On an operator theoretic proof of the Prime Number Theorem

Jan-Fredrik Olsen Lund University

16 June, 2021

OVERVIEW

- Background
 - Some facts on the Riemann zeta function.
 - ► Tauberian approach.
- ► Main part
 - Operator theoretic tauberian theorem (w/proof)
 - Deduction of the prime number theorem
- Remarks
 - Connection to function spaces of Dirichlet series.
 - Possible connection to Quantum Harmonic Analysis.

Hadamard, de la Vallé Poussin (1896)

Let $\pi_{\mathbb{P}}$ be the counting function for the prime numbers. Then γ

 $\pi_{\mathbb{P}}(x) \sim \frac{x}{\log x}.$

A selection of the history of the PNT:

Euler (1737)

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

Chebyshev (1851-52)

$$0.89 \cdot \frac{x}{\log x} \le \pi_{\mathbb{P}}(x) \le 1.11 \cdot \frac{x}{\log x}, \qquad x \to \infty$$

Riemann (1859) $\zeta(s) = \frac{1}{s-1} + \phi(s), \qquad \phi \text{ entire}$

von Mangoldt (1894) The statement " $\zeta(s) = 0 \implies \text{Re} s < 1$ " implies the PNT.

Hadamard, de la Vallé Poussin (1896)

 $\zeta(s) = 0 \implies \operatorname{Re} s < 1.$

Hadamard, de la Vallé Poussin (1896)

Let $\pi_{\mathbb{P}}$ be the counting function for the prime numbers. Then x

$$\pi_{\mathbb{P}}(x) \sim \frac{x}{\log x}.$$

A selection of the history of the PNT:

▶ 1907: E. Landau came up with the tauberian approach.

Landau (1907) Suppose:

- ▶ $a_n \ge 0$ for all $n \in \mathbb{N}$.
- ► $G(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ converges on $\operatorname{Re}(s) > 1$.
- ► G(s) A/(s-1) has analytic continuation to $\operatorname{Re}(s) = 1$ for $A \ge 0$.

•
$$G(s) = \mathcal{O}(|s|^{\alpha})$$
 for some $\alpha > 0$ on $\operatorname{Re}(s) = 1$.

Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k = A.$$

- Proof involves delicate analysis.
- ► Can be used to prove PNT.

Hadamard, de la Vallé Poussin (1896)

Let $\pi_{\mathbb{P}}$ be the counting function for the prime numbers. Then x

$$\pi_{\mathbb{P}}(x) \sim \frac{x}{\log x}.$$

A selection of the history of the PNT:

▶ 1907: E. Landau came up with the tauberian approach.

Landau-Ikehara (1931) Suppose:

- ▶ $a_n \ge 0$ for all $n \in \mathbb{N}$.
- ► $G(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ converges on $\operatorname{Re}(s) > 1$.
- ► G(s) A/(s-1) has analytic continuation to $\operatorname{Re}(s) = 1$ for $A \ge 0$.

 $G(s) = \mathcal{O}(|s|^{\alpha})$ for some $\alpha > 0$ on $\operatorname{Re}(s) = 1$.

Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k = A.$$

- Proof involves delicate analysis.
- ► Can be used to prove PNT.

Hadamard, de la Vallé Poussin (1896)

Let $\pi_{\mathbb{P}}$ be the counting function for the prime numbers. Then x

$$\pi_{\mathbb{P}}(x) \sim \frac{x}{\log x}.$$

A selection of the history of the PNT:

▶ 1907: E. Landau came up with the tauberian approach.

Landau-Ikehara-Wiener (1932) Suppose:

- ► S(u) a non-decreasing function on $[0, \infty)$.
- ► $G(s) = \mathcal{L}\{dS(u)\}(s)$ converges on $\operatorname{Re}(s) > 1$.
- ► G(s) A/(s-1) has analytic continuation to $\operatorname{Re}(s) = 1$ for $A \ge 0$.

Then

$$\lim_{u\to\infty}\frac{S(u)}{\mathrm{e}^u}=A.$$

- Proof involves delicate analysis.
- ► Can be used to prove PNT.

Hadamard, de la Vallé Poussin (1896)

Let $\pi_{\mathbb{P}}$ be the counting function for the prime numbers. Then χ

$$\pi_{\mathbb{P}}(x) \sim \frac{x}{\log x}.$$

A selection of the history of the PNT:

▶ 1907: E. Landau came up with the tauberian approach.

Landau-Ikehara-Wiener-Korevaar (2005) Suppose:

- ► S(u) a non-decreasing function on $[0, \infty)$,
- ► $G(s) = \mathcal{L}{S(u)}(s)$ converges on $\operatorname{Re}(s) > 1$.

Then

 G(s) − A/(s − 1) extends to a pseudo-function on all finite intervals on Re(s) = 1

if and only if

$$\lim_{u\to\infty}\frac{S(u)}{\mathrm{e}^u}=A.$$

- Proof involves delicate analysis.
- Can be used to prove PNT.

OPERATOR THEORETIC APPROACH

Definition Suppose

- ► S(x) defined on $[0, \infty)$.
- ► $G(s) = \mathcal{L}{S(e^u)}(s)$ converges on $\operatorname{Re}(s) > 1$.

For T > 0, we define the following operators on $L^2(-T, T)$:

$$W_{S,T,\epsilon}f = \frac{1}{\pi} \int_{-T}^{T} f(\tau) \operatorname{Re} G\Big(1 + \epsilon + \mathbf{i}(t-\tau)\Big) d\tau \qquad (\epsilon > 0)$$

 $W_{S,T}f = \lim_{\epsilon \to 0^+} W_{S,T,\epsilon}f.$

Theorem

Suppose:

► S(x) a non-decreasing function on $[0, \infty)$.

►
$$G(s) = \mathcal{L}{S(e^u)}(s)$$
 converges on $\operatorname{Re}(s) > 1$.

Then

• $W_{S,T} = A \cdot Id_{L^2(-T,T)} + \Phi_{S,T}$ for A > 0 and $\Phi_{S,T}$ compact for all T > 0 large enough

if and only if

$$\lim_{x\to\infty}\frac{S(u)}{\mathbf{e}^u}=A.$$

► Proof.

REMARKS

Connection to function spaces of Dirichlet series Definition

$$\mathcal{H}_w = \left\{ f(s) = \sum_{n \in \mathbb{N}} a_n n^{-s} : \sum_{n \in \mathbb{N}} |a_n|^2 / w_n < \infty \right\}.$$

► Suppose that all functions in H_w are analytic on Res > 1/2 and on a dense subset of H_w ⊕ H_w define the operator

$$E_T f(t) = f(1/2 + \mathrm{i}t)$$

Theorem (O. 2012)

(i) E_T is bounded from \mathcal{H}_w to $L^2(-T, T)$ for all T > 0 if and only if

$$\sum_{n\leq x}w_n\lesssim x \quad \text{as} \quad x\to\infty.$$

(ii) Such E_T are onto $L^2(-T, T)$ for T > 0 sufficiently large if and only if

$$\sum_{n\leq x} w_n \gtrsim x$$
 as $x \to \infty$.

The connection to the current discussion is the following:

$$W_{T,S} = E_T^* E_T + \Phi_T,$$

where Φ_T is compact and $S(x) = \sum_{n \le x} w_n$.

Theorem (O. 2012)

- (i) $E_T^* E_T$ bounded on $L^2(-T, T)$ for all $T > 0 \iff \sum_{n \le x} w_n \le x$
- (ii) $E_T^* E_T$ bounded below on $L^2(-T, T)$ for T > 0 large $\iff \sum_{n < x} w_n \gtrsim x$

REMARKS

Connection to function spaces of Dirichlet series Definition

$$\mathcal{H}_w = \left\{ f(s) = \sum_{n \in \mathbb{N}} a_n n^{-s} : \sum_{n \in \mathbb{N}} |a_n|^2 / w_n < \infty \right\}.$$

► Suppose that all functions in H_w are analytic on Res > 1/2 and on a dense subset of H_w ⊕ H_w define the operator

$$E_T f(t) = f(1/2 + \mathrm{i}t)$$

Theorem (O. 2012)

(i) E_T is bounded from \mathcal{H}_w to $L^2(-T, T)$ for all T > 0 if and only if

$$\sum_{n\leq x}w_n\lesssim x \quad \text{as} \quad x\to\infty.$$

(ii) Such E_T are onto $L^2(-T, T)$ for T > 0 sufficiently large if and only if

$$\sum_{n\leq x} w_n \gtrsim x$$
 as $x \to \infty$.

The connection to the current discussion is the following:

$$W_{T,S} = E_T^* E_T + \Phi_T,$$

where Φ_T is compact and $S(u) = \sum_{n < e^u} w_n.$

Theorem

- (i) $W_{S,T}$ bounded on $L^2(-T,T)$ for all $T > 0 \iff \sup \frac{S(e^u)}{e^u} < \infty$
- (ii) $W_{S,T}$ bounded below on $L^2(-T,T)$ for T > 0 large $\iff \inf \frac{S(e^u)}{e^u} > 0$.
 - ► Also exists version where *L*² is replaced by Sobolev spaces.

REMARKS

Connections to Quantum Harmonic Analysis:

► Ikehara's proof uses Wiener's tauberian theorem.

Theorem (Wiener, 1932)

Suppose $f \in L^{\infty}(\mathbb{R}^d)$. Then

(i) $\exists h \in L^1(\mathbb{R}^d)$ such that $\hat{h} \neq 0$ and $(h * f)(x) = A \int_{\mathbb{R}} h(y) dy + o(1)$.

implies

(ii) $\forall h \in L^1(\mathbb{R}^d)$ we have $(h * f)(x) = A \int_{\mathbb{R}} h(y) dy + o(1)$.

- In 1984, Werner established operator analogue in the context of "Quantum Harmonic Analysis".
- There are several versions, here is one:

Theorem (Werner, 1984)

Suppose $f \in L^{\infty}(\mathbb{R}^{2d})$. Then

 $\exists S \in S^1$ such that $\mathcal{F}_W(S) \neq 0$ and $f \star S = A \cdot tr(S) \cdot Id + K$,

implies

$$\forall S \in S^1$$
 we have $f \star S = A \cdot tr(S) \cdot Id + K_S$,

where *K* and *K*^{*S*} are compact operators on $L^2(\mathbb{R}^{2d})$.

 Joint with Luef and Skrettingland, an investigation into possible connections are under investigation.

Thank you for your attention!

