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For large t ∈ [T ,2T ],

ζ(1
2 + it) ∼

∑
n6T

1
n1/2+it

Key feature: length of sum depends on height T .

Example - Moments 1
T

∫ 2T
T |ζ(1

2 + it)|2kdt .

1
T

∫ 2T

T

(
m
n

)−it

dt = 1m=n + 1m 6=n ·
1
T

O(1)

log(m/n)

Bad case: m = n + 1 and n ≈ T then log(m/n) ≈ 1/T .
Replace n−it by random multiplicative f (n) where the (f (p))p prime
are independent Steinhaus random variables. f (n) =

∏
pα||n f (p)α.

E.g. f (6) = f (2)f (3), f (12) = f (2)2f (3). We have

E[f (m)f (n)] = 1m=n.
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Let
Mf (T ) :=

∑
n6T

f (n)

n1/2

and think of this as a model for ζ(1/2 + it).

We shall consider the following questions/problems:
(i) Moments: E[|Mf (T )|2k ] for k ∈ R>0.
(ii) Distribution of Mf (T ).
(iii) "Independently sampled maxima":

max
16j6N

|Mfj (T )|

(iv) "Almost sure" bounds.
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Moments E[|Mf (T )|2k ]

(Conrey–Gamburd, 2003) For k ∈ N,

E[|Mf (T )|2k ] ∼ a(k)γ(k)(log T )k2

for some explicit constants a(k) and γ(k).
Compare with Keating–Snaith Conjecture:

1
T

∫ 2T

T
|ζ(1

2 + it)|2kdt ∼ a(k)g(k)(log T )k2
.

Order: (Gerspach, 2019) for k > 0

E[|Mf (T )|2k ] �k (log T )k2
.
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Dependence on k is important in determining large
values/distribution. For small k 6 1, uniform version of Gerspach’s
result:

c(log T )k2
6 E[|Mf (T )|2k ] 6 C · 1

k2 · (log T )k2
.

Large k : Conrey–Gamburd result suggests

E[|Mf (T )|2k ] = e−k2 log k−k2 log log k+O(k2)(log T )k2
.

(Brevig–Bondarenko–Saksman–Seip–Zhao, 2018)

e−(2+o(1))k2 log k 6 lim
T→∞

E[|Mf (T )|2k ]

(log T )k2 6 e−(1+o(1))k2 log k

as k →∞.
(H.–Brevig, 2019) Sharp bounds for uniformly large k . Upper
bound in the range

1 6 k 6 c log T/ log log T

and lower bound for

1 6 k 6
√

log log T .
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Theorem (Aymone, H., Zhao)
We have

E[|Mf (T )|2k ] = e−k2 log k−k2 log log k+O(k2)(log T )k2

for all real 1 6 k 6 c log T/ log log T .

We only need to prove the lower bound. Two features: k is real, k
is large.
For first issue we interpolate to nearest integer. By Hölder:

E[|M|2k ] > E[|M|2bkc]k/bkc.

If k > log log T then

(log T )bkc
2

= (log T )k2+O(k) = eO(k2)(log T )k2
.

For 1 6 k 6 log log T we use less wasteful interpolation inequality
(Weissler’s inequality).
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So assume k ∈ N. Then by orthogonality

E[|Mf (T )|2k ] =
∑

n1···nk =nk+1···n2k
nj6T

1
(n1 · · · n2k )1/2 .

Lower bound by sum in which each nj is Y -smooth:

p|nj =⇒ p 6 Y

for some Y 6 T to be chosen later.
Drop condition nj 6 T . Error incurred:

�
∑

n1···nk =nk+1···n2k
nj∈S(Y ),n1>T

1
(n1 · · · n2k )1/2

� 1
Tα

∑
n1···nk =nk+1···n2k

nj∈S(Y )

nα1
(n1 · · · n2k )1/2 .

Choose α = 1/ log Y then this is tolerable if Y 6 T 1/ck for some
sufficiently large c.
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Main term: ∑
n1···nk =nk+1···n2k

nj∈S(Y )

1
(n1 · · · n2k )1/2 =

∑
m=n∈S(Y )

dk (m)dk (n)

(mn)1/2

=
∑

n∈S(Y )

dk (n)2

n
>
∏
p6Y

(
1 +

k2

p

)

= eO(k2)
∏

k26p6Y

(
1 +

k2

p

)
� eO(k2)

(
log Y
log k

)k2

= eO(k2)

(
log T

k log k

)k2

�

Joint work with Marco Aymone and Jing Zhao RMF and zeta 8 / 28



Main term: ∑
n1···nk =nk+1···n2k

nj∈S(Y )

1
(n1 · · · n2k )1/2 =

∑
m=n∈S(Y )

dk (m)dk (n)

(mn)1/2

=
∑

n∈S(Y )

dk (n)2

n
>
∏
p6Y

(
1 +

k2

p

)

= eO(k2)
∏

k26p6Y

(
1 +

k2

p

)
� eO(k2)

(
log Y
log k

)k2

= eO(k2)

(
log T

k log k

)k2

�

Joint work with Marco Aymone and Jing Zhao RMF and zeta 8 / 28



Main term: ∑
n1···nk =nk+1···n2k

nj∈S(Y )

1
(n1 · · · n2k )1/2 =

∑
m=n∈S(Y )

dk (m)dk (n)

(mn)1/2

=
∑

n∈S(Y )

dk (n)2

n
>
∏
p6Y

(
1 +

k2

p

)

= eO(k2)
∏

k26p6Y

(
1 +

k2

p

)
� eO(k2)

(
log Y
log k

)k2

= eO(k2)

(
log T

k log k

)k2

�

Joint work with Marco Aymone and Jing Zhao RMF and zeta 8 / 28



Main term: ∑
n1···nk =nk+1···n2k

nj∈S(Y )

1
(n1 · · · n2k )1/2 =

∑
m=n∈S(Y )

dk (m)dk (n)

(mn)1/2

=
∑

n∈S(Y )

dk (n)2

n
>
∏
p6Y

(
1 +

k2

p

)

= eO(k2)
∏

k26p6Y

(
1 +

k2

p

)
� eO(k2)

(
log Y
log k

)k2

= eO(k2)

(
log T

k log k

)k2

�

Joint work with Marco Aymone and Jing Zhao RMF and zeta 8 / 28



Distribution of Mf (T )

Selberg’s Central Limit Theorem: For V = ∆
√

1
2 log log T with

fixed ∆ we have

1
T
µ

({
t ∈ [T ,2T ] : |ζ(1

2 + it)| > eV
})
∼ 1√

2π

∫ ∞
∆

e−x2/2dx .

as T →∞.
Note ∆ is fixed hence V ≈

√
log log T . (Soundararajan, 2009) On

RH, the left hand side is

� exp
(
− (1 + o(1))

V 2

log log T

)
in the wider range V � log2 T log3 T . Expect distribution to
change (mildly) for larger V .
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Distribution of Mf (T )

Theorem (Aymone, H., Zhao)

For
√

log2 T log3 T 6 V 6 C log T/ log2 T we have

P
(
|Mf (T )| > eV

)
= exp

(
− (1 + o(1))

V 2

log( log T
V )

)
.

If V = ∆
√

1
2 log2 T with fixed ∆ then

P
(
|Mf (T )| > eV

)
�
∫ ∞

∆
e−x2/2dx

Joint work with Marco Aymone and Jing Zhao RMF and zeta 10 / 28



First case
√

log2 T log3 T 6 V 6 C log T/ log2 T : Use moment
bounds in uniform range

1√
log log T

6 k 6
c log T

log log T
.

E.g. For the upper bound use Chebyshev:

P
(
|Mf (T )| > eV

)
6 e−2kVE[|Mf (T )|2k ]

6 exp(−2kV − k2 log k + k2 log2 T + · · · )

and choose k = V/ log2 T .

For implicit lower bound use E
[∣∣Mf (T )

∣∣2k]
=

2k
∫ ∞
−∞

P(|M| > eu)e2kudu

∃k=k(V )
≈ 2k

∫ V (1+ε)

V (1−ε)
P(|M| > eu)e2kudu
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Gaussian bound when V = ∆
√

1
2 log log T is out of range of

moments. We use developments of Harper on Helson’s conjecture
to relate Mf (T ) to the Euler product ≈ exp(

∑
p6T f (p)p−1/2).
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Applications to zeta

Applications: Can we say anything interesting about maxima of
zeta? E.g. maxt∈[T ,2T ] |ζ(1

2 + it)|.

Going from n−it to f (n) we lose the reference to t . Taking "global"
max of random sum is no good: |Mf (T )| 6

∑
n6T

1√
n ≈
√

T .

Note for t ∈ [T ,2T ], ζ(1
2 + it) varies on a scale of 2π/ log T .

(average zeros spacing, or since
ζ(1/2 + it) ∼

∑
n6T n−1/2e−it log n).

Therefore, sampling zeta at T log T independent points should
pick up the maximum maxt∈[T ,2T ] |ζ(1

2 + it)|.
This gives us a model for the max of zeta:

max
16j6T log T

|Mfj (T )|

where the fj are independently sampled.
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A model for the max of zeta

Theorem (Aymone, H., Zhao)

Let c > 1/
√

2. Then

P
(

max
16j6T log T

|Mfj (T )| 6 exp(c
√

log T log log T )

)
= 1− o(1)

as T →∞. If c < 1/
√

2 the probability is oT→∞(1).

Compare with conjecture of (Farmer, Gonek, Hughes, 2005):

max
t∈[T ,2T ]

|ζ(1
2 + it)| = exp

(
(1 + o(1))

√
1
2 log T log log T

)
.
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Proof: Let V = c
√

log T log2 T . By independence of the fj , the
probability is

P
(
|Mf (T )| 6 eV )T log T

=
(
1− P(|Mf (T )| > eV )

)T log T

= exp
(
− T (log T ) · P(|Mf (T )| > eV ) + · · ·

)
.

Now input tail bounds for the probability. �
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Part II: Almost Sure bounds

Rademacher sums: (f (p))p prime independent random ±1’s with
equal probability, extend multiplicatively to squarefree integers,
consider partial sums

Sf (x) =
∑
n6x

f (n).

Model for
∑

n6x µ(n).
(Wintner, 1944)

Sf (x)� x1/2+ε a.s.

Improvements by Erdös, Halasz, and most recently
(Lau–Tenenbaum–Wu, Basquin, 2012):

Sf (x)� x1/2(log log x)2+ε a.s.

(Harper, 2020)

Sf (x) 6= O(x1/2(log log x)1/4−ε) a.s.
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Transferring to our case:

Mf (T )� log T (log log T )1/4+ε, a.s.

and
Mf (T ) 6= O(1) a.s.
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Theorem (Aymone, H., Zhao)
We have

Mf (T )� (log T )1/2+ε a.s.

Theorem (Aymone, H., Zhao)
We have

lim sup
T→∞

|Mf (T )|
exp(∆

√
log log T )

=∞ a.s.

for any ∆ > 0.

Upper bound – squareroot cancellation: For independent (Xn)
expect ∑

Xn
≈
�
√

E|
∑

Xn|2 a.s.

and
E[|Mf (T )|2] =

∑
n6T

1
n
≈ log T .
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Lower bound – Connection with Euler product:

Mf (T )
?
≈
∏
p6T

(
1− f (p)

√
p

)−1

≈ exp
(∑

p6T

f (p)
√

p

)

and √√√√E
[∣∣∣∣∑

p6T

f (p)
√

p

∣∣∣∣2] =

√√√√∑
p6T

1
p

=
√

log log T
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Proof ideas (Upper bound) – Main tool is Borel–Cantelli:

Theorem
Let En be some events. If

∑∞
n=1 P(En) <∞ then

P
(

En occurs for only finitely many n
)

= 1

Example: Take r.v’s (Xn) with P(Xn > V ) = e−V . Then

∞∑
n=1

P
(

Xn > (1 + ε) log n
)

=
∞∑

n=1

1
n1+ε

<∞.

Hence, Xn � log n a.s.
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For us:
P
(
|Mf (T )| > (log T )1/2+ε

)
� 1

(log T )1/4+ε
.

"Sparsify" set of points T : Consider subset (Tj) ⊂ N such that

∞∑
j=1

1
(log Tj)1/4+ε

<∞.

Made possible since Mf (T ) is slowly varying:

Lemma

Let Tj = ej4 with j > 1. Then

max
Tj−1<T6Tj

|Mf (T )−Mf (Tj−1)| � (log Tj)
1/2+ε a.s.
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Maximal inequalities
We prove this lemma in the same way using Borel-Cantelli.
Requires summable bounds on

(∗) P
(

max
Tj−1<T6Tj

∣∣∣∣ ∑
Tj−1<n6T

f (n)√
n

∣∣∣∣ > (log Tj)
1/2+ε

)
.

If f (n) were independent we could use e.g. Kolmogorov’s maximal
inequality: Xi independent, Sj =

∑
i6j Xi , then

P
(

max
16j6n

|Sj | > V
)
6

E[|Sn|2]

V 2 .

Naively applying this:

(∗) 6 1
(log Tj)1+ε

∑
Tj−1<n6Tj

1
n
�

log(Tj/Tj−1)

(log Tj)1+ε
� 1

j1+ε

recalling Tj = ej4 .
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Maximal inequalities
Lemma
Let Xi be random variables, Sj =

∑
i6j Xi and suppose there exists

α > 1, β > 0 and coefficients ui such that

P(|Sl − Sk | > V ) 6
1

V β

( ∑
k6i6l

ui

)α
for all 0 6 k 6 l 6 n. Then

P
(

max
k6n
|Sk | > V

)
6

1
V β

(∑
i6n

ui

)α
.

E[|Mf (l)−Mf (k)|2] =
∑

k<n6l

1
n
,

E[|Mf (l)−Mf (k)|4] 6

( ∑
k<n6l

d(n)

n

)2
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Interpolate:

E[|Mf (l)−Mf (k)|2+δ]
≈
6

( ∑
k<n6l

(log n)δ

n

)1+δ

.

This gives, by Chebyshev,

P(|Mf (l)−Mf (k)| > V ) 6
1

V 2+δ

( ∑
k<n6l

(log n)δ

n

)1+δ

(∗) 6 1
(log Tj)1+ε

( ∑
Tj−1<n6Tj

(log n)δ

n

)1+δ

� 1
j1+ε−2δ �
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Lower bounds

Want to show

lim sup
T→∞

|Mf (T )|
exp(∆

√
log log T )

=∞ a.s.

for any ∆ > 0.

Main tool – Kolmogorov’s Zero-One Law: Let (Xn) be independent
r.v.’s. Then A is a tail event if it is independent of X1,X2, · · · ,Xy for
any fixed y ∈ N.

e.g.∑
n

Xn converges, lim sup
n→∞

|Sn|√
n
> c.

"If A is a tail event then P(A) = 0 or 1".
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Lemma
Let λ(T )→∞. The event

Aλ =
{
|Mf (T )| ≥ exp(λ(T )) for infinitely many integers T > 0

}
is a tail event with respect to the (f (p))p prime .

Taking λ(T ) = ∆
√

log log T we have

P
(
|Mf (T )| > exp(λ(T ))

)
�
∫ ∞

∆
e−x2/2dx > 0,

and hence, since

Aλ =
∞⋂

n=1

∞⋃
T =n

[|Mf (T )| ≥ exp(∆
√

log log T )],

we have
P
(
Aλ
)
> δ > 0.

P(Aλ) = 1 by the zero-one law.
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Proof sketch of Lemma: Let f>y (n) be f (n) supported on primes
p > y . Then

Mf>y (T ) =
∑
n6T

µ(n)f6y (n)√
n

Mf (T/n)

"since"
∏

p>y =
∏

p /
∏

p6y .

Thus, if

Mf>y (T ) > eλ(T )

then
Mf (T/n) > 2−π(y)eλ(T )

for infinitely many n. Reverse inclusion similar.
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Thanks!
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