?
(2) Do there exist isolated composition operators on $\mathcal{H}$ ? (true on $H^{2}(\mathbb{D})$ by a result of Berkson)
(3) Do the compact composition operators form a connected component of $\mathcal{C}(\mathcal{H})$ ? (false in $H^{2}(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)

## Open questions and work in progress

(1) How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_{0}(s)=s+1-2^{-s}$ and $\varphi_{1}(s)=s+1-3^{-s}$ ?
(2) Do there exist isolated composition operators on $\mathcal{H}$ ? (true on $H^{2}(\mathbb{D})$ by a result of Berkson)
(3) Do the compact composition operators form a connected component of $\mathcal{C}(\mathcal{H})$ ? (false in $H^{2}(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)
(9) Can we use these methods to give conditions implying that $C_{\varphi_{0}}-C_{\varphi_{1}}$ is compact?

## Theorem

Let $\varphi_{0}$ and $\varphi_{1} \in \mathcal{G}$ with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right)=0$. Assume that

$$
\left|\varphi_{0}-\varphi_{1}\right|=o\left(\min \left(\frac{\Re e \varphi_{0}-1 / 2}{\left|1+\varphi_{0}\right|^{2}}, \frac{\Re e \varphi_{1}-1 / 2}{\left|1+\varphi_{1}\right|^{2}}\right)\right) \text { as } \Re e(s) \rightarrow 0 .
$$

Then $C_{\varphi_{0}}-C_{\varphi_{1}}$ is compact.

## Theorem

Let $\varphi_{0}$ and $\varphi_{1} \in \mathcal{G}$ with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right)=0$. Assume that

$$
\left|\varphi_{0}-\varphi_{1}\right|=o\left(\min \left(\frac{\Re e \varphi_{0}-1 / 2}{\left|1+\varphi_{0}\right|^{2}}, \frac{\Re e \varphi_{1}-1 / 2}{\left|1+\varphi_{1}\right|^{2}}\right)\right) \text { as } \Re e(s) \rightarrow 0 .
$$

Then $C_{\varphi_{0}}-C_{\varphi_{1}}$ is compact.
What happens for $c_{0} \geq 1$ ? For instance,

## Conjecture

Let $\varphi_{0}, \varphi_{1} \in \mathcal{G}$ be Dirichlet polynomial symbols with $\operatorname{char}\left(\varphi_{0}\right)=\operatorname{char}\left(\varphi_{1}\right) \geq 1$. Assume that $\Gamma\left(\mathcal{B} \psi_{0}\right)=\Gamma\left(\mathcal{B} \psi_{1}\right)$ and that, for all $z \in \Gamma\left(\mathcal{B} \psi_{0}\right)$, there exists $n \in \mathbb{N}$ such that

- $\mathcal{B} \psi_{0}(z)=\mathcal{B} \psi_{1}(z) ;$
- $\varphi_{0}$ and $\varphi_{1}$ have a Dirichlet contact of order $2 n$ at $z$;
- for $|\alpha| \leq 2 n, \partial_{\alpha} \mathcal{B} \psi_{0}(z)=\partial_{\alpha} \mathcal{B} \psi_{1}(z)$.

Then $C_{\varphi_{0}}-C_{\varphi_{1}}$ is compact???

## Advertisement

## C IR M centre international de rencontres mathématiques

## Frontiers of Operator Theory

CIRM (Marseille - Luminy)
29 november - 3 december 2021

See you soon there!

## Thank you!

