Idempotent Fourier multipliers acting contractively on H^{p} spaces

Joaquim Ortega Cerdà

Universitat de Barcelona
June 18, 2021

Joint work with Ole Fredrik Brevig and Kristian Seip

Our problem

- Goal: Describe idempotent Fourier multipliers that act contractively on $H^{p}\left(\mathbb{T}^{d}\right)$ for $1 \leq p \leq \infty, p \neq 2$, and $d \geq 1$.
First an easier problem:
- Describe idempotent Fourier multipliers that act contractively on $L^{p}\left(\mathbb{T}^{d}\right)$. Some notation and terminology: We represent functions f in $L^{p}\left(\mathbb{T}^{d}\right)$ by their Fourier series $f(z) \sim \sum_{\alpha \in \mathbb{Z}^{d}} \widehat{f}(\alpha) z^{\alpha}$, where

$$
\widehat{f}(\alpha):=\int_{\mathbb{T}^{d}} f(z) \overline{z^{\alpha}} d m_{d}(z)
$$

and m_{d} denotes the Haar measure of the d-dimensional torus \mathbb{T}^{d}. For Λ a non-empty subset of \mathbb{Z}^{d},

$$
P_{\Lambda} f(z):=\sum_{\alpha \in \Lambda} \widehat{f}(\alpha) z^{\alpha}
$$

We say that Λ is a contractive projection set for $L^{p}\left(\mathbb{T}^{d}\right)$ when P_{Λ} extends to a contraction on $L^{p}\left(\mathbb{T}^{d}\right)$. A subset Λ of \mathbb{Z}^{d} is a coset in \mathbb{Z}^{d} if Λ is equal to the coset of a subgroup of $\left(\mathbb{Z}^{d},+\right)$.

Contractive projection sets for $L^{p}\left(\mathbb{T}^{d}\right)$

Theorem (After Andô (1965) and Rudin (1962))

Let d be a non-negative integer and fix $1 \leq p \leq \infty, p \neq 2$. A subset Λ of \mathbb{Z}^{d} is a contractive projection set for $L^{p}\left(\mathbb{T}^{d}\right)$ if and only if Λ is a coset in \mathbb{Z}^{d}.

The proof of the L^{p} theorem-necessity

Lemma (Linear reflection)

Fix $1 \leq p \leq \infty, p \neq 2$, and set $c_{p}:=2 / p-1$. Then

$$
\left\|c_{p} \varepsilon \bar{z}+1+\varepsilon z\right\|_{p}<\|1+\varepsilon z\|_{p}
$$

for every sufficiently small $\varepsilon>0$.

Lemma (Triangular reflection)

Fix $1 \leq p<\infty, p \neq 2$, and set $c_{p}:=1-p / 2$.

$$
\left\|1+\varepsilon\left(z_{1}+z_{2}\right)+c_{p} \varepsilon^{2} z_{1} z_{2}\right\|_{p}<\left\|1+\varepsilon\left(z_{1}+z_{2}\right)\right\|_{p}
$$

for every sufficiently small $\varepsilon>0$.
Think of the z above as $z^{\alpha-\beta}$ with α, β in Γ. Then all linear and triangular reflections constitute the 1-extension of Γ.

Illustration of extension by linear and triangular reflections

Figure: The points λ obtained by linear and triangular reflection starting from the set $\Gamma=\{(3,0,0),(0,3,0),(1,1,1)\}$, in the plane $z=3-x-y$. The shaded triangle represents the intersection of this plane and the narrow cone.

Frequently encountered examples

- F. Wiener’s inequality, appearing already in classical work of Bohr's (1914): The case $d=1$ of the above theorem.

$$
\operatorname{Pf}(z)=\sum_{k \in \mathbb{Z}} \hat{f}(k n) z^{k n}=\frac{1}{n} \sum_{j=0}^{n-1} f\left(z w^{j}\right)
$$

where w is primitive n 'th root of unity.

- The restriction to the m-homogeneous terms of a power series in d variables.

$$
P f(z)=\int_{\mathbb{T}} f\left(z_{1} \zeta, z_{2} \zeta, \ldots, z_{d} \zeta\right) \overline{\zeta^{m}} d m_{1}(\zeta)
$$

Contractive projection sets for $H^{p}\left(\mathbb{T}^{d}\right)$

- $H^{p}\left(\mathbb{T}^{d}\right)$ is the subspace of $L^{p}\left(\mathbb{T}^{d}\right)$ comprised of functions f with $\widehat{f}(\alpha)=0$ for every α in $\mathbb{Z}^{d} \backslash \mathbb{N}_{0}^{d}$, where $\mathbb{N}_{0}:=\{0,1,2, \ldots\}$.
- A subset Λ of \mathbb{N}_{0}^{d} is a contractive projection set for $H^{p}\left(\mathbb{T}^{d}\right)$ if P_{Λ} extends to a contraction on $H^{p}\left(\mathbb{T}^{d}\right)$.
If Λ is a coset in \mathbb{Z}^{d}, then $\Lambda \cap \mathbb{N}_{0}^{d}$ is a contractive projection set for $H^{p}\left(\mathbb{T}^{d}\right)$.
Question: Are there other contractive projection sets for $H^{p}\left(\mathbb{T}^{d}\right)$?
The dimension of the affine span of $\Lambda, \operatorname{dim}(\Lambda)$ plays a nontrivial role in this problem.

Definition

Suppose that $1 \leq k \leq d$. We say that $H^{p}\left(\mathbb{T}^{d}\right)$ enjoys the contractive restriction property of dimension k if every k-dimensional contractive projection set for $H^{p}\left(\mathbb{T}^{d}\right)$ is of the form $\Lambda \cap \mathbb{N}_{0}^{d}$ with Λ a coset in \mathbb{Z}^{d}.

Main theorem (from low to high dimensions)

Theorem

Suppose that $1 \leq p \leq \infty$.
(a) If $d=2$ or $k=1$, then $H^{p}\left(\mathbb{T}^{d}\right)$ enjoys the contractive restriction property of dimension k if and only if $p \neq 2$.
(b) If either $d=k=3$ or $d \geq 3$ and $k=2$, then $H^{p}\left(\mathbb{T}^{d}\right)$ enjoys the contractive restriction property of dimension k if and only if $p \neq 2,4$.
(c) If $d \geq 4$ and $k \geq 3$, then $H^{p}\left(\mathbb{T}^{d}\right)$ enjoys the contractive restriction property of dimension k if and only if p is not an even integer.

The hardest part of the theorem is item (b) which can be thought of as representing the two cases of intermediate dimension, namely $d=k=3$ and $d \geq 3, k=2$. These two cases require completely different methods ...

The geometry of the case $p=2 n$

Let Γ be a non-empty subset of \mathbb{N}_{0}^{d} and suppose that λ is in $\Lambda(\Gamma)$, which is the coset generated by Γ. The distance from Γ to λ is

$$
d(\Gamma, \lambda):=\inf \max \left(\sum_{m_{\gamma, \alpha}>0} m_{\gamma, \alpha},-\sum_{m_{\gamma, \alpha}<0} m_{\gamma, \alpha}\right)
$$

where the infimum is taken over all possible representations

$$
\lambda=\gamma+\sum_{\substack{\alpha \in \Gamma \\ \alpha \neq \gamma}} m_{\gamma, \alpha}(\alpha-\gamma), \quad \gamma \in \Gamma
$$

For a non-negative integer n, the n-extension of Γ is

$$
E_{n}(\Gamma):=\left\{\lambda \in \Lambda(\Gamma) \cap \mathbb{N}_{0}^{d}: d(\Gamma, \lambda) \leq n\right\}
$$

An effective result

Theorem

Let $n \in \mathbb{N}$. A set Γ in \mathbb{N}_{0}^{d} is a contractive projection set for $H^{2(n+1)}\left(\mathbb{T}^{d}\right)$ if and only if $E_{n}(\Gamma)=\Gamma$.

Example: $E_{1}(\Gamma)=\Gamma$ and $E_{2}(\Gamma) \neq \Gamma$

Figure: Points λ which satisfy $d(\Gamma, \lambda)=1$ and $d(\Gamma, \lambda)=2$ for $\Gamma=\{(3,0,0),(0,3,0),(1,1,1)\}$, in the plane $z=3-x-y$. The shaded triangle represents the intersection of this plane and the narrow cone \mathbb{N}_{0}^{d}.

Duality formulation for $1 \leq p<\infty$

Lemma

Fix $1 \leq p<\infty$ and $d \geq 1$. A set of frequencies Γ in \mathbb{N}_{0}^{d} is a contractive projection set for $H^{p}\left(\mathbb{T}^{d}\right)$ if and only if

$$
\int_{\mathbb{T}^{d}}|f(z)|^{p-2} f(z) \overline{z^{\lambda}} d m_{d}(z)=0
$$

for every f in $H^{p}\left(\mathbb{T}^{d}\right)$ of the form $f(z)=\sum_{\gamma \in \Gamma} a_{\gamma} z^{\gamma}$ and every λ in $\left(\Lambda(\Gamma) \cap \mathbb{N}_{0}^{d}\right) \backslash \Gamma$.

- The fact that Γ in \mathbb{N}_{0}^{d} is a contractive projection set for $H^{2(n+1)}\left(\mathbb{T}^{d}\right)$ if and only if $E_{n}(\Gamma)=\Gamma$ is a geometric reformulation of this result.
- The case $1 \leq p<\infty, p \neq 2 n$, follows almost immediately (next slide).

The case $1 \leq p<\infty, p$ not even

If Γ is not the restriction of a coset in \mathbb{Z}^{d} to \mathbb{N}_{0}^{d}, then there is some λ in $\left(\Lambda(\Gamma) \cap \mathbb{N}_{0}^{d}\right) \backslash \Gamma$. There is an affinely independent subset $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right\}$ of Γ which generates $\Lambda(\Gamma)$, where $n=\operatorname{dim}(\Lambda(\Gamma))$. Hence

$$
\lambda=\gamma_{0}+\sum_{j=1}^{n} m_{j}\left(\gamma_{j}-\gamma_{0}\right)
$$

Set

$$
f(z):=z^{\gamma_{0}}+\varepsilon \sum_{j=1}^{n} z^{\gamma_{j}}
$$

for $0<\varepsilon<1 / n$. We use the binomial series to express

$$
\int_{\mathbb{T}^{d}}|f(z)|^{p-2} f(z) \overline{z^{\lambda}} d m_{d}(z)
$$

as a non-trivial power series in ε, which is in conflict with the preceding lemma.

Key lemmas for the sufficiency part, $d \geq 3$ and $k=2$

Lemma (Main lemma)

Fix $d \geq 3$ and let T be a set in \mathbb{N}_{0}^{d} with $\operatorname{dim}(T)=2$. Then the 2-completion of T is $\Lambda(T) \cap \mathbb{N}_{0}^{d}$.

To prove this result, we start from the special case of three points:

Lemma

Let T be a set of three affinely independent points in \mathbb{N}_{0}^{d} for $d \geq 3$. Then the 2-completion of T is $\Lambda(T) \cap \mathbb{N}_{0}^{d}$.

The proofs are quite arithmetic. We prove the main lemma by a kind of Euclidean algorithm, starting from the three point lemma.

The case $d=k$

The extension problem is of a rather different nature when $d=k$. Indeed, our job is then mainly to reach ∞ inside the narrow cone. This is reflected in the following basic result.

Lemma

Let T be a subset of \mathbb{N}_{0}^{d}. If there are points α and β in $E_{n}^{\infty}(T)$ such that $\beta-\alpha$ is in \mathbb{N}^{d}, then

$$
E_{n}^{\infty}(T)=E_{1}^{\infty}(T \cup\{\alpha, \beta\})=\Lambda(T) \cap \mathbb{N}_{0}^{d}
$$

Here

$$
E_{n}^{\infty}(T):=\bigcup_{k=1}^{\infty} E_{n}^{k}(T)
$$

i.e., $E_{n}^{\infty}(T)$ is the smallest subset Γ of \mathbb{N}_{0}^{d} such that $T \subset \Gamma$ and $E_{n}(\Gamma)=\Gamma$.

Key lemmas for the sufficiency part, $d=k=2$ and $d=k=3$

In view of the preceding lemma, all we need are the following two results.

Lemma

Let T be a set of three affinely independent points in \mathbb{N}_{0}^{2}. Then for every α in T there exists a point β in $E_{1}^{\infty}(T) \backslash\{\alpha\}$ such that $\beta-\alpha$ is in \mathbb{N}^{2}.

Lemma

Let T be a set of four affinely independent points in \mathbb{N}_{0}^{3}. Then for every α in T there exists a point β in $E_{2}^{\infty}(T) \backslash\{\alpha\}$ such that $\beta-\alpha$ is in \mathbb{N}^{3}.

The proof of both lemmas rely on a simple idea (next slide), but the proof of the latter is quite hard and requires a somewhat involved combinatorial argument.

Increasing iteratively the "negativity index"

Definition (Negativity index)

Given a set U of d linearly independent vectors $u=\left(u_{1}, \ldots, u_{d}\right)$ in \mathbb{Z}^{d}, we define the negativity index of U as

$$
\operatorname{ind}(U):=\sum_{j=1}^{d} \min \left(0, \min _{u \in U} u_{j}\right)
$$

Proof idea: Successively change U by making 1- or 2-extensions of $\alpha+U$ to get to new vectors with a larger negativity index. For this to work, it is crucial that linear independence of the vectors of U be preserved during the course of the iteration!

Examples in "intermediate" dimensions

The necessity part of our main theorem are proved by finding suitable example sets.

- The example $\Gamma:=\{(3,0,0),(0,3,0),(1,1,1)\}$ settles the necessity of the condition for $d \geq 3$ and $k=2$.
- The example $\Gamma:=\{(4,0,0),(0,4,0),(0,0,4),(1,1,1)\}$ settles the necessity of the condition for $d=k=3$.

Example in "high" dimensions

- The example ($n \geq 3$)

$$
\{(n, 1,0,1),(n+1,0,1,0),(0,0, n+1,0),(0,0,0, n+1),(0, n+1,0,0)
$$

settles the necessity of the condition for $d \geq 4$ and $4 \leq k \leq d$ in part (c).
(The set equals its n-extension.)
The $n+1$-extension of the set is the full coset intersected with the narrow cone.

Examples of exotic linear operators on $H^{p}\left(\mathbb{T}^{\infty}\right)$

Using the above example sets, it is easy to cook up an explicit linear operator to arrive at the following result.

Theorem

Fix an integer $n \geq 1$. There is a linear operator T_{n} that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$, and that extends to a bounded operator on $H^{p}\left(\mathbb{T}^{\infty}\right)$ if and only if $p=2,4, \ldots, 2(n+1)$.

This result exemplifies quite strikingly the impossibility of interpolating between Hardy spaces on the infinite-dimensional torus, as studied in depth in a recent paper of Bayart and Mastylo (2019).

Is there an even more exotic linear operator on $H^{p}\left(\mathbb{T}^{\infty}\right)$?

Question

Is there a linear operator T_{∞} that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$, and that extends to a bounded operator on $H^{p}\left(\mathbb{T}^{\infty}\right)$ if and only if $p=2 n, n=1,2, \ldots$?

This question is related to an old problem in the theory of Hardy spaces of Dirichlet series: For which p is there an absolute constant C_{p} such that

$$
\begin{equation*}
\int_{0}^{1}|F(1 / 2+i t)|^{p} d t \leq C_{p} \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|F(i t)|^{p} d t \tag{1}
\end{equation*}
$$

for all Dirichlet polynomials $F(s)=a_{1}+a_{2} 2^{-s} \cdots a_{n} N^{-s}$? This is true when $p=2 n$ (easy) and is known to fail when $0<p<2$ by a recent theorem of Harper (2020) (a deep result).
Failure of (1) for $p \neq 2 n, p>2$, would, via the Bohr lift, yield such an exotic T_{∞}.

