Idempotent Fourier multipliers acting contractively on H^p spaces

Joaquim Ortega Cerdà

Universitat de Barcelona

June 18, 2021

Joint work with Ole Fredrik Brevig and Kristian Seip

Our problem

• Goal: Describe idempotent Fourier multipliers that act contractively on $H^p(\mathbb{T}^d)$ for $1 \leq p \leq \infty$, $p \neq 2$, and $d \geq 1$.

First an easier problem:

• Describe idempotent Fourier multipliers that act contractively on $L^p(\mathbb{T}^d)$. Some notation and terminology: We represent functions f in $L^p(\mathbb{T}^d)$ by their Fourier series $f(z) \sim \sum_{\alpha \in \mathbb{Z}^d} \widehat{f}(\alpha) \, z^{\alpha}$, where

$$\widehat{f}(\alpha) := \int_{\mathbb{T}^d} f(z) \, \overline{z^{\alpha}} \, dm_d(z)$$

and m_d denotes the Haar measure of the d-dimensional torus \mathbb{T}^d . For Λ a non-empty subset of \mathbb{Z}^d ,

$$P_{\Lambda}f(z) := \sum_{\alpha \in \Lambda} \widehat{f}(\alpha)z^{\alpha}.$$

We say that Λ is a *contractive projection set for* $L^p(\mathbb{T}^d)$ when P_{Λ} extends to a contraction on $L^p(\mathbb{T}^d)$. A subset Λ of \mathbb{Z}^d is a *coset* in \mathbb{Z}^d if Λ is equal to the coset of a subgroup of $(\mathbb{Z}^d, +)$.

Contractive projection sets for $L^p(\mathbb{T}^d)$

Theorem (After Andô (1965) and Rudin (1962))

Let d be a non-negative integer and fix $1 \le p \le \infty$, $p \ne 2$. A subset Λ of \mathbb{Z}^d is a contractive projection set for $L^p(\mathbb{T}^d)$ if and only if Λ is a coset in \mathbb{Z}^d .

The proof of the L^p theorem—necessity

Lemma (Linear reflection)

Fix
$$1 \le p \le \infty$$
, $p \ne 2$, and set $c_p := 2/p - 1$. Then

$$||c_p \varepsilon \overline{z} + 1 + \varepsilon z||_p < ||1 + \varepsilon z||_p$$

for every sufficiently small $\varepsilon > 0$.

Lemma (Triangular reflection)

Fix
$$1 \le p < \infty$$
, $p \ne 2$, and set $c_p := 1 - p/2$.

$$||1 + \varepsilon(z_1 + z_2) + c_p \varepsilon^2 z_1 z_2||_p < ||1 + \varepsilon(z_1 + z_2)||_p$$

for every sufficiently small $\varepsilon > 0$.

Think of the z above as $z^{\alpha-\beta}$ with α, β in Γ . Then all linear and triangular reflections constitute the 1-extension of Γ .

Illustration of extension by linear and triangular reflections

Figure: The points λ obtained by linear and triangular reflection starting from the set $\Gamma = \{(3,0,0), (0,3,0), (1,1,1)\}$, in the plane z=3-x-y. The shaded triangle represents the intersection of this plane and the narrow cone.

Frequently encountered examples

• F. Wiener's inequality, appearing already in classical work of Bohr's (1914): The case d=1 of the above theorem.

$$Pf(z) = \sum_{k \in \mathbb{Z}} \hat{f}(kn)z^{kn} = \frac{1}{n} \sum_{j=0}^{n-1} f(zw^j)$$

where w is primitive n'th root of unity.

The restriction to the *m*-homogeneous terms of a power series in *d* variables.

$$Pf(z) = \int_{\mathbb{T}} f(z_1 \zeta, z_2 \zeta, \dots, z_d \zeta) \, \overline{\zeta^m} \, dm_1(\zeta)$$

Contractive projection sets for $H^p(\mathbb{T}^d)$

- $H^p(\mathbb{T}^d)$ is the subspace of $L^p(\mathbb{T}^d)$ comprised of functions f with $\widehat{f}(\alpha) = 0$ for every α in $\mathbb{Z}^d \setminus \mathbb{N}_0^d$, where $\mathbb{N}_0 := \{0, 1, 2, \ldots\}$.
- A subset Λ of \mathbb{N}_0^d is a *contractive projection set for* $H^p(\mathbb{T}^d)$ if P_{Λ} extends to a contraction on $H^p(\mathbb{T}^d)$.

If Λ is a coset in \mathbb{Z}^d , then $\Lambda \cap \mathbb{N}_0^d$ is a contractive projection set for $H^p(\mathbb{T}^d)$.

Question: Are there other contractive projection sets for $H^p(\mathbb{T}^d)$?

The dimension of the affine span of Λ , $\dim(\Lambda)$ plays a nontrivial role in this problem.

Definition

Suppose that $1 \leq k \leq d$. We say that $H^p(\mathbb{T}^d)$ enjoys the *contractive* restriction property of dimension k if every k-dimensional contractive projection set for $H^p(\mathbb{T}^d)$ is of the form $\Lambda \cap \mathbb{N}_0^d$ with Λ a coset in \mathbb{Z}^d .

Main theorem (from low to high dimensions)

Theorem

Suppose that $1 \le p \le \infty$.

- (a) If d=2 or k=1, then $H^p(\mathbb{T}^d)$ enjoys the contractive restriction property of dimension k if and only if $p \neq 2$.
- (b) If either d=k=3 or $d\geq 3$ and k=2, then $H^p(\mathbb{T}^d)$ enjoys the contractive restriction property of dimension k if and only if $p\neq 2,4$.
- (c) If $d \ge 4$ and $k \ge 3$, then $H^p(\mathbb{T}^d)$ enjoys the contractive restriction property of dimension k if and only if p is not an even integer.

The hardest part of the theorem is item (b) which can be thought of as representing the two cases of intermediate dimension, namely d=k=3 and $d\geq 3,\, k=2$. These two cases require completely different methods ...

The geometry of the case p = 2n

Let Γ be a non-empty subset of \mathbb{N}_0^d and suppose that λ is in $\Lambda(\Gamma)$, which is the coset generated by Γ . The *distance* from Γ to λ is

$$d(\Gamma,\lambda) := \inf \max \left(\sum_{m_{\gamma,\alpha} > 0} m_{\gamma,\alpha}, -\sum_{m_{\gamma,\alpha} < 0} m_{\gamma,\alpha} \right)$$

where the infimum is taken over all possible representations

$$\lambda = \gamma + \sum_{\substack{\alpha \in \Gamma \\ \alpha \neq \gamma}} m_{\gamma,\alpha}(\alpha - \gamma), \quad \gamma \in \Gamma.$$

For a non-negative integer n, the n-extension of Γ is

$$E_n(\Gamma) := \left\{ \lambda \in \Lambda(\Gamma) \cap \mathbb{N}_0^d \, : \, d(\Gamma, \lambda) \leq n \right\}.$$

An effective result

Theorem

Let $n \in \mathbb{N}$. A set Γ in \mathbb{N}_0^d is a contractive projection set for $H^{2(n+1)}(\mathbb{T}^d)$ if and only if $E_n(\Gamma) = \Gamma$.

Example: $E_1(\Gamma) = \Gamma$ and $E_2(\Gamma) \neq \Gamma$

Figure: Points λ which satisfy $d(\Gamma, \lambda) = 1$ and $d(\Gamma, \lambda) = 2$ for $\Gamma = \{(3,0,0), (0,3,0), (1,1,1)\}$, in the plane z = 3 - x - y. The shaded triangle represents the intersection of this plane and the narrow cone \mathbb{N}_0^d .

Duality formulation for $1 \le p < \infty$

Lemma

Fix $1 \le p < \infty$ and $d \ge 1$. A set of frequencies Γ in \mathbb{N}_0^d is a contractive projection set for $H^p(\mathbb{T}^d)$ if and only if

$$\int_{\mathbb{T}^d} |f(z)|^{p-2} f(z) \, \overline{z^{\lambda}} \, dm_d(z) = 0$$

for every f in $H^p(\mathbb{T}^d)$ of the form $f(z)=\sum_{\gamma\in\Gamma}a_\gamma z^\gamma$ and every λ in $\left(\Lambda(\Gamma)\cap\mathbb{N}_0^d\right)\setminus\Gamma$.

- The fact that Γ in \mathbb{N}_0^d is a contractive projection set for $H^{2(n+1)}(\mathbb{T}^d)$ if and only if $E_n(\Gamma) = \Gamma$ is a geometric reformulation of this result.
- The case $1 \le p < \infty$, $p \ne 2n$, follows almost immediately (next slide).

The case $1 \le p < \infty$, p not even

If Γ is not the restriction of a coset in \mathbb{Z}^d to \mathbb{N}_0^d , then there is some λ in $\left(\Lambda(\Gamma)\cap\mathbb{N}_0^d\right)\setminus\Gamma$. There is an affinely independent subset $\{\gamma_0,\gamma_1,\ldots,\gamma_n\}$ of Γ which generates $\Lambda(\Gamma)$, where $n=\dim(\Lambda(\Gamma))$. Hence

$$\lambda = \gamma_0 + \sum_{j=1}^n m_j (\gamma_j - \gamma_0).$$

Set

$$f(z) := z^{\gamma_0} + \varepsilon \sum_{j=1}^n z^{\gamma_j}$$

for $0 < \varepsilon < 1/n$. We use the binomial series to express

$$\int_{\mathbb{T}^d} |f(z)|^{p-2} f(z) \, \overline{z^{\lambda}} \, dm_d(z)$$

as a non-trivial power series in ε , which is in conflict with the preceding lemma.

Key lemmas for the sufficiency part, $d \ge 3$ and k = 2

Lemma (Main lemma)

Fix $d \geq 3$ and let T be a set in \mathbb{N}_0^d with $\dim(T) = 2$. Then the 2-completion of T is $\Lambda(T) \cap \mathbb{N}_0^d$.

To prove this result, we start from the special case of three points:

Lemma

Let T be a set of three affinely independent points in \mathbb{N}_0^d for $d \geq 3$. Then the 2-completion of T is $\Lambda(T) \cap \mathbb{N}_0^d$.

The proofs are quite arithmetic. We prove the main lemma by a kind of Euclidean algorithm, starting from the three point lemma.

The case d = k

The extension problem is of a rather different nature when d=k. Indeed, our job is then mainly to reach ∞ inside the narrow cone. This is reflected in the following basic result.

Lemma

Let T be a subset of \mathbb{N}_0^d . If there are points α and β in $E_n^{\infty}(T)$ such that $\beta - \alpha$ is in \mathbb{N}^d , then

$$E_n^{\infty}(T) = E_1^{\infty}(T \cup \{\alpha, \beta\}) = \Lambda(T) \cap \mathbb{N}_0^d.$$

Here

$$E_n^{\infty}(T) := \bigcup_{k=1}^{\infty} E_n^k(T),$$

i.e., $E_n^{\infty}(T)$ is the smallest subset Γ of \mathbb{N}_0^d such that $T\subset \Gamma$ and $E_n(\Gamma)=\Gamma$.

Key lemmas for the sufficiency part, d=k=2 and d=k=3

In view of the preceding lemma, all we need are the following two results.

Lemma

Let T be a set of three affinely independent points in \mathbb{N}_0^2 . Then for every α in T there exists a point β in $E_1^{\infty}(T)\setminus\{\alpha\}$ such that $\beta-\alpha$ is in \mathbb{N}^2 .

Lemma

Let T be a set of four affinely independent points in \mathbb{N}_0^3 . Then for every α in T there exists a point β in $E_2^{\infty}(T)\setminus\{\alpha\}$ such that $\beta-\alpha$ is in \mathbb{N}^3 .

The proof of both lemmas rely on a simple idea (next slide), but the proof of the latter is quite hard and requires a somewhat involved combinatorial argument.

Increasing iteratively the "negativity index"

Definition (Negativity index)

Given a set U of d linearly independent vectors $u=(u_1,\ldots,u_d)$ in \mathbb{Z}^d , we define the *negativity index of* U as

$$\operatorname{ind}(U) := \sum_{j=1}^{d} \min \left(0, \min_{u \in U} u_j\right).$$

Proof idea: Successively change U by making 1- or 2-extensions of $\alpha+U$ to get to new vectors with a larger negativity index. For this to work, it is crucial that linear independence of the vectors of U be preserved during the course of the iteration!

Examples in "intermediate" dimensions

The necessity part of our main theorem are proved by finding suitable example sets.

- The example $\Gamma := \{(3,0,0), (0,3,0), (1,1,1)\}$ settles the necessity of the condition for $d \ge 3$ and k = 2.
- The example $\Gamma := \{(4,0,0), (0,4,0), (0,0,4), (1,1,1)\}$ settles the necessity of the condition for d = k = 3.

Example in "high" dimensions

• The example $(n \ge 3)$

$$\{(n,1,0,1),(n+1,0,1,0),(0,0,n+1,0),(0,0,0,n+1),(0,n+1,0,0)$$

settles the necessity of the condition for $d \ge 4$ and $4 \le k \le d$ in part (c). (The set equals its n-extension.)

The n+1-extension of the set is the full coset intersected with the narrow cone.

Examples of exotic linear operators on $H^p(\mathbb{T}^{\infty})$

Using the above example sets, it is easy to cook up an explicit linear operator to arrive at the following result.

Theorem

Fix an integer $n \geq 1$. There is a linear operator T_n that is densely defined on $H^p(\mathbb{T}^\infty)$ for every $1 \leq p \leq \infty$, and that extends to a bounded operator on $H^p(\mathbb{T}^\infty)$ if and only if $p=2,4,\ldots,2(n+1)$.

This result exemplifies quite strikingly the impossibility of interpolating between Hardy spaces on the infinite-dimensional torus, as studied in depth in a recent paper of Bayart and Mastylo (2019).

Is there an even more exotic linear operator on $H^p(\mathbb{T}^\infty)$?

Question

Is there a linear operator T_{∞} that is densely defined on $H^p(\mathbb{T}^{\infty})$ for every $1 \leq p \leq \infty$, and that extends to a bounded operator on $H^p(\mathbb{T}^{\infty})$ if and only if $p=2n, n=1,2,\ldots$?

This question is related to an old problem in the theory of Hardy spaces of Dirichlet series: For which p is there an absolute constant C_p such that

$$\int_0^1 |F(1/2 + it)|^p dt \le C_p \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |F(it)|^p dt \tag{1}$$

for all Dirichlet polynomials $F(s) = a_1 + a_2 2^{-s} \cdots a_n N^{-s}$? This is true when p = 2n (easy) and is known to fail when 0 by a recent theorem of Harper (2020) (a deep result).

Failure of (1) for $p \neq 2n$, p > 2, would, via the Bohr lift, yield such an exotic T_{∞} .