On the topological structure of the set of composition operators

F. Bayart - in collaboration with M. Wang and X. Yao

\(^1\)Université Clermont Auvergne

Dirichlet series and operator theory
Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

$$
\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \|f\|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.
$$

Let also \mathcal{G} be the set of symbols $\varphi : \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ inducing a bounded composition operator C_φ on \mathcal{H}.
Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

$$\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \|f\|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.$$

Let also \mathcal{G} be the set of symbols $\varphi : \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ inducing a bounded composition operator C_φ on \mathcal{H}.

Recall (Gordon - Hedenmalm) that $\varphi : \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ belongs to \mathcal{G} if and only if $\varphi(s) = c_0 s + \psi(s)$, where c_0 is a non-negative integer (called the characteristic of φ, i.e., $\text{char}(\varphi) = c_0$), and $\psi(s) = \sum_{n=1}^{\infty} c_n n^{-s}$ converges uniformly in \mathbb{C}_ϵ for every $\epsilon > 0$ and has the following properties:

(a) If $c_0 = 0$, then $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_{1/2}$.
(b) If $c_0 \geq 1$, then either $\psi \equiv 0$ or $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_0$.
Let \mathcal{H} be the (Hilbert) Hardy space of Dirichlet series:

\[
\mathcal{H} = \left\{ \sum_{n \geq 1} a_n n^{-s} : \| f \|_{\mathcal{H}}^2 = \sum_{n \geq 1} |a_n|^2 < +\infty \right\}.
\]

Let also \mathcal{G} be the set of symbols $\varphi : \mathbb{C}_{1/2} \rightarrow \mathbb{C}_{1/2}$ inducing a bounded composition operator C_φ on \mathcal{H}.

Recall (Gordon - Hedenmalm) that $\varphi : \mathbb{C}_{1/2} \rightarrow \mathbb{C}_{1/2}$ belongs to \mathcal{G} if and only if $\varphi(s) = c_0 s + \psi(s)$, where c_0 is a non-negative integer (called the characteristic of φ, i.e., $\text{char}(\varphi) = c_0$), and $\psi(s) = \sum_{n=1}^{\infty} c_n n^{-s}$ converges uniformly in \mathbb{C}_ϵ for every $\epsilon > 0$ and has the following properties:

(a) If $c_0 = 0$, then $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_{1/2}$.

(b) If $c_0 \geq 1$, then either $\psi \equiv 0$ or $\psi(\mathbb{C}_0) \subseteq \mathbb{C}_0$.

We shall denote by $\mathcal{C}(\mathcal{H}) = \{ C_\varphi : \varphi \in \mathcal{G} \} \subset \mathcal{L}(\mathcal{H})$.
Main question for this talk

What can be said about the topological structure of $C(\mathcal{H})$?

First result on the unit disc.
Theorem (Shapiro - Sundberg (1990))
The set of compact composition operators is an arcwise connected set in $C(\mathcal{H}_2(D))$.

The characteristic of a symbol (which is an integer) prevents this result from extending to \mathcal{H}.
Main question for this talk

What can be said about the topological structure of $C(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $C(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?
Main question for this talk

What can be said about the topological structure of $C(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $C(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?

First result on the unit disc.

Theorem (Shapiro - Sundberg (1990))

*The set of compact composition operators is an arcwise connected set in $C(H^2(\mathbb{D}))$.***
What can be said about the topological structure of $C(\mathcal{H})$? In particular,

- When do two composition operators C_{φ_1} and C_{φ_2} belong to the same component of $C(\mathcal{H})$?
- When are two composition operators C_{φ_1} and C_{φ_2} equal modulo some compact operator?

First result on the unit disc.

Theorem (Shapiro - Sundberg (1990))

*The set of compact composition operators is an arcwise connected set in $C(H^2(\mathbb{D}))$.***

The characteristic of a symbol (which is an integer) prevents this result from extending to \mathcal{H}.
Proposition

The map $\mathcal{C}(\mathcal{H}) \to \mathbb{N}_0$, $\phi \mapsto \text{char}(\phi)$ is continuous.

Proof.

Let $(\phi_k)_k$, $\phi \in \mathcal{G}$ such that $C_{\phi_k} \to C_{\phi}$ and assume that $\text{char}(\phi_k) \neq \text{char}(\phi)$ for all k.
Proposition

The map $C(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \text{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\text{char}(\varphi_k) \neq \text{char}(\varphi)$ for all k.

First case : $\text{char}(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C_{\varphi}^*(K_s) = K_{\varphi(s)}$.

Proposition

The map $\mathcal{C}(\mathcal{H}) \rightarrow \mathbb{N}_0$, $\varphi \mapsto \text{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \rightarrow C_\varphi$ and assume that $\text{char}(\varphi_k) \neq \text{char}(\varphi)$ for all k.

First case: $\text{char}(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C^*_\varphi(K_s) = K_{\varphi(s)}$.

When $\sigma \rightarrow +\infty$ one has $\varphi(\sigma) \rightarrow c_1$ and $\Re(\varphi_k(\sigma)) \rightarrow +\infty$ for $k \geq 1$.
Proposition

The map $C(\mathcal{H}) \to \mathbb{N}_0$, $\varphi \mapsto \text{char}(\varphi)$ is continuous.

Proof.

Let $(\varphi_k)_k$, $\varphi \in \mathcal{G}$ such that $C_{\varphi_k} \to C_{\varphi}$ and assume that $\text{char}(\varphi_k) \neq \text{char}(\varphi)$ for all k.

First case: $\text{char}(\varphi) = 0$.

Let K_s be the reproducing kernel at $s \in \mathbb{C}_{1/2}$. Then $C^*_\varphi(K_s) = K_{\varphi(s)}$.

When $\sigma \to +\infty$ one has $\varphi(\sigma) \to c_1$ and $\Re(\varphi_k(\sigma)) \to +\infty$ for $k \geq 1$.

Hence, $K_{\varphi(\sigma)} \to K_{c_1}$ whereas $K_{\varphi_k(\sigma)} \to 1$. Therefore,

$$
\| C_{\varphi} - C_{\varphi_k} \| = \| C^*_\varphi - C^*_\varphi_k \|
\geq \limsup_{\sigma \to +\infty} \| C^*_\varphi(K_\sigma) - C^*_\varphi_k(K_\sigma) \| / \| K_\sigma \|
\geq \limsup_{\sigma \to +\infty} \| K_{\varphi(\sigma)} - K_{\varphi_k(\sigma)} \|
\geq \| K_{c_1} - 1 \| > 0.
$$
Second case: $\text{char}(\varphi) = c_0 > 0$ and $\text{char}(\varphi_k) > c_0$ for an infinite number of integers k.
Second case: \(\text{char}(\varphi) = c_0 > 0 \) and \(\text{char}(\varphi_k) > c_0 \) for an infinite number of integers \(k \).

Write \(\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s} \). Then

\[
2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \geq 2} c_n n^{-s}}
\]
Second case: \(\text{char}(\varphi) = c_0 > 0 \) and \(\text{char}(\varphi_k) > c_0 \) for an infinite number of integers \(k \).

Write \(\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s} \). Then

\[
2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \geq 2} c_n n^{-s}} \\
= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \exp(-c_n n^{-s} \log 2)
\]
Second case: \(\text{char}\left(\varphi\right) = c_0 > 0 \) and \(\text{char}\left(\varphi_k\right) > c_0 \) for an infinite number of integers \(k \).

Write \(\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s} \). Then

\[
2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \geq 2} c_n n^{-s}}
= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \exp(-c_n n^{-s} \log 2)
= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \left(1 + \sum_{k} d_{k,n} \left(n^k\right)^{-s}\right).
\]

In particular, writing \(2^{-\varphi(s)} = \sum_{n \geq 1} a_n n^{-s} \), one has \(a_{2j} = 0 \) provided \(j < c_0 \) and \(a_{2c_0} = 2^{-c_1} \).
Second case: $\text{char}(\varphi) = c_0 > 0$ and $\text{char}(\varphi_k) > c_0$ for an infinite number of integers k. Write $\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s}$. Then

$$2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \geq 2} c_n n^{-s}}$$

$$= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \exp(-c_n n^{-s} \log 2)$$

$$= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \left(1 + \sum_k d_{k,n} (n^k)^{-s}\right).$$

In particular, writing $2^{-\varphi(s)} = \sum_{n \geq 1} a_n n^{-s}$, one has $a_{2j} = 0$ provided $j < c_0$ and $a_{2c_0} = 2^{-c_1}$.

Similarly, writing $2^{-\varphi_k(s)} = \sum_{n \geq 1} b_n(k) n^{-s}$, one has $b_{2c_0}(k) = 0$ for those k such that $\text{char}(\varphi_k) > c_0$. This contradicts $b_{2c_0}(k) \to a_{2c_0}$.
Second case: \(\text{char}(\varphi) = c_0 > 0 \) and \(\text{char}(\varphi_k) > c_0 \) for an infinite number of integers \(k \).

Write \(\varphi(s) = c_0 s + c_1 + \sum_{n \geq 2} c_n n^{-s} \). Then

\[
2^{-\varphi(s)} = 2^{-c_0 s} 2^{-c_1} 2^{-\sum_{n \geq 2} c_n n^{-s}} \\
= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \exp(-c_n n^{-s} \log 2) \\
= 2^{-c_0 s} 2^{-c_1} \prod_{n \geq 2} \left(1 + \sum_{k} d_{k,n} \left(n^k\right)^{-s}\right).
\]

In particular, writing \(2^{-\varphi(s)} = \sum_{n \geq 1} a_n n^{-s} \), one has \(a_{2j} = 0 \) provided \(j < c_0 \) and \(a_{2c_0} = 2^{-c_1} \).

Similarly, writing \(2^{-\varphi_k(s)} = \sum_{n \geq 1} b_n(k) n^{-s} \), one has \(b_{2c_0}(k) = 0 \) for those \(k \) such that \(\text{char}(\varphi_k) > c_0 \). This contradicts \(b_{2c_0}(k) \to a_{2c_0} \).

Third case: \(\text{char}(\varphi) = c_0 > 0 \) and \(\text{char}(\varphi_k) < c_0 \) for all \(k \).
Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.
\mathbb{T}^∞ can be identified with the dual group of (\mathbb{Q}_+, \cdot) by

$$z \in \mathbb{T}^\infty \mapsto \chi_z, \quad \chi_z(2) = z_1, \chi_z(3) = z_2, \ldots, \chi_z(p_m) = z_m.$$
1. \mathbb{T}^∞ can be identified with the dual group of (\mathbb{Q}_+, \cdot) by

$$z \in \mathbb{T}^\infty \mapsto \chi_z, \quad \chi_z(2) = z_1, \ \chi_z(3) = z_2, \ \ldots, \ \chi_z(p_m) = z_m.$$

2. For $\chi \in \mathbb{T}^\infty$ and $f = \sum_n a_n n^{-s} \in \mathcal{H}$, define $f_\chi(s) = \sum_n a_n \chi(n) n^{-s}$.

1. \mathbb{T}^∞ can be identified with the dual group of (\mathbb{Q}_+, \cdot) by

$$z \in \mathbb{T}^\infty \mapsto \chi_z, \quad \chi_z(2) = z_1, \quad \chi_z(3) = z_2, \ldots, \quad \chi_z(p_m) = z_m.$$

2. For $\chi \in \mathbb{T}^\infty$ and $f = \sum_n a_n n^{-s} \in \mathcal{H}$, define $f_\chi(s) = \sum_n a_n \chi(n) n^{-s}$.

Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $(\tau_k) \subset \mathbb{R}$, $f(\cdot + i\tau_k) \to F$ uniformly on compact subsets of $\mathbb{C}_{1/2}$.
- There exists $\chi \in \mathbb{T}^\infty$, $F = f_\chi$.
\mathbb{T}^∞ can be identified with the dual group of (\mathbb{Q}_+, \cdot) by
\[
z \in \mathbb{T}^\infty \mapsto \chi_z, \quad \chi_z(2) = z_1, \quad \chi_z(3) = z_2, \ldots, \quad \chi_z(p_m) = z_m.
\]

For $\chi \in \mathbb{T}^\infty$ and $f = \sum_n a_n n^{-s} \in \mathcal{H}$, define $f_\chi(s) = \sum_n a_n \chi(n) n^{-s}$.

Proposition

Let $f, F \in \mathcal{H}$. TFAE:

- There exists $(\tau_k) \subset \mathbb{R}$, $f(\cdot + i\tau_k) \to F$ uniformly on compact subsets of $\mathbb{C}_{1/2}$.
- There exists $\chi \in \mathbb{T}^\infty$, $F = f_\chi$.

Let $f \in \mathcal{H}$. For almost all $\chi \in \mathbb{T}^\infty$, f_χ converges in \mathbb{C}_0, $f_\chi(it) = \lim_{\sigma \to 0} f_\chi(\sigma + it)$ exists for almost all $t \in \mathbb{R}$ and
\[
\|f\|^2 = \int_{\mathbb{T}^\infty} \int_{\mathbb{R}} |f_\chi(it)|^2 d\mu(t) dm(\chi).
\]
Let $f \in \mathcal{H}$, $\varphi = c_0 s + \psi \in \mathcal{G}$. Define $\varphi_\chi = c_0 s + \psi_\chi$. Then

$$(f \circ \varphi)_\chi = f_{\chi c_0} \circ \varphi_\chi.$$
Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H}.

Let $f \in \mathcal{H}$ and let us estimate $\|C\varphi_\lambda(f) - C\varphi_\lambda'(f)\|_2$.

$$\|C\varphi_\lambda(f) - C\varphi_\lambda'(f)\|_2 \leq \int \int |(f \circ \varphi_\lambda \chi)(it) - (f \circ \varphi_\lambda' \chi)(it)|^2 d\mu(t) dm(\chi).$$

Assume that $\varphi_0(C^+)$, $\varphi_1(C^+) \subset C^a$ for some $a > 1/2$. Then $(\varphi_\lambda \chi)(it) \in C^a$ for all χ and all λ so that $\|f \chi c_0 \circ (\varphi_\lambda \chi)(it) - f \chi c_0 \circ (\varphi_\lambda' \chi)(it)\|_2 \leq C_a \|f\|_2 |(\varphi_\lambda \chi)(it) - (\varphi_\lambda' \chi)(it)|^2.$
Theorem

Let \(c_0 \in \mathbb{N}_0 \). The set of compact composition operators with characteristic equal to \(c_0 \) is arcwise connected.

Let \(\varphi_0 = c_0 s + \psi_0 \), \(\varphi_1 = c_0 + \psi_1 \) be two compact composition operators on \(\mathcal{H} \). Define \(\varphi_\lambda = c_0 s + (1 - \lambda)\psi_0 + \lambda \psi_1 \). Is the map \(\lambda \mapsto C_{\varphi_\lambda} \in \mathcal{C}(\mathcal{H}) \) continuous? Is each \(C_{\varphi_\lambda} \) compact?
Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

Let $\varphi_0 = c_0s + \psi_0$, $\varphi_1 = c_0 + \psi_1$ be two compact composition operators on \mathcal{H}. Define $\varphi_\lambda = c_0s + (1 - \lambda)\psi_0 + \lambda\psi_1$. Is the map $\lambda \mapsto C_{\varphi_\lambda} \in C(\mathcal{H})$ continuous? Is each C_{φ_λ} compact?

Fix $f \in \mathcal{H}$ and let us estimate $\|C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f)\|$.

$$\|C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f)\|^2 \leq \int \int |(f \circ \varphi_\lambda)(it) - (f \circ \varphi_{\lambda'})(it)|^2 d\mu(t)dm(\chi)$$
Theorem

Let \(c_0 \in \mathbb{N}_0 \). The set of compact composition operators with characteristic equal to \(c_0 \) is arcwise connected.

Let \(\varphi_0 = c_0 \psi_0 + \psi_0 \), \(\varphi_1 = c_0 + \psi_1 \) be two compact composition operators on \(\mathcal{H} \). Define \(\varphi_\lambda = c_0 \psi_0 + (1 - \lambda) \psi_0 + \lambda \psi_1 \). Is the map \(\lambda \mapsto C_{\varphi_\lambda} \in \mathcal{C}(\mathcal{H}) \) continuous? Is each \(C_{\varphi_\lambda} \) compact?

Fix \(f \in \mathcal{H} \) and let us estimate \(\| C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f) \| \).

\[
\| C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f) \|^2 \leq \int \int |(f \circ \varphi_\lambda)(it) - (f \circ \varphi_{\lambda'})(it)|^2 d\mu(t) dm(\chi)
\leq \int \int |f_{\chi_0} \circ (\varphi_\lambda)(it) - f_{\chi_0} \circ (\varphi_{\lambda'})(it)|^2 d\mu dm.
\]
Theorem

Let \(c_0 \in \mathbb{N}_0 \). The set of compact composition operators \(\varphi_\lambda = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1 \) is arcwise connected.

Let \(\varphi_0 = c_0 s + \psi_0, \varphi_1 = c_0 + \psi_1 \) be two compact composition operators on \(\mathcal{H} \). Define \(\varphi_\lambda = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1 \). Is the map \(\lambda \mapsto C_{\varphi_\lambda} \in \mathcal{C}(\mathcal{H}) \) continuous? Is each \(C_{\varphi_\lambda} \) compact?

Fix \(f \in \mathcal{H} \) and let us estimate \(\| C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f) \| \).

\[
\| C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f) \|^2 \leq \int \int \| (f \circ \varphi_\lambda) \chi(it) - (f \circ \varphi_{\lambda'}) \chi(it) \|^2 d\mu(t) dm(\chi)
\]

\[
\leq \int \int \| f_{\chi c_0} \circ (\varphi_\lambda) \chi(it) - f_{\chi c_0} \circ (\varphi_{\lambda'}) \chi(it) \|^2 d\mu dm.
\]

Assume that \(\varphi_0(\mathbb{C}_+) \), \(\varphi_1(\mathbb{C}_+) \) \(\subset \mathbb{C}_a \) for some \(a > 1/2 \). Then \((\varphi_\lambda) \chi(it) \in \overline{\mathbb{C}_a} \) for all \(\chi \) and all \(\lambda \) so that

\[
| f_{\chi c_0} \circ (\varphi_\lambda) \chi(it) - f_{\chi c_0} \circ (\varphi_{\lambda'}) \chi(it) \|^2 \leq C_a \| f \|^2 |(\varphi_\lambda) \chi(it) - (\varphi_{\lambda'}) \chi(it) \|^2.
\]
Recall that \(\varphi_\lambda = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1 \). Then

\[
(\varphi_\lambda)_\chi(it) - (\varphi_{\lambda'})_\chi(it) = (\lambda - \lambda'((\psi_0)_\chi(it) - (\psi_1)_\chi(it)).
\]
Recall that $\varphi_\lambda = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Then

$$(\varphi_\lambda)_\chi(it) - (\varphi_{\lambda'})_\chi(it) = (\lambda - \lambda')((\psi_0)_\chi(it) - (\psi_1)_\chi(it)).$$

Therefore,

$$\|C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f)\|^2 \leq C_a |\lambda - \lambda'|^2 \|f\|^2 \int \int |(\psi_0)_\chi(it) - (\psi_1)_\chi(it)|^2 d\mu dm.$$
Recall that $\varphi_\lambda = c_0 s + (1 - \lambda) \psi_0 + \lambda \psi_1$. Then

$$(\varphi_\lambda) \chi(it) - (\varphi_{\lambda'}) \chi(it) = (\lambda - \lambda')((\psi_0) \chi(it) - (\psi_1) \chi(it)).$$

Therefore,

$$\|C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f)\|^2 \leq C_a |\lambda - \lambda'|^2 \|f\|^2 \int \int |(\psi_0) \chi(it) - (\psi_1) \chi(it)|^2 d\mu dm.$$

If $|\psi_0|$ and $|\psi_1|$ are bounded, we finally find

$$\|C_{\varphi_\lambda}(f) - C_{\varphi_{\lambda'}}(f)\|^2 \leq M |\lambda - \lambda'|^2 \cdot \|f\|^2.$$
Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0 = c_0 s + \psi_0$ and $\varphi_1 = c_0 s + \psi_1$ are such that
- $\varphi_0(\mathbb{C}_+), \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some $a > 1/2$;
- ψ_0, ψ_1 are bounded
then there is a continuous arc of compact composition operators between $C\varphi_0$ and $C\varphi_1$.

Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0 = c_0 s + \psi_0$ and $\varphi_1 = c_0 s + \psi_1$ are such that

- $\varphi_0(\mathbb{C}_+), \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some $a > 1/2$;
- ψ_0, ψ_1 are bounded

then there is a continuous arc of compact composition operators between $C\varphi_0$ and $C\varphi_1$.

Let φ inducing a compact composition operator. Find a continuous arc of compact composition operators between $C\varphi$ and $C\tilde{\varphi}$ where $\tilde{\varphi}$ satisfies the above assumptions.
Theorem

Let $c_0 \in \mathbb{N}_0$. The set of compact composition operators with characteristic equal to c_0 is arcwise connected.

Until now we have shown that, if $\varphi_0 = c_0s + \psi_0$ and $\varphi_1 = c_0s + \psi_1$ are such that

- $\varphi_0(\mathbb{C}_+), \varphi_1(\mathbb{C}_+) \subset \mathbb{C}_a$ for some $a > 1/2$;
- ψ_0, ψ_1 are bounded

then there is a continuous arc of compact composition operators between $C\varphi_0$ and $C\varphi_1$.

Let φ inducing a compact composition operator. Find a continuous arc of compact composition operators between $C\varphi$ and $C\tilde{\varphi}$ where $\tilde{\varphi}$ satisfies the above assumptions.

Consider for $\sigma \in [0, 1]$, $\varphi_\sigma = \varphi(\cdot + \sigma)$. Then φ_1 satisfies the above assumptions. Is the map $\sigma \in [0, 1] \mapsto C\varphi_\sigma$ continuous?
Let $\varphi \in \mathcal{G}$ such that C_φ is compact and let $\varphi_\sigma = \varphi(\cdot + \sigma)$.

Lemma

The map $\sigma \in [0, 1] \mapsto C_\varphi$ is continuous.
Let $\varphi \in \mathcal{G}$ such that C_φ is compact and let $\varphi_\sigma = \varphi(\cdot + \sigma)$.

Lemma

The map $\sigma \in [0, 1] \mapsto C_{\varphi_\sigma}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_\sigma(f) = f(\cdot + \sigma)$, so that $C_{\varphi_\sigma} = T_\sigma \circ C_\varphi$. Now,
Let $\varphi \in G$ such that C_{φ} is compact and let $\varphi_\sigma = \varphi(\cdot + \sigma)$.

Lemma

The map $\sigma \in [0, 1] \mapsto C_{\varphi_\sigma}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_\sigma(f) = f(\cdot + \sigma)$, so that $C_{\varphi_\sigma} = T_\sigma \circ C_{\varphi}$. Now,

1. For a fixed $g \in \mathcal{H}$, $T_\sigma(g) \to T_{\sigma_0}(g)$ as $\sigma \to \sigma_0$.

Let $\varphi \in G$ such that C_{φ} is compact and let $\varphi_\sigma = \varphi(\cdot + \sigma)$.

Lemma

The map $\sigma \in [0, 1] \mapsto C_{\varphi_\sigma}$ is continuous.

Proof.

For $\sigma \geq 0$ define $T_\sigma(f) = f(\cdot + \sigma)$, so that $C_{\varphi_\sigma} = T_\sigma \circ C_\varphi$. Now,

1. For a fixed $g \in \mathcal{H}$, $T_\sigma(g) \to T_{\sigma_0}(g)$ as $\sigma \to \sigma_0$.
2. The family $\{ T_\sigma : \sigma \in [0, 1] \}$ is equicontinuous.
Let \(\varphi \in \mathcal{G} \) such that \(C_\varphi \) is compact and let \(\varphi_\sigma = \varphi(\cdot + \sigma) \).

Lemma

The map \(\sigma \in [0, 1] \mapsto C_{\varphi_\sigma} \) is continuous.

Proof.

For \(\sigma \geq 0 \) define \(T_\sigma(f) = f(\cdot + \sigma) \), so that \(C_{\varphi_\sigma} = T_\sigma \circ C_\varphi \). Now,

1. For a fixed \(g \in \mathcal{H} \), \(T_\sigma(g) \to T_{\sigma_0}(g) \) as \(\sigma \to \sigma_0 \).
2. The family \(\{T_\sigma : \sigma \in [0, 1]\} \) is equicontinuous.
3. The set \(\{C_\varphi(f) : \|f\| \leq 1\} \) has compact closure.
Let \(\varphi \in G \) such that \(C_\varphi \) is compact and let \(\varphi_\sigma = \varphi(\cdot + \sigma) \).

Lemma

The map \(\sigma \in [0, 1] \mapsto C_{\varphi_\sigma} \) is continuous.

Proof.

For \(\sigma \geq 0 \) define \(T_\sigma(f) = f(\cdot + \sigma) \), so that \(C_{\varphi_\sigma} = T_\sigma \circ C_\varphi \). Now,

1. For a fixed \(g \in \mathcal{H} \), \(T_\sigma(g) \to T_{\sigma_0}(g) \) as \(\sigma \to \sigma_0 \).
2. The family \(\{ T_\sigma : \sigma \in [0, 1] \} \) is equicontinuous.
3. The set \(\{ C_\varphi(f) : \|f\| \leq 1 \} \) has compact closure.

The lemma follows from a (standard) compactness argument.
Two general statements

Theorem (Positive characteristic)

Let φ_0 and $\varphi_1 \in G$ with $\text{char}(\varphi_0) = \text{char}(\varphi_1) =: c_0 \geq 1$ and write them $\varphi_0 = c_0 s + \psi_0$, $\varphi_1 = c_0 s + \psi_1$. Assume moreover that there exists $C > 0$ such that

- $|\varphi_0 - \varphi_1| \leq C \min(\Re\varphi_0, \Re\varphi_1)$;
- $|\psi_0|, |\psi_1| \leq C$;
- $|\psi'_0|, |\psi'_1| \leq C$.

Then $C\varphi_0$ and $C\varphi_1$ belong to the same component of $C(\mathcal{H})$.

Theorem (Zero characteristic)

Let φ_0 and $\varphi_1 \in G$ with $\text{char}(\varphi_0) = \text{char}(\varphi_1) = 0$. Assume that there exists $C > 0$ such that

$|\varphi_0 - \varphi_1| \leq C \min(|\Re\varphi_0 - 1/2|/|1+\varphi_0|^2, |\Re\varphi_1 - 1/2|/|1+\varphi_1|^2)$.

Then $C\varphi_0$ and $C\varphi_1$ belong to the same component of $C(\mathcal{H})$.

F. Bayart (UCA)
Topological structure
Oslo, June 2021
13 / 23
Two general statements

Theorem (Positive characteristic)

Let \(\varphi_0 \) and \(\varphi_1 \in \mathcal{G} \) with \(\text{char}(\varphi_0) = \text{char}(\varphi_1) =: c_0 \geq 1 \) and write them \(\varphi_0 = c_0 s + \psi_0, \varphi_1 = c_0 s + \psi_1 \). Assume moreover that there exists \(C > 0 \) such that

1. \(|\varphi_0 - \varphi_1| \leq C \min(\Re\varphi_0, \Re\varphi_1) \);
2. \(|\psi_0|, |\psi_1| \leq C \);
3. \(|\psi'_0|, |\psi'_1| \leq C \).

Then \(C\varphi_0 \) and \(C\varphi_1 \) belong to the same component of \(C(\mathcal{H}) \).

Theorem (Zero characteristic)

Let \(\varphi_0 \) and \(\varphi_1 \in \mathcal{G} \) with \(\text{char}(\varphi_0) = \text{char}(\varphi_1) = 0 \). Assume that there exists \(C > 0 \) such that \(|\varphi_0 - \varphi_1| \leq C \min \left(\frac{\Re\varphi_0 - 1/2}{|1+\varphi_0|^2}, \frac{\Re\varphi_1 - 1/2}{|1+\varphi_1|^2} \right) \). Then \(C\varphi_0 \) and \(C\varphi_1 \) belong to the same component of \(C(\mathcal{H}) \).
Idea for the proof

Let $\varphi_0, \varphi_1 \in \mathcal{G}$. As before, define $\varphi_\lambda = (1 - \lambda)\varphi_0 + \lambda\varphi_1$. Write

$$\|C_{\varphi_\lambda}(f) - C_{\varphi_\lambda'}(f)\|^2 \leq \int \int |f_{\chi_0}((\varphi_\lambda)_{\chi}(it)) - f_{\chi_0}((\varphi_\lambda')_{\chi}(it))|^2 d\mu dm.$$
Idea for the proof

Let $\varphi_0, \varphi_1 \in \mathcal{G}$. As before, define $\varphi_{\lambda} = (1 - \lambda)\varphi_0 + \lambda\varphi_1$. Write

$$\|C_{\varphi_{\lambda}}(f) - C_{\varphi_{\lambda}'}(f)\|^2 \leq \int\int |f_{\chi_0}((\varphi_{\lambda})_{\chi}(it)) - f_{\chi_0}((\varphi_{\lambda}')_{\chi}(it))|^2 d\mu dm.$$

Observe that

$$f_{\chi_0}((\varphi_{\lambda})_{\chi}(it)) - f_{\chi_0}((\varphi_{\lambda}')_{\chi}(it)) = ((\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)) \times \int_{\lambda}^{\lambda'} f'_{\chi_0}((\varphi_r)_{\chi}(it))dr.$$
Idea for the proof

Let \(\varphi_0, \varphi_1 \in G \). As before, define \(\varphi_\lambda = (1 - \lambda)\varphi_0 + \lambda\varphi_1 \). Write

\[
\|C_{\varphi_\lambda}(f) - C_{\varphi_\lambda'}(f)\|^2 \leq \iint |f_{\chi^0}((\varphi_\lambda)\chi(it)) - f_{\chi^0}((\varphi_\lambda')\chi(it))|^2 d\mu dm.
\]

Observe that

\[
f_{\chi^0}((\varphi_\lambda)\chi(it)) - f_{\chi^0}((\varphi_\lambda')\chi(it)) = ((\varphi_1)\chi(it) - (\varphi_0)\chi(it)) \times \int_{\lambda}^{\lambda'} f'_{\chi^0}((\varphi_r)\chi(it)) dr
\]

By Jensen’s inequality,

\[
\|C_{\varphi_\lambda}(f) - C_{\varphi_\lambda'}(f)\|^2 \leq |\lambda' - \lambda|^2 \int_{T^\infty} \int_{\mathbb{R}} |(\varphi_1)\chi(it) - (\varphi_0)\chi(it)|^2 \times |f'_{\chi^0}((\varphi_r)\chi(it))|^2 d\mu(t) dm(\chi) dr.
\]
Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in [0, 1]$,

$$
\int \int |(\varphi_1)_\chi(it) - (\varphi_0)_\chi(it)|^2 |(f' \circ \varphi_r)_\chi(it)|^2 d\mu(t) dm(\chi) \leq C \int \int |f_\chi(it)|^2 d\mu(t) dm(\chi).
$$
Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in [0, 1]$,

$$
\int \int |(\varphi_1)_{\chi}(it) - (\varphi_0)_{\chi}(it)|^2 |(f' \circ \varphi_r)_{\chi}(it)|^2 d\mu(t) dm(\chi) \leq C \int \int |f_{\chi}(it)|^2 d\mu(t) dm(\chi).
$$
Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in [0, 1]$,

$$\int \int |(\varphi_1)_\chi(it) - (\varphi_0)_\chi(it)|^2 |(f' \circ \varphi_r)_\chi(it)|^2 d\mu(t)dm(\chi) \leq C \int \int |f_\chi(it)|^2 d\mu(t)dm(\chi).$$

One wants to prove that

$$\|((\varphi_1 - \varphi_0)C_{\varphi r}(f'))\|_{\mathcal{H}} \leq C \|f\|_{\mathcal{H}}.$$
Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in [0, 1],

$$\int \int |(\varphi_1)_\chi(it) - (\varphi_0)_\chi(it)|^2 |(f' \circ \varphi_r)_\chi(it)|^2 d\mu(t) dm(\chi) \leq C \int \int |f_\chi(it)|^2 d\mu(t) dm(\chi).$$

One wants to prove that

$$\|((\varphi_1 - \varphi_0)C\varphi_r(f'))\|_H \leq C \|f\|_H.$$

$$A = \left\{ f = \sum_n a_n n^{-s} : \|f\|_A^2 := \int_{T^\infty} \int_\mathbb{R} \int_0^1 |f_\chi(s)|^2 \sigma d\sigma d\mu dm < +\infty \right\}.$$

Lemma

$f \in H \iff f' \in A.$
Therefore, it suffices to show that there exists $C \geq 1$ such that, for all $r \in [0,1],$

$$\int \int |(\varphi_1) \chi(it) - (\varphi_0) \chi(it)|^2 |(f' \circ \varphi_r) \chi(it)|^2 d\mu(t) dm(\chi) \leq C \int \int |f \chi(it)|^2 d\mu(t) dm(\chi).$$

One wants to prove that

$$\|(\varphi_1 - \varphi_0)C_{\varphi_r}(f')\|_H \leq C \|f\|_H.$$

$$\mathcal{A} = \left\{ f = \sum_n a_n n^{-s} : \|f\|^2_\mathcal{A} := \int_{\mathbb{T}} \int_{\mathbb{R}} \int_0^1 |f \chi(s)|^2 \sigma d\sigma d\mu dm < +\infty \right\}.$$

Lemma

$f \in \mathcal{H} \iff f' \in \mathcal{A}.$

Therefore, it suffices to prove that

$$\|(\varphi_1 - \varphi_0)C_{\varphi_r}(f')\|_H \leq C \|f'\|_\mathcal{A}.$$
Let $w : \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $wC\varphi : f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from A to H?
General problem: boundedness of weighted composition operators from A to H

Let $w : \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in G$. When do $wC_\varphi : f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from A to H?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.
General problem: boundedness of weighted composition operators from \mathcal{A} to \mathcal{H}

Let $w : \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $wC\varphi : f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H}?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.

Two different proofs:
- For $c_0 = 0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.
Let $w : \mathbb{C}_{1/2} \to \mathbb{C}$ be a Dirichlet series, $\varphi \in \mathcal{G}$. When do $w \mathcal{C}_\varphi : f \mapsto w \cdot f \circ \varphi$ defines a bounded operator from \mathcal{A} to \mathcal{H}?

The assumptions we have made give an answer when $w = \varphi_1 - \varphi_0$ and $\varphi = \varphi_r$.

Two different proofs:

- For $c_0 = 0$, we reduce to Hardy and Bergman spaces of the unit disc and use Carleson measures.
- For $c_0 \geq 1$, we work directly with Dirichlet series in \mathcal{A} and in \mathcal{H} and use some Nevanlinna counting functions.
Application 1: linear symbols

Let \((q_j)_{j=1,...,d}\) be multiplicatively independent positive integers and let
\[
\varphi_0 = c_0 s + c_1 + \sum_{j=1}^{d} c q_j^{-s} \in G, \ c_0 \geq 1.
\]
Application 1: linear symbols

Let \((q_j)_{j=1,...,d}\) be multiplicatively independent positive integers and let
\[
\varphi_0 = c_0 s + c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} \in \mathcal{G}, \quad c_0 \geq 1.
\]
For \(\delta > 0\) sufficiently small, define
\[
\varphi_1 = c_0 s + c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} \right)^2.
\]
\(C_{\varphi_0}\) and \(C_{\varphi_1}\) are in the same component.
Application 1: linear symbols

Let \((q_j)_{j=1,...,d}\) be multiplicatively independent positive integers and let
\[\varphi_0 = c_0s + c_1 + \sum_{j=1}^d c_{q_j}q_j^{-s} \in \mathcal{G}, \ c_0 \geq 1.\]
For \(\delta > 0\) sufficiently small, define
\[\varphi_1 = c_0s + c_1 + \sum_{j=1}^d c_{q_j}q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^d c_{q_j}q_j^{-s} \right)^2.\]

\(C_{\varphi_0}\) and \(C_{\varphi_1}\) are in the same component. Moreover, if \(\varphi_0\) has unrestricted range then:

- \(C_{\varphi_0}\) is not compact
Application 1: linear symbols

Let \((q_j)_{j=1,...,d}\) be multiplicatively independent positive integers and let

\[\varphi_0 = c_0 s + c_1 + \sum_{j=1}^{d} c q_j^{-s} \in \mathcal{G}, \quad c_0 \geq 1.\]

For \(\delta > 0\) sufficiently small, define

\[\varphi_1 = c_0 s + c_1 + \sum_{j=1}^{d} c q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^{d} c q_j^{-s} \right)^2.\]

\(C_{\varphi_0}\) and \(C_{\varphi_1}\) are in the same component. Moreover, if \(\varphi_0\) has unrestricted range then:

- \(C_{\varphi_0}\) is not compact
- \(C_{\varphi_1}\) is not compact
Application 1: linear symbols

Let \((q_j)_{j=1,\ldots,d}\) be multiplicatively independent positive integers and let
\[
\varphi_0 = c_0s + c_1 + \sum_{j=1}^{d} c_{q_j}q_j^{-s} \in \mathcal{G}, \quad c_0 \geq 1.
\]
For \(\delta > 0\) sufficiently small, define
\[
\varphi_1 = c_0s + c_1 + \sum_{j=1}^{d} c_{q_j}q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^{d} c_{q_j}q_j^{-s} \right)^2.
\]

\(C_{\varphi_0}\) and \(C_{\varphi_1}\) are in the same component. Moreover, if \(\varphi_0\) has unrestricted range then:

- \(C_{\varphi_0}\) is not compact
- \(C_{\varphi_1}\) is not compact
- \(C_{\varphi_1} - C_{\varphi_0}\) is not compact.

This disproves a conjecture of Shapiro and Sundberg in this setting (already disproved on \(H^2(D)\) by Bourdon and by Moorhouse and Tonge).

F. Bayart (UCA)
Application 1: linear symbols

Let \((q_j)_{j=1,...,d}\) be multiplicatively independent positive integers and let
\[
\varphi_0 = c_0 s + c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} \in \mathcal{G}, \quad c_0 \geq 1.
\]
For \(\delta > 0\) sufficiently small, define
\[
\varphi_1 = c_0 s + c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} + \delta \left(c_1 + \sum_{j=1}^{d} c_{q_j} q_j^{-s} \right)^2.
\]

\(C_{\varphi_0}\) and \(C_{\varphi_1}\) are in the same component. Moreover, if \(\varphi_0\) has unrestricted range then:
- \(C_{\varphi_0}\) is not compact
- \(C_{\varphi_1}\) is not compact
- \(C_{\varphi_1} - C_{\varphi_0}\) is not compact.

This disproves a conjecture of Shapiro and Sundberg in this setting (already disproved on \(H^2(\mathbb{D})\) by Bourdon and by Moorhouse and Tonge).
Application 2: coefficients of the Bohr lift

Let $\varphi(s) = c_0 s + \psi(s) \in G$, $\psi(s) = \sum_{n=1}^{N} c_n n^{-s}$ be a Dirichlet polynomial symbol with $c_0 \geq 1$. Define the Bohr lift $B\psi$ of ψ by

$$B\psi(z) = \sum_{n=p_1^{\alpha_1} \cdots p_d^{\alpha_d} = 1}^{N} c_n z_1^{\alpha_1} \cdots z_d^{\alpha_d}.$$

Then $B\psi$ maps \mathbb{D}^d into \mathbb{C}_+.
Application 2: coefficients of the Bohr lift

Let \(\varphi(s) = c_0 s + \psi(s) \in \mathcal{G} \), \(\psi(s) = \sum_{n=1}^{N} c_n n^{-s} \) be a Dirichlet polynomial symbol with \(c_0 \geq 1 \). Define the Bohr lift \(B\psi \) of \(\psi \) by

\[
B\psi(z) = \sum_{n=p_1^{\alpha_1} \cdots p_d^{\alpha_d} = 1}^{N} c_n z_1^{\alpha_1} \cdots z_d^{\alpha_d}.
\]

Then \(B\psi \) maps \(\mathbb{D}^d \) into \(\mathbb{C}_+ \).

Let \(\Gamma(B\psi) = \{ z \in \mathbb{T}^d : \Re(B\psi(z)) = 0 \} \).

Definition

Let \(z \in \Gamma(B\psi) \). We say that \(\varphi \) has Dirichlet contact of order \(n \) at \(z \) if there exists a neighbourhood \(\mathcal{U} \) of \(z \) in \(\mathbb{T}^d \) such that, for all \(w \in \mathcal{U} \),

\[
\left| \Im m(B\psi(w) - B\psi(z)) \right|^{2n} \lesssim \Re(B\psi(w)).
\]
Corollary

Let $\varphi_0, \varphi_1 \in \mathcal{G}$ be Dirichlet polynomial symbols with $\text{char}(\varphi_0) = \text{char}(\varphi_1) \geq 1$. Assume that $\Gamma(B\psi_0) = \Gamma(B\psi_1)$ and that, for all $z \in \Gamma(B\psi_0)$, there exists $n \in \mathbb{N}$ such that

- $B\psi_0(z) = B\psi_1(z)$;
- φ_0 and φ_1 have a Dirichlet contact of order $2n$ at z;
- for $|\alpha| \leq 2n - 1$, $\partial_\alpha B\psi_0(z) = \partial_\alpha B\psi_1(z)$.

Then C_{φ_0} and C_{φ_1} belong to the same component of $C(\mathcal{H})$.
How to prove that two composition operators do not belong to the same component? In particular, what about $\phi_0(s) = s + 1 - 2^{-s}$ and $\phi_1(s) = s + 1 - 3^{-s}$?
Open questions and work in progress

1. How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 - 2^{-s}$ and $\varphi_1(s) = s + 1 - 3^{-s}$?

2. Do there exist isolated composition operators on H? (true on $H^2(\mathbb{D})$ by a result of Berkson)
Open questions and work in progress

1. How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 - 2^{-s}$ and $\varphi_1(s) = s + 1 - 3^{-s}$?

2. Do there exist isolated composition operators on \mathcal{H}? (true on $H^2(\mathbb{D})$ by a result of Berkson)

3. Do the compact composition operators form a connected component of $C(\mathcal{H})$? (false in $H^2(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)
Open questions and work in progress

1. How to prove that two composition operators do not belong to the same component? In particular, what about $\varphi_0(s) = s + 1 - 2^{-s}$ and $\varphi_1(s) = s + 1 - 3^{-s}$?

2. Do there exist isolated composition operators on \mathcal{H}? (true on $H^2(\mathbb{D})$ by a result of Berkson)

3. Do the compact composition operators form a connected component of $\mathcal{C}(\mathcal{H})$? (false in $H^2(\mathbb{D})$ by a result of Gallardo, Gonzalez, Nieminen and Saksman)

4. Can we use these methods to give conditions implying that $C_{\varphi_0} - C_{\varphi_1}$ is compact?
Theorem

Let φ_0 and $\varphi_1 \in G$ with $\text{char}(\varphi_0) = \text{char}(\varphi_1) = 0$. Assume that

$$|\varphi_0 - \varphi_1| = o\left(\min\left(\frac{\Re \varphi_0 - 1/2}{|1 + \varphi_0|^2}, \frac{\Re \varphi_1 - 1/2}{|1 + \varphi_1|^2}\right)\right) \text{ as } \Re(s) \to 0.$$

Then $C\varphi_0 - C\varphi_1$ is compact.
Theorem

Let φ_0 and $\varphi_1 \in \mathcal{G}$ with $\text{char}(\varphi_0) = \text{char}(\varphi_1) = 0$. Assume that

$$|\varphi_0 - \varphi_1| = o\left(\min\left(\frac{\Re\varphi_0 - 1/2}{|1 + \varphi_0|^2}, \frac{\Re\varphi_1 - 1/2}{|1 + \varphi_1|^2}\right)\right) \quad \text{as } \Re(s) \to 0.$$

Then $C_{\varphi_0} - C_{\varphi_1}$ is compact.

What happens for $c_0 \geq 1$? For instance,

Conjecture

Let $\varphi_0, \varphi_1 \in \mathcal{G}$ be Dirichlet polynomial symbols with $\text{char}(\varphi_0) = \text{char}(\varphi_1) \geq 1$. Assume that $\Gamma(\mathcal{B}\psi_0) = \Gamma(\mathcal{B}\psi_1)$ and that, for all $z \in \Gamma(\mathcal{B}\psi_0)$, there exists $n \in \mathbb{N}$ such that

- $\mathcal{B}\psi_0(z) = \mathcal{B}\psi_1(z)$;
- φ_0 and φ_1 have a Dirichlet contact of order $2n$ at z;
- for $|\alpha| \leq 2n$, $\partial_{\alpha}\mathcal{B}\psi_0(z) = \partial_{\alpha}\mathcal{B}\psi_1(z)$.

Then $C_{\varphi_0} - C_{\varphi_1}$ is compact???
Frontiers of Operator Theory

CIRM (Marseille - Luminy)
29 November - 3 December 2021

See you soon there!
Thank you!