On the topological structure of the set of composition operators

F. Bayart - in collaboration with M. Wang and X. Yao

¹Université Clermont Auvergne

Dirichlet series and operator theory

Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

$$\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \|f\|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.$$

Let also $\mathcal G$ be the set of symbols $\varphi:\mathbb C_{1/2}\to\mathbb C_{1/2}$ inducing a bounded composition operator C_φ on $\mathcal H.$

2/23

Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

$$\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \|f\|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.$$

Let also $\mathcal G$ be the set of symbols $\varphi:\mathbb C_{1/2}\to\mathbb C_{1/2}$ inducing a bounded composition operator C_φ on $\mathcal H.$

Recall (Gordon - Hedenmalm) that $\varphi: \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ belongs to \mathcal{G} if and only if $\varphi(s) = c_0 s + \psi(s)$, where c_0 is a non-negative integer (called the *characteristic* of φ , i.e., $\operatorname{char}(\varphi) = c_0$), and $\psi(s) = \sum_{n=1}^{\infty} c_n n^{-s}$ converges uniformly in \mathbb{C}_{ϵ} for every $\epsilon > 0$ and has the following properties:

- (a) If $c_0 = 0$, then $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_{1/2}$.
- (b) If $c_0 \geq 1$, then either $\psi \equiv 0$ or $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_0$.

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

F. Bayart (UCA)

Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

$$\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \|f\|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.$$

Let also $\mathcal G$ be the set of symbols $\varphi:\mathbb C_{1/2}\to\mathbb C_{1/2}$ inducing a bounded composition operator $\mathcal C_\varphi$ on $\mathcal H.$

Recall (Gordon - Hedenmalm) that $\varphi:\mathbb{C}_{1/2}\to\mathbb{C}_{1/2}$ belongs to $\mathcal G$ if and only if $\varphi(s)=c_0s+\psi(s)$, where c_0 is a non-negative integer (called the *characteristic* of φ , i.e., $\operatorname{char}(\varphi)=c_0$), and $\psi(s)=\sum_{n=1}^\infty c_n n^{-s}$ converges uniformly in \mathbb{C}_ϵ for every $\epsilon>0$ and has the following properties:

- (a) If $c_0 = 0$, then $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_{1/2}$.
- (b) If $c_0 \geq 1$, then either $\psi \equiv 0$ or $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_0$.

We shall denote by $\mathcal{C}(\mathcal{H}) = \{C_{\varphi} : \varphi \in \mathcal{G}\} \subset \mathcal{L}(\mathcal{H}).$

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - り 9 (P)

F. Bayart (UCA)

What can be said about the topological structure of $C(\mathcal{H})$?

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $\mathcal{C}(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $\mathcal{C}(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?

First result on the unit disc.

```
Theorem (Shapiro - Sundberg (1990))
```

The set of compact composition operators is an arcwise connected set in $\mathcal{C}(H^2(\mathbb{D}))$.

What can be said about the topological structure of $\mathcal{C}(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $\mathcal{C}(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?

First result on the unit disc.

```
Theorem (Shapiro - Sundberg (1990))
```

The set of compact composition operators is an arcwise connected set in $\mathcal{C}(H^2(\mathbb{D}))$.

The characteristic of a symbol (which is an integer) prevents this result from extending to \mathcal{H} .

The map $\mathcal{C}(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \operatorname{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\operatorname{char}(\varphi_k) \neq \operatorname{char}(\varphi)$ for all k.

The map $\mathcal{C}(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \operatorname{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\operatorname{char}(\varphi_k) \neq \operatorname{char}(\varphi)$ for all k.

First case : $char(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C_{\varphi}^*(K_s) = K_{\varphi(s)}$.

The map $\mathcal{C}(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \operatorname{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\operatorname{char}(\varphi_k) \neq \operatorname{char}(\varphi)$ for all k.

First case : $char(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C_{\varphi}^*(K_s) = K_{\varphi(s)}$. When $\sigma \to +\infty$ one has $\varphi(\sigma) \to c_1$ and $\Re e(\varphi_k(\sigma)) \to +\infty$ for $k \ge 1$.

The map $\mathcal{C}(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \operatorname{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\operatorname{char}(\varphi_k) \neq \operatorname{char}(\varphi)$ for all k.

First case : $char(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C_{\varphi}^*(K_s) = K_{\varphi(s)}$. When $\sigma \to +\infty$ one has $\varphi(\sigma) \to c_1$ and $\Re e(\varphi_k(\sigma)) \to +\infty$ for $k \ge 1$. Hence, $K_{\varphi(\sigma)} \to K_{c_1}$ whereas $K_{\varphi_k(\sigma)} \to 1$. Therefore,

$$\begin{split} \| \textit{C}_{\varphi} - \textit{C}_{\varphi_{k}} \| &= \| \textit{C}_{\varphi}^{*} - \textit{C}_{\varphi_{k}}^{*} \| \\ &\geq \limsup_{\sigma \to +\infty} \| \textit{C}_{\varphi}^{*}(\textit{K}_{\sigma}) - \textit{C}_{\varphi_{k}}^{*}(\textit{K}_{\sigma}) \| / \| \textit{K}_{\sigma} \| \\ &\geq \limsup_{\sigma \to +\infty} \| \textit{K}_{\varphi(\sigma)} - \textit{K}_{\varphi_{k}(\sigma)} \| \\ &> \| \textit{K}_{G} - 1 \| > 0. \end{split}$$

Second case : $\operatorname{char}(\varphi) = c_0 > 0$ and $\operatorname{char}(\varphi_k) > c_0$ for an infinite number of integers k.

Write
$$\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s}$$
. Then

$$2^{-\varphi(s)} = 2^{-c_0s}2^{-c_1}2^{-\sum_{n\geq 2}c_nn^{-s}}$$

Second case : $\operatorname{char}(\varphi) = c_0 > 0$ and $\operatorname{char}(\varphi_k) > c_0$ for an infinite number of integers k.

Write
$$\varphi(s) = c_0 s + c_1 + \sum_{n \ge 2} c_n n^{-s}$$
. Then
$$2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \ge 2} c_n n^{-s}}$$

$$= 2^{-c_0 s} 2^{-c_1} \prod_{n \ge 2} \exp(-c_n n^{-s} \log 2)$$

F. Bayart (UCA)

Write
$$\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s}$$
. Then

$$2^{-\varphi(s)} = 2^{-c_0s} 2^{-c_1} 2^{-\sum_{n\geq 2} c_n n^{-s}}$$

$$= 2^{-c_0s} 2^{-c_1} \prod_{n\geq 2} \exp(-c_n n^{-s} \log 2)$$

$$= 2^{-c_0s} 2^{-c_1} \prod_{n\geq 2} \left(1 + \sum_k d_{k,n} \left(n^k\right)^{-s}\right).$$

In particular, writing $2^{-\varphi(s)} = \sum_{n\geq 1} a_n n^{-s}$, one has $a_{2^j} = 0$ provided $j < c_0$ and $a_{2^{c_0}} = 2^{-c_1}$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

5 / 23

Write
$$\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s}$$
. Then

$$2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \ge 2} c_n n^{-s}}$$

$$= 2^{-c_0 s} 2^{-c_1} \prod_{n \ge 2} \exp(-c_n n^{-s} \log 2)$$

$$= 2^{-c_0 s} 2^{-c_1} \prod_{n \ge 2} \left(1 + \sum_k d_{k,n} \left(n^k\right)^{-s}\right).$$

In particular, writing $2^{-\varphi(s)} = \sum_{n\geq 1} a_n n^{-s}$, one has $a_{2^j} = 0$ provided $j < c_0$ and $a_{2^{c_0}} = 2^{-c_1}$.

Similarly, writing $2^{-\varphi_k(s)} = \sum_{n\geq 1} b_n(k) n^{-s}$, one has $b_{2^{c_0}}(k) = 0$ for those k such that $\operatorname{char}(\varphi_k) > c_0$. This contradicts $b_{2^{c_0}}(k) \to a_{2^{c_0}}$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

F. Bayart (UCA)

Write $\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s}$. Then

$$2^{-\varphi(s)} = 2^{-c_0s} 2^{-c_1} 2^{-\sum_{n\geq 2} c_n n^{-s}}$$

$$= 2^{-c_0s} 2^{-c_1} \prod_{n\geq 2} \exp(-c_n n^{-s} \log 2)$$

$$= 2^{-c_0s} 2^{-c_1} \prod_{n\geq 2} \left(1 + \sum_k d_{k,n} \left(n^k\right)^{-s}\right).$$

In particular, writing $2^{-\varphi(s)} = \sum_{n\geq 1} a_n n^{-s}$, one has $a_{2^j} = 0$ provided $j < c_0$ and $a_{2^{c_0}} = 2^{-c_1}$.

Similarly, writing $2^{-\varphi_k(s)} = \sum_{n\geq 1} b_n(k) n^{-s}$, one has $b_{2^{c_0}}(k) = 0$ for those k such that $\operatorname{char}(\varphi_k) > c_0$. This contradicts $b_{2^{c_0}}(k) \to a_{2^{c_0}}$.

Third case : $char(\varphi) = c_0 > 0$ and $char(\varphi_k) < c_0$ for all k.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

5 / 23

F. Bayart (UCA) Topological structure Oslo, June 2021

With a fixed characteristic

Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

lacksquare \mathbb{T}^{∞} can be identified with the dual group of (\mathbb{Q}_+,\cdot) by

$$z \in \mathbb{T}^{\infty} \mapsto \chi_z, \ \chi_z(2) = z_1, \ \chi_z(3) = z_2, \ \ldots, \ \chi_z(p_m) = z_m.$$

7/23

 $\mbox{\bf 0}\mbox{\bf \ }\mathbb{T}^{\infty}$ can be identified with the dual group of $\left(\mathbb{Q}_{+},\cdot\right)$ by

$$z \in \mathbb{T}^{\infty} \mapsto \chi_z, \ \chi_z(2) = z_1, \ \chi_z(3) = z_2, \ \ldots, \ \chi_z(p_m) = z_m.$$

② For $\chi \in \mathbb{T}^{\infty}$ and $f = \sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s) = \sum_{n} a_{n} \chi(n) n^{-s}$.

 ${\bf 0}\ {\mathbb T}^\infty$ can be identified with the dual group of $({\mathbb Q}_+,\cdot)$ by

$$z \in \mathbb{T}^{\infty} \mapsto \chi_z, \ \chi_z(2) = z_1, \ \chi_z(3) = z_2, \ \ldots, \ \chi_z(p_m) = z_m.$$

② For $\chi \in \mathbb{T}^{\infty}$ and $f = \sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s) = \sum_{n} a_{n} \chi(n) n^{-s}$.

Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $(\tau_k) \subset \mathbb{R}$, $f(\cdot + i\tau_k) \to F$ uniformly on compact subsets of $\mathbb{C}_{1/2}$.
- There exists $\chi \in \mathbb{T}^{\infty}$, $F = f_{\chi}$.

 $\ \, \P^\infty$ can be identified with the dual group of $\left(\mathbb Q_+,\cdot\right)$ by

$$z \in \mathbb{T}^{\infty} \mapsto \chi_z, \ \chi_z(2) = z_1, \ \chi_z(3) = z_2, \ \ldots, \ \chi_z(p_m) = z_m.$$

② For $\chi \in \mathbb{T}^{\infty}$ and $f = \sum_{n} a_{n} n^{-s} \in \mathcal{H}$, define $f_{\chi}(s) = \sum_{n} a_{n} \chi(n) n^{-s}$.

Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $(\tau_k) \subset \mathbb{R}$, $f(\cdot + i\tau_k) \to F$ uniformly on compact subsets of $\mathbb{C}_{1/2}$.
- There exists $\chi \in \mathbb{T}^{\infty}$, $F = f_{\chi}$.
- **③** Let $f \in \mathcal{H}$. For almost all $\chi \in \mathbb{T}^{\infty}$, f_{χ} converges in \mathbb{C}_{0} , $f_{\chi}(it) = \lim_{\sigma \to 0} f_{\chi}(\sigma + it)$ exists for almost all $t \in \mathbb{R}$ and

$$||f||^2 = \int_{\mathbb{T}^{\infty}} \int_{\mathbb{P}} |f_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

F. Bayart (UCA)

 $\text{ Let } f \in \mathcal{H}, \ \varphi = c_0 s + \psi \in \mathcal{G}. \ \text{Define } \varphi_\chi = c_0 s + \psi_\chi. \ \text{Then}$ $(f \circ \varphi)_\chi = f_{\chi^{c_0}} \circ \varphi_\chi.$

8 / 23

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H} .

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H} . Define $\varphi_{\lambda} = c_0 s + (1 - \lambda)\psi_0 + \lambda\psi_1$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H} . Define $\varphi_{\lambda} = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\omega_{\lambda}}$ compact? Fix $f \in \mathcal{H}$ and let us estimate $||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda,l}}(f)||$.

$$\|C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)\|^{2} \leq \int \int |(f \circ \varphi_{\lambda})_{\chi}(it) - (f \circ \varphi_{\lambda'})_{\chi}(it)|^{2} d\mu(t) dm(\chi)$$

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H} . Define $\varphi_{\lambda} = c_0 s + (1 - \lambda)\psi_0 + \lambda\psi_1$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\varphi_{\lambda}}$ compact?

Fix $f \in \mathcal{H}$ and let us estimate $\|C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)\|$.

$$||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)||^{2} \leq \iint |(f \circ \varphi_{\lambda})_{\chi}(it) - (f \circ \varphi_{\lambda'})_{\chi}(it)|^{2} d\mu(t) dm(\chi)$$

$$\leq \iint |f_{\chi^{c_{0}}} \circ (\varphi_{\lambda})_{\chi}(it) - f_{\chi^{c_{0}}} \circ (\varphi_{\lambda'})_{\chi}(it)|^{2} d\mu dm.$$

F. Bayart (UCA)

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H} . Define $\varphi_{\lambda} = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Is the map $\lambda \mapsto C_{\varphi_{\lambda}} \in \mathcal{C}(\mathcal{H})$ continuous? Is each $C_{\omega_{\lambda}}$ compact?

Fix $f \in \mathcal{H}$ and let us estimate $||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda,l}}(f)||$.

$$||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)||^{2} \leq \iint |(f \circ \varphi_{\lambda})_{\chi}(it) - (f \circ \varphi_{\lambda'})_{\chi}(it)|^{2} d\mu(t) dm(\chi)$$

$$\leq \iint |f_{\chi^{c_{0}}} \circ (\varphi_{\lambda})_{\chi}(it) - f_{\chi^{c_{0}}} \circ (\varphi_{\lambda'})_{\chi}(it)|^{2} d\mu dm.$$

Assume that $\varphi_0(\mathbb{C}_+)$, $\varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some a > 1/2. Then $(\varphi_{\lambda})_{\gamma}(it) \in \overline{\mathbb{C}_a}$ for all χ and all λ so that

$$|f_{\chi^{c_0}}\circ(\varphi_\lambda)_\chi(it)-f_{\chi^{c_0}}\circ(\varphi_{\lambda'})_\chi(it)|^2\leq C_a\|f\|^2|(\varphi_\lambda)_\chi(it)-(\varphi_{\lambda'})_\chi(it)|^2.$$

Recall that
$$\varphi_{\lambda} = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$$
. Then

$$(\varphi_{\lambda})_{\chi}(it) - (\varphi_{\lambda'})_{\chi}(it) = (\lambda - \lambda') ((\psi_0)_{\chi}(it) - (\psi_1)_{\chi}(it)).$$

F. Bayart (UCA)

Topological structure

Oslo, June 2021

10 / 23

Recall that $\varphi_{\lambda} = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Then

$$(\varphi_{\lambda})_{\chi}(it) - (\varphi_{\lambda'})_{\chi}(it) = (\lambda - \lambda')((\psi_0)_{\chi}(it) - (\psi_1)_{\chi}(it)).$$

Therefore,

$$\|C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)\|^{2} \leq C_{a}|\lambda - \lambda'|^{2}\|f\|^{2} \int \int |(\psi_{0})_{\chi}(it) - (\psi_{1})_{\chi}(it)|^{2} d\mu dm.$$

F. Bayart (UCA) Topological structure

10 / 23

Recall that $\varphi_{\lambda} = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Then

$$(\varphi_{\lambda})_{\chi}(it) - (\varphi_{\lambda'})_{\chi}(it) = (\lambda - \lambda') ((\psi_0)_{\chi}(it) - (\psi_1)_{\chi}(it)).$$

Therefore,

$$\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda'}}(f)\|^2\leq C_{\mathsf{a}}|\lambda-\lambda'|^2\|f\|^2\int\int |(\psi_0)_{\chi}(it)-(\psi_1)_{\chi}(it)|^2d\mu dm.$$

If $|\psi_0|$ and $|\psi_1|$ are bounded, we finally find

$$||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)||^2 \le M|\lambda - \lambda'|^2 \cdot ||f||^2.$$

10 / 23

F. Bayart (UCA) Topological structure Oslo, June 2021

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0=c_0s+\psi_0$ and $\varphi_1=c_0s+\psi_1$ are such that

- $\varphi_0(\mathbb{C}_+), \ \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some a > 1/2;
- ψ_0 , ψ_1 are bounded

then there is a continuous arc of compact composition operators between C_{φ_0} and C_{φ_1} .

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0=c_0s+\psi_0$ and $\varphi_1=c_0s+\psi_1$ are such that

- $\varphi_0(\mathbb{C}_+), \ \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some a > 1/2;
- ψ_0 , ψ_1 are bounded

then there is a continuous arc of compact composition operators between C_{φ_0} and C_{φ_1} .

Let φ inducing a compact composition operator. Find a continuous arc of compact composition operators between C_{φ} and $C_{\tilde{\varphi}}$ where $\tilde{\varphi}$ satisfies the above assumptions.

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators wich characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0=c_0s+\psi_0$ and $\varphi_1=c_0s+\psi_1$ are such that

- $\varphi_0(\mathbb{C}_+), \ \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some a > 1/2;
- ψ_0 , ψ_1 are bounded

then there is a continuous arc of compact composition operators between C_{φ_0} and C_{φ_1} .

Let φ inducing a compact composition operator. Find a continuous arc of compact composition operators between C_{φ} and $C_{\tilde{\varphi}}$ where $\tilde{\varphi}$ satisfies the above assumptions.

Consider for $\sigma \in [0,1]$, $\varphi_{\sigma} = \varphi(\cdot + \sigma)$. Then φ_1 satisfies the above assumptions. Is the map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ continuous?

Let $\varphi \in \mathcal{G}$ such that C_{φ} is compact and let $\varphi_{\sigma} = \varphi(\cdot + \sigma)$.

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

F. Bayart (UCA) Topological structure

12 / 23

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_{\sigma}(f) = f(\cdot + \sigma)$, so that $C_{\varphi_{\sigma}} = T_{\sigma} \circ C_{\varphi}$. Now,

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_{\sigma}(f) = f(\cdot + \sigma)$, so that $C_{\varphi_{\sigma}} = T_{\sigma} \circ C_{\varphi}$. Now,

 $\bullet \ \, \text{For a fixed} \,\, g \in \mathcal{H}, \,\, T_{\sigma}(g) \to T_{\sigma_0}(g) \,\, \text{as} \,\, \sigma \to \sigma_0.$

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_{\sigma}(f) = f(\cdot + \sigma)$, so that $C_{\varphi_{\sigma}} = T_{\sigma} \circ C_{\varphi}$. Now,

- **1** For a fixed $g \in \mathcal{H}$, $T_{\sigma}(g) \to T_{\sigma_0}(g)$ as $\sigma \to \sigma_0$.
- **2** The family $\{T_{\sigma}: \sigma \in [0,1]\}$ is equicontinuous.

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_{\sigma}(f) = f(\cdot + \sigma)$, so that $C_{\varphi_{\sigma}} = T_{\sigma} \circ C_{\varphi}$. Now,

- **1** For a fixed $g \in \mathcal{H}$, $T_{\sigma}(g) \to T_{\sigma_0}(g)$ as $\sigma \to \sigma_0$.
- **2** The family $\{T_{\sigma}: \ \sigma \in [0,1]\}$ is equicontinuous.
- **3** The set $\{C_{\omega}(f): ||f|| \leq 1\}$ has compact closure.

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Lemma

The map $\sigma \in [0,1] \mapsto C_{\varphi_{\sigma}}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_{\sigma}(f) = f(\cdot + \sigma)$, so that $C_{\varphi_{\sigma}} = T_{\sigma} \circ C_{\varphi}$. Now,

- For a fixed $g \in \mathcal{H}$, $T_{\sigma}(g) \to T_{\sigma_0}(g)$ as $\sigma \to \sigma_0$.
- **2** The family $\{T_{\sigma}: \ \sigma \in [0,1]\}$ is equicontinuous.
- **3** The set $\{C_{\omega}(f): ||f|| \leq 1\}$ has compact closure.

The lemma follows from a (standard) compactness argument.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Two general statements

Theorem (Positive characteristic)

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) =: c_0 \ge 1$ and write them $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 s + \psi_1$. Assume moreover that there exists C > 0 such that

- $|\varphi_0 \varphi_1| \leq C \min(\Re e \varphi_0, \Re e \varphi_1);$
- $|\psi_0|$, $|\psi_1| \leq C$;
- $|\psi_0'|$, $|\psi_1'| \leq C$.

Then C_{φ_0} and C_{φ_1} belong to the same component of $\mathcal{C}(\mathcal{H})$.

Two general statements

Theorem (Positive characteristic)

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) =: c_0 \ge 1$ and write them $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 s + \psi_1$. Assume moreover that there exists C > 0 such that

- $|\varphi_0 \varphi_1| \leq C \min(\Re e \varphi_0, \Re e \varphi_1);$
- $|\psi_0|$, $|\psi_1| \leq C$;
- $|\psi_0'|$, $|\psi_1'| \leq C$.

Then C_{φ_0} and C_{φ_1} belong to the same component of $\mathcal{C}(\mathcal{H})$.

Theorem (Zero characteristic)

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) = 0$. Assume that there exists C > 0 such that $|\varphi_0 - \varphi_1| \leq C \min\left(\frac{\Re e \varphi_0 - 1/2}{|1 + \varphi_0|^2}, \frac{\Re e \varphi_1 - 1/2}{|1 + \varphi_1|^2}\right)$. Then C_{φ_0} and C_{φ_1} belong to the same component of $\mathcal{C}(\mathcal{H})$.

Idea for the proof

Let φ_0 , $\varphi_1 \in \mathcal{G}$. As before, define $\varphi_{\lambda} = (1 - \lambda)\varphi_0 + \lambda \varphi_1$. Write

$$\|C_{\varphi_{\lambda}}(f)-C_{\varphi_{\lambda'}}(f)\|^2\leq \int\int |f_{\chi^{c_0}}((\varphi_{\lambda})_{\chi}(it))-f_{\chi^{c_0}}((\varphi_{\lambda'})_{\chi}(it))|^2d\mu dm.$$

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Idea for the proof

Let φ_0 , $\varphi_1 \in \mathcal{G}$. As before, define $\varphi_{\lambda} = (1 - \lambda)\varphi_0 + \lambda \varphi_1$. Write

$$\|\mathit{C}_{\varphi_{\lambda}}(f) - \mathit{C}_{\varphi_{\lambda'}}(f)\|^{2} \leq \int\!\!\int |\mathit{f}_{\chi^{c_{0}}}((\varphi_{\lambda})_{\chi}(it)) - \mathit{f}_{\chi^{c_{0}}}((\varphi_{\lambda'})_{\chi}(it))|^{2} d\mu dm.$$

Observe that

$$f_{\chi^{c_0}}((\varphi_{\lambda})_{\chi}(it)) - f_{\chi^{c_0}}((\varphi_{\lambda'})_{\chi}(it)) = ((\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)) \times \int_{\lambda}^{\lambda'} f'_{\chi^{c_0}}((\varphi_r)_{\chi}(it)) dr$$

Idea for the proof

Let φ_0 , $\varphi_1 \in \mathcal{G}$. As before, define $\varphi_{\lambda} = (1 - \lambda)\varphi_0 + \lambda \varphi_1$. Write

$$\|C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)\|^2 \leq \int \int |f_{\chi^{c_0}}((\varphi_{\lambda})_{\chi}(it)) - f_{\chi^{c_0}}((\varphi_{\lambda'})_{\chi}(it))|^2 d\mu dm.$$

Observe that

$$f_{\chi^{c_0}}((\varphi_{\lambda})_{\chi}(it)) - f_{\chi^{c_0}}((\varphi_{\lambda'})_{\chi}(it)) = ((\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)) \times \int_{\lambda}^{\lambda'} f'_{\chi^{c_0}}((\varphi_r)_{\chi}(it)) dr$$

By Jensen's inequality,

$$||C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda'}}(f)||^{2} \leq |\lambda' - \lambda|^{2} \int_{\lambda}^{\lambda'} \int_{\mathbb{T}^{\infty}} \int_{\mathbb{R}} |(\varphi_{1})_{\chi}(it) - (\varphi_{0})_{\chi}(it)|^{2} \times |f'_{\chi^{c_{0}}}((\varphi_{r})_{\chi}(it))|^{2} d\mu(t) dm(\chi) dr.$$

Therefore, it suffices to show that there exists $C \ge 1$ such that, for all $r \in [0,1]$,

$$\int\!\!\int |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(f'\circ\varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C\int\!\!\int |f_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Therefore, it suffices to show that there exists $C \ge 1$ such that, for all $r \in [0,1]$,

$$\int\!\!\int |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(\mathbf{f'} \circ \varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C \int\!\!\int |\mathbf{f}_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Therefore, it suffices to show that there exists C > 1 such that, for all $r \in [0, 1],$

$$\int\!\!\int |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(\mathbf{f'} \circ \varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C \int\!\!\int |\mathbf{f}_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

One wants to prove that

$$\|(\varphi_1-\varphi_0)C_{\varphi_r}(\mathbf{f'})\|_{\mathcal{H}}\leq C\|\mathbf{f}\|_{\mathcal{H}}.$$

15/23

F. Bayart (UCA) Topological structure Therefore, it suffices to show that there exists $C \ge 1$ such that, for all $r \in [0,1]$,

$$\iint |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(\mathbf{f'} \circ \varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C \iint |\mathbf{f}_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

One wants to prove that

$$\|(\varphi_1-\varphi_0)C_{\varphi_r}(\mathbf{f'})\|_{\mathcal{H}}\leq C\|\mathbf{f}\|_{\mathcal{H}}.$$

$$\mathcal{A} = \left\{ f = \sum_{n} a_n n^{-s} : \|f\|_{\mathcal{A}}^2 := \int_{\mathbb{T}^{\infty}} \int_{\mathbb{R}} \int_{0}^{1} |f_{\chi}(s)|^2 \sigma d\sigma d\mu dm < +\infty \right\}.$$

Lemma

$$f \in \mathcal{H} \iff f' \in \mathcal{A}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Therefore, it suffices to show that there exists $C \ge 1$ such that, for all $r \in [0,1]$,

$$\iint |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(\mathbf{f'} \circ \varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C \iint |\mathbf{f}_{\chi}(it)|^2 d\mu(t) dm(\chi).$$

One wants to prove that

$$\|(\varphi_1-\varphi_0)C_{\varphi_r}(\mathbf{f'})\|_{\mathcal{H}}\leq C\|\mathbf{f}\|_{\mathcal{H}}.$$

$$\mathcal{A} = \left\{ f = \textstyle \sum_n a_n n^{-s} : \ \|f\|_{\mathcal{A}}^2 := \int_{\mathbb{T}^\infty} \int_{\mathbb{R}} \int_0^1 |f_\chi(s)|^2 \sigma d\sigma d\mu dm < +\infty \right\}.$$

Lemma

$$f \in \mathcal{H} \iff f' \in \mathcal{A}$$
.

Therefore, it suffices to prove that

$$\|(\varphi_1-\varphi_0)C_{\varphi_r}(f')\|_{\mathcal{H}}\leq C\|f'\|_{\mathcal{A}}.$$

15 / 23

F. Bayart (UCA) Topological structure Oslo, June 2021

Let $w : \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $wC_{\varphi} : f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H} ?

Let $w: \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w\mathcal{C}_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H} ?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.

Let $w: \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w\mathcal{C}_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H} ?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.

Two different proofs:

• For $c_0 = 0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.

Let $w: \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w\mathcal{C}_{\varphi}: f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H} ?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.

Two different proofs:

- For $c_0 = 0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.
- For $c_0 \ge 1$, we work directly with Dirichlet series in \mathcal{A} and in \mathcal{H} and use some Nevanlinna counting functions.

Let $(q_j)_{j=1,\dots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$

Let $(q_j)_{j=1,\dots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$ For $\delta>0$ sufficiently small, define

$$arphi_1 = c_0 s + c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} \right)^2.$$

 C_{φ_0} and C_{φ_1} are in the same component.

Let $(q_j)_{j=1,\dots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$ For $\delta>0$ sufficiently small, define

$$arphi_1 = c_0 s + c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s}
ight)^2.$$

 C_{φ_0} and C_{φ_1} are in the same component. Moreover, if φ_0 has unrestricted range then :

• C_{φ_0} is not compact

17 / 23

F. Bayart (UCA) Topological structure Oslo, June 2021

Let $(q_j)_{j=1,\ldots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$ For $\delta>0$ sufficiently small, define

$$arphi_1 = c_0 s + c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} \right)^2.$$

 C_{φ_0} and C_{φ_1} are in the same component. Moreover, if φ_0 has unrestricted range then :

- C_{φ_0} is not compact
- C_{φ_1} is not compact

17 / 23

F. Bayart (UCA) Topological structure Oslo, June 2021

Let $(q_j)_{j=1,\dots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$ For $\delta>0$ sufficiently small, define

$$arphi_1 = c_0 s + c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} \right)^2.$$

 C_{φ_0} and C_{φ_1} are in the same component. Moreover, if φ_0 has unrestricted range then :

- C_{φ_0} is not compact
- C_{φ_1} is not compact
- $C_{\varphi_1} C_{\varphi_0}$ is not compact.

Let $(q_j)_{j=1,\ldots,d}$ be multiplicatively independent positive integers and let $\varphi_0=c_0s+c_1+\sum_{j=1}^d c_{q_j}q_j^{-s}\in\mathcal{G},\ c_0\geq 1.$ For $\delta>0$ sufficiently small, define

$$arphi_1 = c_0 s + c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j} q_j^{-s} \right)^2.$$

 C_{φ_0} and C_{φ_1} are in the same component. Moreover, if φ_0 has unrestricted range then :

- C_{φ_0} is not compact
- C_{ω_1} is not compact
- $C_{\varphi_1} C_{\varphi_0}$ is not compact.

This disproves a conjecture of Shapiro and Sundberg in this setting (already disproved on $H^2(\mathbb{D})$ by Bourdon and by Moorhouse and Tonge).

Application 2: coefficients of the Bohr lift

Let $\varphi(s) = c_0 s + \psi(s) \in \mathcal{G}$, $\psi(s) = \sum_{n=1}^{N} c_n n^{-s}$ be a Dirichlet polynomial symbol with $c_0 \geq 1$. Define the Bohr lift $\mathcal{B}\psi$ of ψ by

$$\mathcal{B}\psi(z) = \sum_{n=p_1^{\alpha_1}\cdots p_d^{\alpha_d}=1}^{N} c_n z_1^{\alpha_1}\cdots z_d^{\alpha_d}.$$

Then $\mathcal{B}\psi$ maps \mathbb{D}^d into \mathbb{C}_+ .

Application 2: coefficients of the Bohr lift

Let $\varphi(s) = c_0 s + \psi(s) \in \mathcal{G}$, $\psi(s) = \sum_{n=1}^{N} c_n n^{-s}$ be a Dirichlet polynomial symbol with $c_0 \geq 1$. Define the Bohr lift $\mathcal{B}\psi$ of ψ by

$$\mathcal{B}\psi(z) = \sum_{n=p_1^{\alpha_1}\cdots p_d^{\alpha_d}=1}^{N} c_n z_1^{\alpha_1}\cdots z_d^{\alpha_d}.$$

Then $\mathcal{B}\psi$ maps \mathbb{D}^d into \mathbb{C}_+ .

Let $\Gamma(\mathcal{B}\psi) = \{z \in \mathbb{T}^d : \Re e(\mathcal{B}\psi(z)) = 0\}.$

Definition

Let $z \in \Gamma(\mathcal{B}\psi)$. We say that φ has Dirichlet contact of order n at z if there exists a neighbourhood \mathcal{U} of z in \mathbb{T}^d such that, for all $w \in \mathcal{U}$,

$$|\Im m(\mathcal{B}_{\psi}(w)-\mathcal{B}_{\psi}(z))|^{2n}\lesssim \Re e(\mathcal{B}_{\psi}(w)).$$

F. Bayart (UCA)

Topological structure

Oslo, June 2021

Coefficients of the Bohr lift

Corollary

Let $\varphi_0, \varphi_1 \in \mathcal{G}$ be Dirichlet polynomial symbols with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) \geq 1$. Assume that $\Gamma(\mathcal{B}\psi_0) = \Gamma(\mathcal{B}\psi_1)$ and that, for all $z \in \Gamma(\mathcal{B}\psi_0)$, there exists $n \in \mathbb{N}$ such that

- $\mathcal{B}\psi_0(z) = \mathcal{B}\psi_1(z)$;
- φ_0 and φ_1 have a Dirichlet contact of order 2n at z;
- for $|\alpha| \leq 2n-1$, $\partial_{\alpha} \mathcal{B} \psi_0(z) = \partial_{\alpha} \mathcal{B} \psi_1(z)$.

Then C_{φ_0} and C_{φ_1} belong to the same component of $\mathcal{C}(\mathcal{H})$.

• How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 - 2^{-s}$ and $\varphi_1(s) = s + 1 - 3^{-s}$?

- How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 2^{-s}$ and $\varphi_1(s) = s + 1 3^{-s}$?
- ② Do there exist isolated composition operators on \mathcal{H} ? (true on $H^2(\mathbb{D})$ by a result of Berkson)

- How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 2^{-s}$ and $\varphi_1(s) = s + 1 3^{-s}$?
- ② Do there exist isolated composition operators on \mathcal{H} ? (true on $H^2(\mathbb{D})$ by a result of Berkson)
- **3** Do the compact composition operators form a connected component of $\mathcal{C}(\mathcal{H})$? (false in $H^2(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)

- How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 2^{-s}$ and $\varphi_1(s) = s + 1 3^{-s}$?
- ② Do there exist isolated composition operators on \mathcal{H} ? (true on $H^2(\mathbb{D})$ by a result of Berkson)
- **3** Do the compact composition operators form a connected component of $\mathcal{C}(\mathcal{H})$? (false in $H^2(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)
- **4** Can we use these methods to give conditions implying that $C_{\varphi_0}-C_{\varphi_1}$ is compact?

Theorem

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) = 0$. Assume that

$$|\varphi_0-\varphi_1|=o\left(\min\left(\frac{\Re e\varphi_0-1/2}{|1+\varphi_0|^2},\frac{\Re e\varphi_1-1/2}{|1+\varphi_1|^2}\right)\right)\ as\ \Re e(s)\to 0.$$

Then $C_{\varphi_0} - C_{\varphi_1}$ is compact.

F. Bayart (UCA)

Topological structure

Oslo, June 2021

21 / 23

Theorem

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) = 0$. Assume that

$$|\varphi_0-\varphi_1|=o\left(\min\left(\frac{\Re e\varphi_0-1/2}{|1+\varphi_0|^2},\frac{\Re e\varphi_1-1/2}{|1+\varphi_1|^2}\right)\right)\ as\ \Re e(\mathfrak{s})\to 0.$$

Then $C_{\varphi_0} - C_{\varphi_1}$ is compact.

What happens for $c_0 \ge 1$? For instance,

Conjecture

Let $\varphi_0, \varphi_1 \in \mathcal{G}$ be Dirichlet polynomial symbols with $\operatorname{char}(\varphi_0) = \operatorname{char}(\varphi_1) \geq 1$. Assume that $\Gamma(\mathcal{B}\psi_0) = \Gamma(\mathcal{B}\psi_1)$ and that, for all $z \in \Gamma(\mathcal{B}\psi_0)$, there exists $n \in \mathbb{N}$ such that

- $\mathcal{B}\psi_0(z) = \mathcal{B}\psi_1(z)$;
- φ_0 and φ_1 have a Dirichlet contact of order 2n at z;
- for $|\alpha| \leq 2n$, $\partial_{\alpha} \mathcal{B} \psi_0(z) = \partial_{\alpha} \mathcal{B} \psi_1(z)$.

Then $C_{\varphi_0} - C_{\varphi_1}$ is compact???

Advertisement

FRONTIERS OF OPERATOR THEORY

CIRM (Marseille - Luminy) 29 november - 3 december 2021

See you soon there!

Thank you!