Random multiplicative functions and a model for the Riemann zeta function

Joint work with Marco Aymone and Jing Zhao

- For large $t \in[T, 2 T]$,

$$
\zeta\left(\frac{1}{2}+i t\right) \sim \sum_{n \leqslant T} \frac{1}{n^{1 / 2+i t}}
$$

Key feature: length of sum depends on height T.

- For large $t \in[T, 2 T]$,

$$
\zeta\left(\frac{1}{2}+i t\right) \sim \sum_{n \leqslant T} \frac{1}{n^{1 / 2+i t}}
$$

Key feature: length of sum depends on height T.

- Example - Moments $\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

$$
\frac{1}{T} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{-i t} d t=\mathbb{1}_{m=n}+\mathbb{1}_{m \neq n} \cdot \frac{1}{T} \frac{O(1)}{\log (m / n)}
$$

- For large $t \in[T, 2 T]$,

$$
\zeta\left(\frac{1}{2}+i t\right) \sim \sum_{n \leqslant T} \frac{1}{n^{1 / 2+i t}}
$$

Key feature: length of sum depends on height T.

- Example - Moments $\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

$$
\frac{1}{T} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{-i t} d t=\mathbb{1}_{m=n}+\mathbb{1}_{m \neq n} \cdot \frac{1}{T} \frac{O(1)}{\log (m / n)}
$$

Bad case: $m=n+1$ and $n \approx T$ then $\log (m / n) \approx 1 / T$.

- For large $t \in[T, 2 T]$,

$$
\zeta\left(\frac{1}{2}+i t\right) \sim \sum_{n \leqslant T} \frac{1}{n^{1 / 2+i t}}
$$

Key feature: length of sum depends on height T.

- Example - Moments $\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

$$
\frac{1}{T} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{-i t} d t=\mathbb{1}_{m=n}+\mathbb{1}_{m \neq n} \cdot \frac{1}{T} \frac{O(1)}{\log (m / n)}
$$

Bad case: $m=n+1$ and $n \approx T$ then $\log (m / n) \approx 1 / T$.

- Replace $n^{-i t}$ by random multiplicative $f(n)$ where the $(f(p))_{p \text { prime }}$ are independent Steinhaus random variables. $f(n)=\prod_{p^{\alpha}| | n} f(p)^{\alpha}$. E.g. $f(6)=f(2) f(3), f(12)=f(2)^{2} f(3)$.
- For large $t \in[T, 2 T]$,

$$
\zeta\left(\frac{1}{2}+i t\right) \sim \sum_{n \leqslant T} \frac{1}{n^{1 / 2+i t}}
$$

Key feature: length of sum depends on height T.

- Example - Moments $\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

$$
\frac{1}{T} \int_{T}^{2 T}\left(\frac{m}{n}\right)^{-i t} d t=\mathbb{1}_{m=n}+\mathbb{1}_{m \neq n} \cdot \frac{1}{T} \frac{O(1)}{\log (m / n)}
$$

Bad case: $m=n+1$ and $n \approx T$ then $\log (m / n) \approx 1 / T$.

- Replace $n^{-i t}$ by random multiplicative $f(n)$ where the $(f(p))_{p \text { prime }}$ are independent Steinhaus random variables. $f(n)=\prod_{p^{\alpha} \mid n} f(p)^{\alpha}$. E.g. $f(6)=f(2) f(3), f(12)=f(2)^{2} f(3)$. We have

$$
\mathbb{E}[f(m) \overline{f(n)}]=\mathbb{1}_{m=n}
$$

- Let

$$
M_{f}(T):=\sum_{n \leqslant T} \frac{f(n)}{n^{1 / 2}}
$$

and think of this as a model for $\zeta(1 / 2+i t)$.

- Let

$$
M_{f}(T):=\sum_{n \leqslant T} \frac{f(n)}{n^{1 / 2}}
$$

and think of this as a model for $\zeta(1 / 2+i t)$.

- We shall consider the following questions/problems:
(i) Moments: $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]$ for $k \in \mathbb{R}_{>0}$.
(ii) Distribution of $M_{f}(T)$.
(iii) "Independently sampled maxima":

$$
\max _{1 \leqslant j \leqslant N}\left|M_{f_{j}}(T)\right|
$$

(iv) "Almost sure" bounds.

Moments $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]$

Moments $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]$

- (Conrey-Gamburd, 2003) For $k \in \mathbb{N}$,

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \sim a(k) \gamma(k)(\log T)^{k^{2}}
$$

for some explicit constants $\boldsymbol{a}(k)$ and $\gamma(k)$.

Moments $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]$

- (Conrey-Gamburd, 2003) For $k \in \mathbb{N}$,

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \sim a(k) \gamma(k)(\log T)^{k^{2}}
$$

for some explicit constants $a(k)$ and $\gamma(k)$.

- Compare with Keating-Snaith Conjecture:

$$
\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim a(k) g(k)(\log T)^{k^{2}}
$$

Moments $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]$

- (Conrey-Gamburd, 2003) For $k \in \mathbb{N}$,

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \sim a(k) \gamma(k)(\log T)^{k^{2}}
$$

for some explicit constants $a(k)$ and $\gamma(k)$.

- Compare with Keating-Snaith Conjecture:

$$
\frac{1}{T} \int_{T}^{2 T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim a(k) g(k)(\log T)^{k^{2}}
$$

- Order: (Gerspach, 2019) for $k>0$

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \asymp_{k}(\log T)^{k^{2}}
$$

- Dependence on k is important in determining large values/distribution. For small $k \leqslant 1$, uniform version of Gerspach's result:

$$
c(\log T)^{k^{2}} \leqslant \mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \leqslant C \cdot \frac{1}{k^{2}} \cdot(\log T)^{k^{2}}
$$

- Dependence on k is important in determining large values/distribution. For small $k \leqslant 1$, uniform version of Gerspach's result:

$$
c(\log T)^{k^{2}} \leqslant \mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \leqslant C \cdot \frac{1}{k^{2}} \cdot(\log T)^{k^{2}}
$$

Large k : Conrey-Gamburd result suggests

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

- Dependence on k is important in determining large values/distribution. For small $k \leqslant 1$, uniform version of Gerspach's result:

$$
c(\log T)^{k^{2}} \leqslant \mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \leqslant C \cdot \frac{1}{k^{2}} \cdot(\log T)^{k^{2}}
$$

Large k : Conrey-Gamburd result suggests

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

- (Brevig-Bondarenko-Saksman-Seip-Zhao, 2018)

$$
e^{-(2+o(1)) k^{2} \log k} \leqslant \lim _{T \rightarrow \infty} \frac{\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]}{(\log T)^{k^{2}}} \leqslant e^{-(1+o(1)) k^{2} \log k}
$$

as $k \rightarrow \infty$.

- Dependence on k is important in determining large values/distribution. For small $k \leqslant 1$, uniform version of Gerspach's result:

$$
c(\log T)^{k^{2}} \leqslant \mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \leqslant C \cdot \frac{1}{k^{2}} \cdot(\log T)^{k^{2}}
$$

Large k : Conrey-Gamburd result suggests

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

- (Brevig-Bondarenko-Saksman-Seip-Zhao, 2018)

$$
e^{-(2+o(1)) k^{2} \log k} \leqslant \lim _{T \rightarrow \infty} \frac{\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]}{(\log T)^{k^{2}}} \leqslant e^{-(1+o(1)) k^{2} \log k}
$$

as $k \rightarrow \infty$.

- (H.-Brevig, 2019) Sharp bounds for uniformly large k. Upper bound in the range

$$
1 \leqslant k \leqslant c \log T / \log \log T
$$

and lower bound for

$$
1 \leqslant k \leqslant \sqrt{\log \log T}
$$

Theorem (Aymone, H., Zhao)
We have

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

for all real $1 \leqslant k \leqslant c \log T / \log \log T$.

Theorem (Aymone, H., Zhao)
We have

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

for all real $1 \leqslant k \leqslant c \log T / \log \log T$.

- We only need to prove the lower bound. Two features: k is real, k is large.

Theorem (Aymone, H., Zhao)
We have

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

for all real $1 \leqslant k \leqslant c \log T / \log \log T$.

- We only need to prove the lower bound. Two features: k is real, k is large.
- For first issue we interpolate to nearest integer. By Hölder:

$$
\mathbb{E}\left[|M|^{2 k}\right] \geqslant \mathbb{E}\left[|M|^{2\lfloor k\rfloor}\right]^{k /\lfloor k\rfloor}
$$

Theorem (Aymone, H., Zhao)
We have

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

for all real $1 \leqslant k \leqslant c \log T / \log \log T$.

- We only need to prove the lower bound. Two features: k is real, k is large.
- For first issue we interpolate to nearest integer. By Hölder:

$$
\mathbb{E}\left[|M|^{2 k}\right] \geqslant \mathbb{E}\left[|M|^{2[k]}\right]^{k /[k]} .
$$

If $k \geqslant \log \log T$ then

$$
(\log T)^{[k]^{2}}=(\log T)^{k^{2}+O(k)}=e^{O\left(k^{2}\right)}(\log T)^{k^{2}} .
$$

Theorem (Aymone, H., Zhao)

We have

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=e^{-k^{2} \log k-k^{2} \log \log k+O\left(k^{2}\right)}(\log T)^{k^{2}}
$$

for all real $1 \leqslant k \leqslant c \log T / \log \log T$.

- We only need to prove the lower bound. Two features: k is real, k is large.
- For first issue we interpolate to nearest integer. By Hölder:

$$
\mathbb{E}\left[|M|^{2 k}\right] \geqslant \mathbb{E}\left[|M|^{2[k]}\right]^{k /[k]} .
$$

If $k \geqslant \log \log T$ then

$$
(\log T)^{[k]^{2}}=(\log T)^{k^{2}+O(k)}=e^{O\left(k^{2}\right)}(\log T)^{k^{2}} .
$$

- For $1 \leqslant k \leqslant \log \log T$ we use less wasteful interpolation inequality (Weissler's inequality).
- So assume $k \in \mathbb{N}$. Then by orthogonality

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=\sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\ n_{j} \leqslant T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}} .
$$

- So assume $k \in \mathbb{N}$. Then by orthogonality

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=\sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\ n_{j} \leqslant T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}
$$

- Lower bound by sum in which each n_{j} is Y-smooth:

$$
p \mid n_{j} \Longrightarrow p \leqslant Y
$$

for some $Y \leqslant T$ to be chosen later.

- So assume $k \in \mathbb{N}$. Then by orthogonality

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=\sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\ n_{j} \leqslant T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}
$$

- Lower bound by sum in which each n_{j} is Y-smooth:

$$
p \mid n_{j} \Longrightarrow p \leqslant Y
$$

for some $Y \leqslant T$ to be chosen later.

- Drop condition $n_{j} \leqslant T$. Error incurred:

$$
\begin{aligned}
& \ll \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y), n_{1}>T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}} \\
& \quad \ll \frac{1}{T^{\alpha}} \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y)}} \frac{n_{1}^{\alpha}}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}} .
\end{aligned}
$$

- So assume $k \in \mathbb{N}$. Then by orthogonality

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=\sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\ n_{j} \leqslant T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}
$$

- Lower bound by sum in which each n_{j} is Y-smooth:

$$
p \mid n_{j} \Longrightarrow p \leqslant Y
$$

for some $Y \leqslant T$ to be chosen later.

- Drop condition $n_{j} \leqslant T$. Error incurred:

$$
\begin{aligned}
& \ll \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y), n_{1}>T}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}} \\
& \quad \ll \frac{1}{T^{\alpha}} \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y)}} \frac{n_{1}^{\alpha}}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}} .
\end{aligned}
$$

- Choose $\alpha=1 / \log Y$ then this is tolerable if $Y \leqslant T^{1 / c k}$ for some sufficiently large c.
- Main term:

$$
\sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\ n_{j} \in S(Y)}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}=\sum_{m=n \in S(Y)} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}}
$$

- Main term:

$$
\begin{aligned}
& \quad \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y)}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}=\sum_{m=n \in S(Y)} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}} \\
& =\sum_{n \in S(Y)} \frac{d_{k}(n)^{2}}{n} \geqslant \prod_{p \leqslant Y}\left(1+\frac{k^{2}}{p}\right)
\end{aligned}
$$

- Main term:

$$
\begin{aligned}
& \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y)}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}=\sum_{m=n \in S(Y)} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}} \\
&= \sum_{n \in S(Y)} \frac{d_{k}(n)^{2}}{n} \geqslant \prod_{p \leqslant Y}\left(1+\frac{k^{2}}{p}\right) \\
&=e^{O\left(k^{2}\right)} \prod_{k^{2} \leqslant p \leqslant Y}\left(1+\frac{k^{2}}{p}\right) \asymp e^{O\left(k^{2}\right)}\left(\frac{\log Y}{\log k}\right)^{k^{2}}
\end{aligned}
$$

- Main term:

$$
\begin{aligned}
& \sum_{\substack{n_{1} \cdots n_{k}=n_{k+1} \cdots n_{2 k} \\
n_{j} \in S(Y)}} \frac{1}{\left(n_{1} \cdots n_{2 k}\right)^{1 / 2}}=\sum_{m=n \in S(Y)} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}} \\
= & \sum_{n \in S(Y)} \frac{d_{k}(n)^{2}}{n} \geqslant \prod_{p \leqslant Y}\left(1+\frac{k^{2}}{p}\right) \\
= & e^{O\left(k^{2}\right)} \prod_{k^{2} \leqslant p \leqslant Y}\left(1+\frac{k^{2}}{p}\right) \asymp e^{O\left(k^{2}\right)}\left(\frac{\log Y}{\log k}\right)^{k^{2}} \\
& =e^{O\left(k^{2}\right)}\left(\frac{\log T}{k \log k}\right)^{k^{2}}
\end{aligned}
$$

Distribution of $M_{f}(T)$

Distribution of $M_{f}(T)$

- Selberg's Central Limit Theorem: For $V=\Delta \sqrt{\frac{1}{2} \log \log T}$ with fixed Δ we have

$$
\frac{1}{T} \mu\left(\left\{t \in[T, 2 T]:\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geqslant e^{v}\right\}\right) \sim \frac{1}{\sqrt{2 \pi}} \int_{\Delta}^{\infty} e^{-x^{2} / 2} d x .
$$

as $T \rightarrow \infty$.

Distribution of $M_{f}(T)$

- Selberg's Central Limit Theorem: For $V=\Delta \sqrt{\frac{1}{2} \log \log T}$ with fixed Δ we have

$$
\frac{1}{T} \mu\left(\left\{t \in[T, 2 T]:\left|\zeta\left(\frac{1}{2}+i t\right)\right| \geqslant e^{v}\right\}\right) \sim \frac{1}{\sqrt{2 \pi}} \int_{\Delta}^{\infty} e^{-x^{2} / 2} d x .
$$

as $T \rightarrow \infty$.

- Note Δ is fixed hence $V \approx \sqrt{\log \log T}$. (Soundararajan, 2009) On RH, the left hand side is

$$
\ll \exp \left(-(1+o(1)) \frac{V^{2}}{\log \log T}\right)
$$

in the wider range $V \ll \log _{2} T \log _{3} T$. Expect distribution to change (mildly) for larger V.

Distribution of $M_{f}(T)$

Theorem (Aymone, H., Zhao)
For $\sqrt{\log _{2} T} \log _{3} T \leqslant V \leqslant C \log T / \log _{2} T$ we have

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)=\exp \left(-(1+o(1)) \frac{V^{2}}{\log \left(\frac{\log T}{V}\right)}\right) .
$$

If $V=\Delta \sqrt{\frac{1}{2} \log _{2} T}$ with fixed Δ then

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{v}\right) \gg \int_{\Delta}^{\infty} e^{-x^{2} / 2} d x
$$

- First case $\sqrt{\log _{2} T} \log _{3} T \leqslant V \leqslant C \log T / \log _{2} T$: Use moment bounds in uniform range

$$
\frac{1}{\sqrt{\log \log T}} \leqslant k \leqslant \frac{c \log T}{\log \log T}
$$

- First case $\sqrt{\log _{2} T} \log _{3} T \leqslant V \leqslant C \log T / \log _{2} T$: Use moment bounds in uniform range

$$
\frac{1}{\sqrt{\log \log T}} \leqslant k \leqslant \frac{c \log T}{\log \log T} .
$$

- E.g. For the upper bound use Chebyshev:

$$
\begin{aligned}
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{v}\right) & \leqslant e^{-2 k v} \mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right] \\
& \leqslant \exp \left(-2 k V-k^{2} \log k+k^{2} \log _{2} T+\cdots\right)
\end{aligned}
$$

and choose $k=V / \log _{2} T$.

- First case $\sqrt{\log _{2} T} \log _{3} T \leqslant V \leqslant C \log T / \log _{2} T$: Use moment bounds in uniform range

$$
\frac{1}{\sqrt{\log \log T}} \leqslant k \leqslant \frac{c \log T}{\log \log T} .
$$

- E.g. For the upper bound use Chebyshev:

$$
\begin{aligned}
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{v}\right) & \leqslant e^{-2 k v_{\mathbb{E}}\left[\left|M_{f}(T)\right|^{2 k}\right]} \\
& \leqslant \exp \left(-2 k V-k^{2} \log k+k^{2} \log _{2} T+\cdots\right)
\end{aligned}
$$

and choose $k=V / \log _{2} T$.

- For implicit lower bound use $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=$

$$
2 k \int_{-\infty}^{\infty} \mathbb{P}\left(|M| \geqslant e^{u}\right) e^{2 k u} d u
$$

- First case $\sqrt{\log _{2} T} \log _{3} T \leqslant V \leqslant C \log T / \log _{2} T$: Use moment bounds in uniform range

$$
\frac{1}{\sqrt{\log \log T}} \leqslant k \leqslant \frac{c \log T}{\log \log T} .
$$

- E.g. For the upper bound use Chebyshev:

$$
\begin{aligned}
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{v}\right) & \leqslant e^{-2 k v_{\mathbb{E}}\left[\left|M_{f}(T)\right|^{2 k}\right]} \\
& \leqslant \exp \left(-2 k V-k^{2} \log k+k^{2} \log _{2} T+\cdots\right)
\end{aligned}
$$

and choose $k=V / \log _{2} T$.

- For implicit lower bound use $\mathbb{E}\left[\left|M_{f}(T)\right|^{2 k}\right]=$

$$
2 k \int_{-\infty}^{\infty} \mathbb{P}\left(|M| \geqslant e^{u}\right) e^{2 k u} d u \stackrel{\exists k=k(V)}{\approx} 2 k \int_{V(1-\epsilon)}^{V(1+\epsilon)} \mathbb{P}\left(|M| \geqslant e^{u}\right) e^{2 k u} d u
$$

- Gaussian bound when $V=\Delta \sqrt{\frac{1}{2} \log \log T}$ is out of range of moments. We use developments of Harper on Helson's conjecture to relate $M_{f}(T)$ to the Euler product $\approx \exp \left(\sum_{p \leqslant T} f(p) p^{-1 / 2}\right)$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- Going from $n^{-i t}$ to $f(n)$ we lose the reference to t. Taking "global" max of random sum is no good: $\left|M_{f}(T)\right| \leqslant \sum_{n \leqslant T} \frac{1}{\sqrt{n}} \approx \sqrt{T}$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- Going from $n^{-i t}$ to $f(n)$ we lose the reference to t. Taking "global" max of random sum is no good: $\left|M_{f}(T)\right| \leqslant \sum_{n \leqslant T} \frac{1}{\sqrt{n}} \approx \sqrt{T}$.
- Note for $t \in[T, 2 T], \zeta\left(\frac{1}{2}+i t\right)$ varies on a scale of $2 \pi / \log T$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- Going from $n^{-i t}$ to $f(n)$ we lose the reference to t. Taking "global" max of random sum is no good: $\left|M_{f}(T)\right| \leqslant \sum_{n \leqslant T} \frac{1}{\sqrt{n}} \approx \sqrt{T}$.
- Note for $t \in[T, 2 T], \zeta\left(\frac{1}{2}+i t\right)$ varies on a scale of $2 \pi / \log T$. (average zeros spacing, or since $\left.\zeta(1 / 2+i t) \sim \sum_{n \leqslant T} n^{-1 / 2} e^{-i t \log n}\right)$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- Going from $n^{-i t}$ to $f(n)$ we lose the reference to t. Taking "global" max of random sum is no good: $\left|M_{f}(T)\right| \leqslant \sum_{n \leqslant T} \frac{1}{\sqrt{n}} \approx \sqrt{T}$.
- Note for $t \in[T, 2 T], \zeta\left(\frac{1}{2}+i t\right)$ varies on a scale of $2 \pi / \log T$. (average zeros spacing, or since $\left.\zeta(1 / 2+i t) \sim \sum_{n \leqslant T} n^{-1 / 2} e^{-i t \log n}\right)$.
- Therefore, sampling zeta at $T \log T$ independent points should pick up the maximum $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.

Applications to zeta

- Applications: Can we say anything interesting about maxima of zeta? E.g. $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- Going from $n^{-i t}$ to $f(n)$ we lose the reference to t. Taking "global" max of random sum is no good: $\left|M_{f}(T)\right| \leqslant \sum_{n \leqslant T} \frac{1}{\sqrt{n}} \approx \sqrt{T}$.
- Note for $t \in[T, 2 T], \zeta\left(\frac{1}{2}+i t\right)$ varies on a scale of $2 \pi / \log T$. (average zeros spacing, or since $\left.\zeta(1 / 2+i t) \sim \sum_{n \leqslant T} n^{-1 / 2} e^{-i t \log n}\right)$.
- Therefore, sampling zeta at $T \log T$ independent points should pick up the maximum $\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|$.
- This gives us a model for the max of zeta:

$$
\max _{1 \leqslant j \leqslant T \log T}\left|M_{f_{j}}(T)\right|
$$

where the f_{j} are independently sampled.

A model for the max of zeta

Theorem (Aymone, H., Zhao)
Let $c \geqslant 1 / \sqrt{2}$. Then

$$
\mathbb{P}\left(\max _{1 \leqslant j \leqslant T \log T}\left|M_{f_{j}}(T)\right| \leqslant \exp (c \sqrt{\log T \log \log T})\right)=1-o(1)
$$

as $T \rightarrow \infty$. If $c<1 / \sqrt{2}$ the probability is $O_{T \rightarrow \infty}(1)$.

A model for the max of zeta

Theorem (Aymone, H., Zhao)
Let $c \geqslant 1 / \sqrt{2}$. Then

$$
\mathbb{P}\left(\max _{1 \leqslant j \leqslant T \log T}\left|M_{f_{j}}(T)\right| \leqslant \exp (c \sqrt{\log T \log \log T})\right)=1-o(1)
$$

as $T \rightarrow \infty$. If $c<1 / \sqrt{2}$ the probability is $O_{T \rightarrow \infty}(1)$.

- Compare with conjecture of (Farmer, Gonek, Hughes, 2005):

$$
\max _{t \in[T, 2 T]}\left|\zeta\left(\frac{1}{2}+i t\right)\right|=\exp \left((1+o(1)) \sqrt{\frac{1}{2} \log T \log \log T}\right)
$$

- Proof: Let $V=c \sqrt{\log T \log _{2} T}$. By independence of the f_{j}, the probability is

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \leqslant e^{V}\right)^{T \log T}=\left(1-\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)\right)^{T \log T}
$$

- Proof: Let $V=c \sqrt{\log T \log _{2} T}$. By independence of the f_{j}, the probability is

$$
\begin{aligned}
& \mathbb{P}\left(\left|M_{f}(T)\right| \leqslant e^{V}\right)^{T \log T}=\left(1-\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)\right)^{T \log T} \\
& \quad=\exp \left(-T(\log T) \cdot \mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)+\cdots\right) .
\end{aligned}
$$

- Proof: Let $V=c \sqrt{\log T \log _{2} T}$. By independence of the f_{j}, the probability is

$$
\begin{aligned}
& \mathbb{P}\left(\left|M_{f}(T)\right| \leqslant e^{V}\right)^{T \log T}=\left(1-\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)\right)^{T \log T} \\
& \quad=\exp \left(-T(\log T) \cdot \mathbb{P}\left(\left|M_{f}(T)\right| \geqslant e^{V}\right)+\cdots\right)
\end{aligned}
$$

Now input tail bounds for the probability.

Part II: Almost Sure bounds

Part II: Almost Sure bounds

- Rademacher sums: $(f(p))_{p \text { prime }}$ independent random ± 1 's with equal probability, extend multiplicatively to squarefree integers, consider partial sums

$$
S_{f}(x)=\sum_{n \leqslant x} f(n) .
$$

Model for $\sum_{n \leqslant x} \mu(n)$.

Part II: Almost Sure bounds

- Rademacher sums: $(f(p))_{p \text { prime }}$ independent random ± 1 's with equal probability, extend multiplicatively to squarefree integers, consider partial sums

$$
S_{f}(x)=\sum_{n \leqslant x} f(n)
$$

Model for $\sum_{n \leqslant x} \mu(n)$.

- (Wintner, 1944)

$$
S_{f}(x) \ll x^{1 / 2+\epsilon} \quad \text { a.s. }
$$

Improvements by Erdös, Halasz, and most recently (Lau-Tenenbaum-Wu, Basquin, 2012):

$$
S_{f}(x) \ll x^{1 / 2}(\log \log x)^{2+\epsilon} \quad \text { a.s. }
$$

Part II: Almost Sure bounds

- Rademacher sums: $(f(p))_{p \text { prime }}$ independent random ± 1 's with equal probability, extend multiplicatively to squarefree integers, consider partial sums

$$
S_{f}(x)=\sum_{n \leqslant x} f(n)
$$

Model for $\sum_{n \leqslant x} \mu(n)$.

- (Wintner, 1944)

$$
S_{f}(x) \ll x^{1 / 2+\epsilon} \quad \text { a.s. }
$$

Improvements by Erdös, Halasz, and most recently
(Lau-Tenenbaum-Wu, Basquin, 2012):

$$
S_{f}(x) \ll x^{1 / 2}(\log \log x)^{2+\epsilon} \quad \text { a.s. }
$$

- (Harper, 2020)

$$
S_{f}(x) \neq O\left(x^{1 / 2}(\log \log x)^{1 / 4-\epsilon}\right) \quad \text { a.s. }
$$

- Transferring to our case:

$$
M_{f}(T) \ll \log T(\log \log T)^{1 / 4+\epsilon}, \quad \text { a.s. }
$$

and

$$
M_{f}(T) \neq O(1) \quad \text { a.s. }
$$

Theorem (Aymone, H., Zhao)
We have

$$
M_{f}(T) \ll(\log T)^{1 / 2+\epsilon} \quad \text { a.s. }
$$

Theorem (Aymone, H., Zhao)
We have

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

Theorem (Aymone, H., Zhao)

We have

$$
M_{f}(T) \ll(\log T)^{1 / 2+\epsilon} \quad \text { a.s. }
$$

Theorem (Aymone, H., Zhao)
We have

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

- Upper bound - squareroot cancellation: For independent $\left(X_{n}\right)$ expect

$$
\sum X_{n} \widetilde{\widetilde{<}} \sqrt{\mathbb{E}\left|\sum X_{n}\right|^{2}} \quad \text { a.s. }
$$

and

$$
\mathbb{E}\left[\left|M_{f}(T)\right|^{2}\right]=\sum_{n \leqslant T} \frac{1}{n} \approx \log T .
$$

- Lower bound - Connection with Euler product:

$$
M_{f}(T) \stackrel{?}{\approx} \prod_{p \leqslant T}\left(1-\frac{f(p)}{\sqrt{p}}\right)^{-1} \approx \exp \left(\sum_{p \leqslant T} \frac{f(p)}{\sqrt{p}}\right)
$$

and

$$
\sqrt{\mathbb{E}\left[\left|\sum_{p \leqslant T} \frac{f(p)}{\sqrt{p}}\right|^{2}\right]}=\sqrt{\sum_{p \leqslant T} \frac{1}{p}}=\sqrt{\log \log T}
$$

- Proof ideas (Upper bound) - Main tool is Borel-Cantelli:

Theorem

Let E_{n} be some events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)<\infty$ then

$$
\mathbb{P}\left(E_{n} \text { occurs for only finitely many } n\right)=1
$$

- Proof ideas (Upper bound) - Main tool is Borel-Cantelli:

Theorem

Let E_{n} be some events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)<\infty$ then

$$
\mathbb{P}\left(E_{n} \text { occurs for only finitely many } n\right)=1
$$

- Example: Take r.v's $\left(X_{n}\right)$ with $\mathbb{P}\left(X_{n} \geqslant V\right)=e^{-V}$. Then

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n} \geqslant(1+\epsilon) \log n\right)=\sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}}<\infty
$$

- Proof ideas (Upper bound) - Main tool is Borel-Cantelli:

Theorem

Let E_{n} be some events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)<\infty$ then

$$
\mathbb{P}\left(E_{n} \text { occurs for only finitely many } n\right)=1
$$

- Example: Take r.v's $\left(X_{n}\right)$ with $\mathbb{P}\left(X_{n} \geqslant V\right)=e^{-V}$. Then

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n} \geqslant(1+\epsilon) \log n\right)=\sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}}<\infty
$$

Hence, $X_{n} \ll \log n$ a.s.

- For us:

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant(\log T)^{1 / 2+\epsilon}\right) \ll \frac{1}{(\log T)^{1 / 4+\epsilon}}
$$

- For us:

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant(\log T)^{1 / 2+\epsilon}\right) \ll \frac{1}{(\log T)^{1 / 4+\epsilon}}
$$

- "Sparsify" set of points T : Consider subset $\left(T_{j}\right) \subset \mathbb{N}$ such that

$$
\sum_{j=1}^{\infty} \frac{1}{\left(\log T_{j}\right)^{1 / 4+\epsilon}}<\infty
$$

- For us:

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant(\log T)^{1 / 2+\epsilon}\right) \ll \frac{1}{(\log T)^{1 / 4+\epsilon}}
$$

- "Sparsify" set of points T : Consider subset $\left(T_{j}\right) \subset \mathbb{N}$ such that

$$
\sum_{j=1}^{\infty} \frac{1}{\left(\log T_{j}\right)^{1 / 4+\epsilon}}<\infty
$$

- Made possible since $M_{f}(T)$ is slowly varying:

Lemma

Let $T_{j}=e^{j^{4}}$ with $j \geqslant 1$. Then

$$
\max _{T_{j-1}<T \leqslant T_{j}}\left|M_{f}(T)-M_{f}\left(T_{j-1}\right)\right| \ll\left(\log T_{j}\right)^{1 / 2+\epsilon} \quad \text { a.s. }
$$

Maximal inequalities

- We prove this lemma in the same way using Borel-Cantelli. Requires summable bounds on
(*) $\quad \mathbb{P}\left(\max _{T_{j-1}<T \leqslant T_{j}}\left|\sum_{T_{j-1}<n \leqslant T} \frac{f(n)}{\sqrt{n}}\right| \geqslant\left(\log T_{j}\right)^{1 / 2+\epsilon}\right)$.

Maximal inequalities

- We prove this lemma in the same way using Borel-Cantelli.

Requires summable bounds on
(*) $\quad \mathbb{P}\left(\max _{T_{j-1}<T \leqslant T_{j}}\left|\sum_{T_{j-1}<n \leqslant T} \frac{f(n)}{\sqrt{n}}\right| \geqslant\left(\log T_{j}\right)^{1 / 2+\epsilon}\right)$.

- If $f(n)$ were independent we could use e.g. Kolmogorov's maximal inequality: X_{i} independent, $S_{j}=\sum_{i \leqslant j} X_{i}$, then

$$
\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}\right| \geqslant V\right) \leqslant \frac{\mathbb{E}\left[\left|S_{n}\right|^{2}\right]}{V^{2}}
$$

Maximal inequalities

- We prove this lemma in the same way using Borel-Cantelli.

Requires summable bounds on
(*) $\quad \mathbb{P}\left(\max _{T_{j-1}<T \leqslant T_{j}}\left|\sum_{T_{j-1}<n \leqslant T} \frac{f(n)}{\sqrt{n}}\right| \geqslant\left(\log T_{j}\right)^{1 / 2+\epsilon}\right)$.

- If $f(n)$ were independent we could use e.g. Kolmogorov's maximal inequality: X_{i} independent, $S_{j}=\sum_{i \leqslant j} X_{i}$, then

$$
\mathbb{P}\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}\right| \geqslant V\right) \leqslant \frac{\mathbb{E}\left[\left|S_{n}\right|^{2}\right]}{V^{2}}
$$

- Naively applying this:

$$
(*) \leqslant \frac{1}{\left(\log T_{j}\right)^{1+\epsilon}} \sum_{T_{j-1}<n \leqslant T_{j}} \frac{1}{n} \ll \frac{\log \left(T_{j} / T_{j-1}\right)}{\left(\log T_{j}\right)^{1+\epsilon}} \ll \frac{1}{j^{1+\epsilon}}
$$

recalling $T_{j}=e^{j^{4}}$.

Maximal inequalities

Lemma

Let X_{i} be random variables, $S_{j}=\sum_{i \leqslant j} X_{i}$ and suppose there exists $\alpha>1, \beta>0$ and coefficients u_{i} such that

$$
\mathbb{P}\left(\left|S_{I}-S_{k}\right| \geqslant V\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{k \leqslant i \leqslant 1} u_{i}\right)^{\alpha}
$$

for all $0 \leqslant k \leqslant 1 \leqslant n$. Then

$$
\mathbb{P}\left(\max _{k \leqslant n}\left|S_{k}\right| \geqslant v\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{i \leqslant n} u_{i}\right)^{\alpha} .
$$

Maximal inequalities

Lemma

Let X_{i} be random variables, $S_{j}=\sum_{i \leq j} X_{i}$ and suppose there exists $\alpha>1, \beta>0$ and coefficients u_{i} such that

$$
\mathbb{P}\left(\left|S_{I}-S_{k}\right| \geqslant V\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{k \leqslant i \leqslant 1} u_{i}\right)^{\alpha}
$$

for all $0 \leqslant k \leqslant 1 \leqslant n$. Then

$$
\mathbb{P}\left(\max _{k \leqslant n}\left|S_{k}\right| \geqslant v\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{i \leqslant n} u_{i}\right)^{\alpha} .
$$

$$
\mathbb{E}\left[\left|M_{f}(l)-M_{f}(k)\right|^{2}\right]=\sum_{k<n \leqslant 1} \frac{1}{n},
$$

Maximal inequalities

Lemma

Let X_{i} be random variables, $S_{j}=\sum_{i \leq j} X_{i}$ and suppose there exists $\alpha>1, \beta>0$ and coefficients u_{i} such that

$$
\mathbb{P}\left(\left|S_{I}-S_{k}\right| \geqslant V\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{k \leqslant i \leqslant 1} u_{i}\right)^{\alpha}
$$

for all $0 \leqslant k \leqslant 1 \leqslant n$. Then

$$
\mathbb{P}\left(\max _{k \leqslant n}\left|S_{k}\right| \geqslant v\right) \leqslant \frac{1}{V^{\beta}}\left(\sum_{i \leqslant n} u_{i}\right)^{\alpha} .
$$

$$
\mathbb{E}\left[\left|M_{f}(I)-M_{f}(k)\right|^{2}\right]=\sum_{k<n \leqslant 1} \frac{1}{n}, \mathbb{E}\left[\left|M_{f}(I)-M_{f}(k)\right|^{4}\right] \leqslant\left(\sum_{k<n \leqslant 1} \frac{d(n)}{n}\right)^{2}
$$

- Interpolate:

$$
\mathbb{E}\left[\left|M_{f}(I)-M_{f}(k)\right|^{2+\delta}\right] \approx\left(\sum_{k<n \leqslant l} \frac{(\log n)^{\delta}}{n}\right)^{1+\delta}
$$

This gives, by Chebyshev,

$$
\mathbb{P}\left(\left|M_{f}(I)-M_{f}(k)\right| \geqslant V\right) \leqslant \frac{1}{V^{2+\delta}}\left(\sum_{k<n \leqslant 1} \frac{(\log n)^{\delta}}{n}\right)^{1+\delta}
$$

- Interpolate:

$$
\mathbb{E}\left[\left|M_{f}(I)-M_{f}(k)\right|^{2+\delta}\right] \approx\left(\sum_{k<n \leqslant l} \frac{(\log n)^{\delta}}{n}\right)^{1+\delta}
$$

This gives, by Chebyshev,

$$
\begin{aligned}
& \mathbb{P}\left(\left|M_{f}(I)-M_{f}(k)\right| \geqslant V\right) \leqslant \frac{1}{V^{2+\delta}}\left(\sum_{k<n \leqslant 1} \frac{(\log n)^{\delta}}{n}\right)^{1+\delta} \\
& (*) \leqslant \frac{1}{\left(\log T_{j}\right)^{1+\epsilon}}\left(\sum_{T_{j-1}<n \leqslant T_{j}} \frac{(\log n)^{\delta}}{n}\right)^{1+\delta} \ll \frac{1}{j^{1+\epsilon-2 \delta}} \square
\end{aligned}
$$

Lower bounds

- Want to show

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

Lower bounds

- Want to show

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

- Main tool - Kolmogorov's Zero-One Law: Let $\left(X_{n}\right)$ be independent r.v.'s. Then \mathcal{A} is a tail event if it is independent of $X_{1}, X_{2}, \cdots, X_{y}$ for any fixed $y \in \mathbb{N}$.

Lower bounds

- Want to show

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

- Main tool - Kolmogorov's Zero-One Law: Let $\left(X_{n}\right)$ be independent r.v.'s. Then \mathcal{A} is a tail event if it is independent of $X_{1}, X_{2}, \cdots, X_{y}$ for any fixed $y \in \mathbb{N}$. e.g.

$$
\sum_{n} x_{n} \text { converges }
$$

Lower bounds

- Want to show

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

- Main tool - Kolmogorov's Zero-One Law: Let $\left(X_{n}\right)$ be independent r.v.'s. Then \mathcal{A} is a tail event if it is independent of $X_{1}, X_{2}, \cdots, X_{y}$ for any fixed $y \in \mathbb{N}$. e.g.

$$
\sum_{n} X_{n} \text { converges, } \quad \limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\sqrt{n}} \geqslant c
$$

Lower bounds

- Want to show

$$
\limsup _{T \rightarrow \infty} \frac{\left|M_{f}(T)\right|}{\exp (\Delta \sqrt{\log \log T})}=\infty \quad \text { a.s. }
$$

for any $\Delta>0$.

- Main tool - Kolmogorov's Zero-One Law: Let $\left(X_{n}\right)$ be independent r.v.'s. Then \mathcal{A} is a tail event if it is independent of $X_{1}, X_{2}, \cdots, X_{y}$ for any fixed $y \in \mathbb{N}$. e.g.

$$
\sum_{n} x_{n} \text { converges, } \quad \limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\sqrt{n}} \geqslant c
$$

"If \mathcal{A} is a tail event then $\mathbb{P}(\mathcal{A})=0$ or 1 ".

Lemma

Let $\lambda(T) \rightarrow \infty$. The event

$$
\mathcal{A}_{\lambda}=\left\{\left|M_{f}(T)\right| \geq \exp (\lambda(T)) \text { for infinitely many integers } T>0\right\}
$$

is a tail event with respect to the $(f(p))_{p \text { prime }}$.

Lemma

Let $\lambda(T) \rightarrow \infty$. The event

$$
\mathcal{A}_{\lambda}=\left\{\left|M_{f}(T)\right| \geq \exp (\lambda(T)) \text { for infinitely many integers } T>0\right\}
$$

is a tail event with respect to the $(f(p))_{p \text { prime }}$.

- Taking $\lambda(T)=\Delta \sqrt{\log \log T}$ we have

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant \exp (\lambda(T))\right) \gg \int_{\Delta}^{\infty} e^{-x^{2} / 2} d x>0,
$$

and hence, since

$$
\mathcal{A}_{\lambda}=\bigcap_{n=1}^{\infty} \bigcup_{T=n}^{\infty}\left[\left|M_{f}(T)\right| \geq \exp (\Delta \sqrt{\log \log T})\right],
$$

we have

$$
\mathbb{P}\left(\mathcal{A}_{\lambda}\right) \geqslant \delta>0 .
$$

Lemma

Let $\lambda(T) \rightarrow \infty$. The event

$$
\mathcal{A}_{\lambda}=\left\{\left|M_{f}(T)\right| \geq \exp (\lambda(T)) \text { for infinitely many integers } T>0\right\}
$$

is a tail event with respect to the $(f(p))_{p \text { prime }}$.

- Taking $\lambda(T)=\Delta \sqrt{\log \log T}$ we have

$$
\mathbb{P}\left(\left|M_{f}(T)\right| \geqslant \exp (\lambda(T))\right) \gg \int_{\Delta}^{\infty} e^{-x^{2} / 2} d x>0,
$$

and hence, since

$$
\mathcal{A}_{\lambda}=\bigcap_{n=1}^{\infty} \bigcup_{T=n}^{\infty}\left[\left|M_{f}(T)\right| \geq \exp (\Delta \sqrt{\log \log T})\right],
$$

we have

$$
\mathbb{P}\left(\mathcal{A}_{\lambda}\right) \geqslant \delta>0 .
$$

- $\mathbb{P}\left(\mathcal{A}_{\lambda}\right)=1$ by the zero-one law.
- Proof sketch of Lemma: Let $t_{\geqslant y}(n)$ be $f(n)$ supported on primes $p \geqslant y$. Then

$$
M_{f_{\geqslant y}}(T)=\sum_{n \leqslant T} \frac{\mu(n) f_{\leqslant y}(n)}{\sqrt{n}} M_{f}(T / n)
$$

"since" $\prod_{p \geqslant y}=\prod_{p} / \prod_{p \leqslant y}$.

- Proof sketch of Lemma: Let $t_{\geqslant y}(n)$ be $f(n)$ supported on primes $p \geqslant y$. Then

$$
M_{\neq y}(T)=\sum_{n \leqslant T} \frac{\mu(n) f_{\leqslant y}(n)}{\sqrt{n}} M_{f}(T / n)
$$

"since" $\prod_{p \geqslant y}=\prod_{p} / \prod_{p \leqslant y}$. Thus, if

$$
M_{t_{\geqslant y}}(T) \geqslant e^{\lambda(T)}
$$

then

$$
M_{f}(T / n) \geqslant 2^{-\pi(y)} e^{\lambda(T)}
$$

for infinitely many n. Reverse inclusion similar.

- Thanks!

