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Our problem

Goal: Describe idempotent Fourier multipliers that act contractively on
Hp(Td) for 1 ≤ p ≤ ∞, p ̸= 2, and d ≥ 1.

First an easier problem:
Describe idempotent Fourier multipliers that act contractively on Lp(Td).

Some notation and terminology: We represent functions f in Lp(Td) by their
Fourier series f(z) ∼

∑
α∈Zd f̂(α) zα, where

f̂(α) :=

∫
Td

f(z) zα dmd(z)

andmd denotes the Haar measure of the d-dimensional torus Td. For Λ a
non-empty subset of Zd,

PΛf(z) :=
∑
α∈Λ

f̂(α)zα.

We say that Λ is a contractive projection set for Lp(Td) when PΛ extends to a
contraction on Lp(Td). A subset Λ of Zd is a coset in Zd if Λ is equal to the
coset of a subgroup of (Zd,+).
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Contractive projection sets for Lp(Td)

Theorem (After Andô (1965) and Rudin (1962))
Let d be a non-negative integer and fix 1 ≤ p ≤ ∞, p ̸= 2. A subset Λ of Zd

is a contractive projection set for Lp(Td) if and only if Λ is a coset in Zd.
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The proof of the Lp theorem—necessity

Lemma (Linear reflection)
Fix 1 ≤ p ≤ ∞, p ̸= 2, and set cp := 2/p− 1. Then

∥cpεz + 1 + εz∥p < ∥1 + εz∥p

for every sufficiently small ε > 0.

Lemma (Triangular reflection)
Fix 1 ≤ p < ∞, p ̸= 2, and set cp := 1− p/2.

∥1 + ε(z1 + z2) + cp ε
2z1z2∥p < ∥1 + ε(z1 + z2)∥p

for every sufficiently small ε > 0.

Think of the z above as zα−β with α, β in Γ. Then all linear and triangular
reflections constitute the 1-extension of Γ.
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Illustration of extension by linear and triangular reflections

x

y

Figure: The points λ obtained by linear and triangular reflection starting from the set
Γ = {(3, 0, 0), (0, 3, 0), (1, 1, 1)}, in the plane z = 3− x− y. The shaded triangle
represents the intersection of this plane and the narrow cone.
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Frequently encountered examples

F. Wiener’s inequality, appearing already in classical work of Bohr’s
(1914): The case d = 1 of the above theorem.

Pf(z) =
∑
k∈Z

f̂(kn)zkn =
1

n

n−1∑
j=0

f(zwj)

where w is primitive n’th root of unity.
The restriction to them-homogeneous terms of a power series in d
variables.

Pf(z) =

∫
T
f(z1ζ, z2ζ, . . . , zdζ) ζm dm1(ζ)
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Contractive projection sets for Hp(Td)

Hp(Td) is the subspace of Lp(Td) comprised of functions f with
f̂(α) = 0 for every α in Zd \ Nd

0, where N0 := {0, 1, 2, . . .}.
A subset Λ of Nd

0 is a contractive projection set for Hp(Td) if PΛ

extends to a contraction onHp(Td).
If Λ is a coset in Zd, then Λ ∩ Nd

0 is a contractive projection set forHp(Td).
Question: Are there other contractive projection sets forHp(Td)?
The dimension of the affine span of Λ, dim(Λ) plays a nontrivial role in this
problem.

Definition
Suppose that 1 ≤ k ≤ d. We say that Hp(Td) enjoys the contractive
restriction property of dimension k if every k-dimensional contractive
projection set forHp(Td) is of the form Λ ∩ Nd

0 with Λ a coset in Zd.
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Main theorem (from low to high dimensions)

Theorem

Suppose that 1 ≤ p ≤ ∞.
(a) If d = 2 or k = 1, then Hp(Td) enjoys the contractive restriction

property of dimension k if and only if p ̸= 2.
(b) If either d = k = 3 or d ≥ 3 and k = 2, then Hp(Td) enjoys the

contractive restriction property of dimension k if and only if p ̸= 2, 4.
(c) If d ≥ 4 and k ≥ 3, then Hp(Td) enjoys the contractive restriction

property of dimension k if and only if p is not an even integer.

The hardest part of the theorem is item (b) which can be thought of as
representing the two cases of intermediate dimension, namely d = k = 3 and
d ≥ 3, k = 2. These two cases require completely different methods ...
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The geometry of the case p = 2n

Let Γ be a non-empty subset of Nd
0 and suppose that λ is in Λ(Γ), which is the

coset generated by Γ. The distance from Γ to λ is

d(Γ, λ) := infmax

 ∑
mγ,α>0

mγ,α,−
∑

mγ,α<0

mγ,α


where the infimum is taken over all possible representations

λ = γ +
∑
α∈Γ
α ̸=γ

mγ,α(α− γ), γ ∈ Γ.

For a non-negative integer n, the n-extension of Γ is

En(Γ) :=
{
λ ∈ Λ(Γ) ∩ Nd

0 : d(Γ, λ) ≤ n
}
.
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An effective result

Theorem
Let n ∈ N. A set Γ in Nd

0 is a contractive projection set for H2(n+1)(Td) if
and only if En(Γ) = Γ.
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Example: E1(Γ) = Γ and E2(Γ) ̸= Γ

x

y

Figure: Points λ which satisfy d(Γ, λ) = 1 and d(Γ, λ) = 2 for
Γ = {(3, 0, 0), (0, 3, 0), (1, 1, 1)}, in the plane z = 3− x− y. The shaded triangle
represents the intersection of this plane and the narrow cone Nd

0.
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Duality formulation for 1 ≤ p < ∞

Lemma

Fix 1 ≤ p < ∞ and d ≥ 1. A set of frequencies Γ in Nd
0 is a contractive

projection set for Hp(Td) if and only if∫
Td

|f(z)|p−2f(z) zλ dmd(z) = 0

for every f in Hp(Td) of the form f(z) =
∑

γ∈Γ aγz
γ and every λ in(

Λ(Γ) ∩ Nd
0

)
\ Γ.

The fact that Γ in Nd
0 is a contractive projection set forH2(n+1)(Td) if

and only if En(Γ) = Γ is a geometric reformulation of this result.
The case 1 ≤ p < ∞, p ̸= 2n, follows almost immediately (next slide).
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The case 1 ≤ p < ∞, p not even

If Γ is not the restriction of a coset in Zd to Nd
0, then there is some λ in(

Λ(Γ) ∩ Nd
0

)
\ Γ. There is an affinely independent subset {γ0, γ1, . . . , γn} of

Γ which generates Λ(Γ), where n = dim(Λ(Γ)). Hence

λ = γ0 +

n∑
j=1

mj(γj − γ0).

Set

f(z) := zγ0 + ε

n∑
j=1

zγj

for 0 < ε < 1/n. We use the binomial series to express∫
Td

|f(z)|p−2f(z) zλ dmd(z)

as a non-trivial power series in ε, which is in conflict with the preceding
lemma.

Joaquim Ortega Cerdà (UB) Idempotent Fourier multipliers June 18, 2021 13 / 21



Key lemmas for the sufficiency part, d ≥ 3 and k = 2

Lemma (Main lemma)
Fix d ≥ 3 and let T be a set in Nd

0 with dim(T ) = 2. Then the 2-completion of
T is Λ(T ) ∩ Nd

0.

To prove this result, we start from the special case of three points:

Lemma

Let T be a set of three affinely independent points in Nd
0 for d ≥ 3. Then the

2-completion of T is Λ(T ) ∩ Nd
0.

The proofs are quite arithmetic. We prove the main lemma by a kind of
Euclidean algorithm, starting from the three point lemma.
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The case d = k

The extension problem is of a rather different nature when d = k. Indeed, our
job is then mainly to reach∞ inside the narrow cone. This is reflected in the
following basic result.

Lemma

Let T be a subset of Nd
0. If there are points α and β in E∞

n (T ) such that
β − α is in Nd, then

E∞
n (T ) = E∞

1 (T ∪ {α, β}) = Λ(T ) ∩ Nd
0.

Here

E∞
n (T ) :=

∞⋃
k=1

Ek
n(T ),

i.e., E∞
n (T ) is the smallest subset Γ of Nd

0 such that T ⊂ Γ and En(Γ) = Γ.
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Key lemmas for the sufficiency part, d = k = 2 and
d = k = 3

In view of the preceding lemma, all we need are the following two results.

Lemma

Let T be a set of three affinely independent points in N2
0. Then for every α in

T there exists a point β in E∞
1 (T ) \ {α} such that β − α is in N2.

Lemma

Let T be a set of four affinely independent points in N3
0. Then for every α in T

there exists a point β in E∞
2 (T ) \ {α} such that β − α is in N3.

The proof of both lemmas rely on a simple idea (next slide), but the proof of
the latter is quite hard and requires a somewhat involved combinatorial
argument.
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Increasing iteratively the “negativity index”

Definition (Negativity index)
Given a set U of d linearly independent vectors u = (u1, . . . , ud) in Zd, we
define the negativity index of U as

ind(U) :=

d∑
j=1

min
(
0,min

u∈U
uj
)
.

Proof idea: Successively change U by making 1- or 2-extensions of α+ U to
get to new vectors with a larger negativity index. For this to work, it is crucial
that linear independence of the vectors of U be preserved during the course of
the iteration!
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Examples in “intermediate” dimensions

The necessity part of our main theorem are proved by finding suitable
example sets.

The example Γ := {(3, 0, 0), (0, 3, 0), (1, 1, 1)} settles the necessity of
the condition for d ≥ 3 and k = 2.
The example Γ := {(4, 0, 0), (0, 4, 0), (0, 0, 4), (1, 1, 1)} settles the
necessity of the condition for d = k = 3.
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Example in “high” dimensions

The example (n ≥ 3)

{(n, 1, 0, 1), (n+ 1, 0, 1, 0), (0, 0, n+ 1, 0), (0, 0, 0, n+ 1), (0, n+ 1, 0, 0)}

settles the necessity of the condition for d ≥ 4 and 4 ≤ k ≤ d in part (c).
(The set equals its n-extension.)

The n+ 1-extension of the set is the full coset intersected with the narrow
cone.
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Examples of exotic linear operators on Hp(T∞)

Using the above example sets, it is easy to cook up an explicit linear operator
to arrive at the following result.

Theorem

Fix an integer n ≥ 1. There is a linear operator Tn that is densely defined on
Hp(T∞) for every 1 ≤ p ≤ ∞, and that extends to a bounded operator on
Hp(T∞) if and only if p = 2, 4, . . . , 2(n+ 1).

This result exemplifies quite strikingly the impossibility of interpolating
between Hardy spaces on the infinite-dimensional torus, as studied in depth in
a recent paper of Bayart and Mastylo (2019).
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Is there an even more exotic linear operator on Hp(T∞)?

Question
Is there a linear operator T∞ that is densely defined onHp(T∞) for every
1 ≤ p ≤ ∞, and that extends to a bounded operator onHp(T∞) if and only if
p = 2n, n = 1, 2, . . .?

This question is related to an old problem in the theory of Hardy spaces of
Dirichlet series: For which p is there an absolute constant Cp such that∫ 1

0
|F (1/2 + it)|pdt ≤ Cp lim

T→∞

1

2T

∫ T

−T
|F (it)|pdt (1)

for all Dirichlet polynomials F (s) = a1 + a22
−s · · · anN−s? This is true

when p = 2n (easy) and is known to fail when 0 < p < 2 by a recent theorem
of Harper (2020) (a deep result).
Failure of (1) for p ̸= 2n, p > 2, would, via the Bohr lift, yield such an exotic
T∞.
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