Hardy spaces of general Dirichlet series and their maximal inequalities

Ingo Schoolmann

June 16, 2021

$$D=\sum a_n e^{-\lambda_n s}$$

$$D=\sum a_n e^{-\lambda_n s}$$

(1) $(a_n) \subset \mathbb{C}$, Dirichlet coefficients

$$D=\sum a_n e^{-\lambda_n s}$$

$$D=\sum a_n e^{-\lambda_n s}$$

(1) (a_n) ⊂ C, Dirichlet coefficients
 (2) λ = (λ_n), 0 ≤ λ_n ≯ +∞, frequency
 (3) s ∈ C, complex variable

$$D=\sum a_n e^{-\lambda_n s}$$

(a_n) ⊂ C, Dirichlet coefficients
 λ = (λ_n), 0 ≤ λ_n ≯ +∞, frequency
 s ∈ C, complex variable

 λ -Dirichlet series

Definition

Let $\mathcal{D}_{\infty}(\lambda)$ denote the space of all λ -Dirichlet series $\sum a_n e^{-\lambda_n s}$ that converge on [Re > 0] and define a bounded limit function

$$g: [Re > 0] o \mathbb{C}, \ s \mapsto \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}.$$

Definition

Let $\mathcal{D}_{\infty}(\lambda)$ denote the space of all λ -Dirichlet series $\sum a_n e^{-\lambda_n s}$ that converge on [Re > 0] and define a bounded limit function

$$g: [Re > 0] o \mathbb{C}, \ s \mapsto \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}.$$

$$\|D\|_{\infty} = \sup_{s \in [Re>0]} |g(s)|$$

Definition

Let $\mathcal{D}_{\infty}(\lambda)$ denote the space of all λ -Dirichlet series $\sum a_n e^{-\lambda_n s}$ that converge on [Re > 0] and define a bounded limit function

$$g: [Re > 0]
ightarrow \mathbb{C}, \ s \mapsto \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}.$$

$$\|D\|_{\infty} = \sup_{s \in [Re>0]} |g(s)|$$

Theorem (Defant + S. [11], 2020)

For every frequency $\lambda = (\lambda_n)$ and $D \in \mathcal{D}_{\infty}(\lambda)$

$$\sup_{n\in\mathbb{N}}|a_n(D)|\leq \|D\|_{\infty}.$$

In particular, $(\mathcal{D}_{\infty}(\lambda), \|\cdot\|_{\infty})$ defines a normed space.

(1)
$$\lambda = (n) = (0, 1, 2, ...), z = e^{-s}$$
:

$$H_{\infty}(\mathbb{D}) = \mathcal{D}_{\infty}((n)) = H_{\infty}(\mathbb{T})$$

(1)
$$\lambda = (n) = (0, 1, 2, ...), z = e^{-s}$$
:

$$H_{\infty}(\mathbb{D}) = \mathcal{D}_{\infty}((n)) = H_{\infty}(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bohr's transform, HLS 1997:

$$H_{\infty}(B_{c_0}) = \mathcal{D}_{\infty}((\log n)) = H_{\infty}(\mathbb{T}^{\infty})$$

(1)
$$\lambda = (n) = (0, 1, 2, ...), z = e^{-s}$$
:

$$H_{\infty}(\mathbb{D}) = \mathcal{D}_{\infty}((n)) = H_{\infty}(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bohr's transform, HLS 1997:

$$H_{\infty}(B_{c_0}) = \mathcal{D}_{\infty}((\log n)) = H_{\infty}(\mathbb{T}^{\infty})$$

Theorem (S. [11], 2020)

In general $(\mathcal{D}_{\infty}(\lambda), \|\cdot\|_{\infty})$ does not form a Banach space.

(1)
$$\lambda = (n) = (0, 1, 2, ...), z = e^{-s}$$
:

$$H_{\infty}(\mathbb{D}) = \mathcal{D}_{\infty}((n)) = H_{\infty}(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bohr's transform, HLS 1997:

$$H_{\infty}(B_{c_0}) = \mathcal{D}_{\infty}((\log n)) = H_{\infty}(\mathbb{T}^{\infty})$$

Theorem (S. [11], 2020)

In general $(\mathcal{D}_{\infty}(\lambda), \|\cdot\|_{\infty})$ does not form a Banach space.

 \exists 'natural' Banach space $\mathcal{X} \subsetneq H_{\infty}[Re > 0] \colon \mathcal{D}_{\infty}(\lambda) \hookrightarrow \mathcal{X}$ and

 $\mathcal{D}_{\infty}(\lambda)$ is a Banach space $\Leftrightarrow \mathcal{X} = \mathcal{D}_{\infty}(\lambda)$

Let $\mathcal{H}_{\infty}^{\lambda}[Re > 0]$ denote the space of all **holomorphic and bounded** $g: [Re > 0] \rightarrow \mathbb{C}$ such that every restriction

$$g_{\sigma} \colon \mathbb{R} \to \mathbb{C}, \ t \mapsto g(\sigma + it), \ \sigma > 0$$

defines an **almost periodic function** on \mathbb{R} and for every $x \in \mathbb{R}$ the *x*th Bohr coefficient of *g*

$$a_x(g) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T g_\sigma(it) e^{(\sigma+it)x} dt$$

vanishes, whenever $x \notin \{\lambda_n \mid n \in \mathbb{N}\}$.

Let $\mathcal{H}_{\infty}^{\lambda}[Re > 0]$ denote the space of all **holomorphic and bounded** $g: [Re > 0] \rightarrow \mathbb{C}$ such that every restriction

$$g_{\sigma} \colon \mathbb{R} \to \mathbb{C}, \ t \mapsto g(\sigma + it), \ \sigma > 0$$

defines an **almost periodic function** on \mathbb{R} and for every $x \in \mathbb{R}$ the *x*th Bohr coefficient of *g*

$$a_x(g) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g_{\sigma}(it) e^{(\sigma+it)x} dt$$

vanishes, whenever $x \notin \{\lambda_n \mid n \in \mathbb{N}\}$.

$$g\sim\sum a_{\lambda_n}(g)e^{-\lambda_n s}$$

Let $\mathcal{H}_{\infty}^{\lambda}[Re > 0]$ denote the space of all **holomorphic and bounded** $g: [Re > 0] \rightarrow \mathbb{C}$ such that every restriction

$$g_{\sigma} \colon \mathbb{R} \to \mathbb{C}, \ t \mapsto g(\sigma + it), \ \sigma > 0$$

defines an **almost periodic function** on \mathbb{R} and for every $x \in \mathbb{R}$ the *x*th Bohr coefficient of *g*

$$a_{x}(g) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g_{\sigma}(it) e^{(\sigma+it)x} dt$$

vanishes, whenever $x \notin \{\lambda_n \mid n \in \mathbb{N}\}$.

Theorem

 $\mathcal{H}_{\infty}^{\lambda}[Re > 0]$ forms a Banach space for every frequency λ .

Let λ be an **arbitrary** frequency. Then isometrically

$$\mathcal{D}_\infty(\lambda) \hookrightarrow \mathcal{H}^\lambda_\infty[\mathit{Re}>0], \ \ D\mapsto g.$$

Let λ be an **arbitrary** frequency. Then isometrically

$$\mathcal{D}_\infty(\lambda) \hookrightarrow \mathcal{H}^\lambda_\infty[\mathit{Re}>0], \ \ D\mapsto g.$$

Moreover, if $D \in \mathcal{D}_{\infty}(\lambda)$ with limit function g, then

$$a_n(D) = a_{\lambda_n}(g), n \in \mathbb{N}.$$

Let λ be an arbitrary frequency. Then isometrically

$$\mathcal{D}_\infty(\lambda) \hookrightarrow \mathcal{H}^\lambda_\infty[\mathit{Re} > 0], \ \ D \mapsto g.$$

Moreover, if $D \in \mathcal{D}_{\infty}(\lambda)$ with limit function g, then

$$a_n(D) = a_{\lambda_n}(g), n \in \mathbb{N}.$$

Theorem (Defant + S. [5], 2020)

Let λ be an **arbitrary** frequency. Then

 $\mathcal{D}_{\infty}(\lambda)$ is a Banach space $\Leftrightarrow \mathcal{H}^{\lambda}_{\infty}[\text{Re} > 0] = \mathcal{D}_{\infty}(\lambda)$

Let λ be an arbitrary frequency. Then isometrically

$$\mathcal{D}_{\infty}(\lambda) \hookrightarrow \mathcal{H}^{\lambda}_{\infty}[\mathit{Re} > 0], \ \ \mathit{D} \mapsto \mathit{g}.$$

Moreover, if $D \in \mathcal{D}_{\infty}(\lambda)$ with limit function g, then

$$a_n(D) = a_{\lambda_n}(g), n \in \mathbb{N}.$$

Theorem (Defant + S. [5], 2020)

$$\mathcal{D}_\infty(\lambda)$$
 is a Banach space $\Leftrightarrow \ orall g \in \mathcal{H}^\lambda_\infty[{ extsf{Re}}>0]$: $\sigma_c(\sum \mathsf{a}_{\lambda_n}(g)e^{-\lambda_n s}) \leq 0.$

Theorem (Defant + S. [5], 2020)

$$\mathcal{D}_{\infty}(\lambda)$$
 is a Banach space $\Leftrightarrow \forall g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$:
 $\sigma_{c}(\sum a_{\lambda_{n}}(g)e^{-\lambda_{n}s}) \leq 0.$

Crucial part " \Rightarrow ": Assuming $\mathcal{D}_{\infty}(\lambda)$ is complete, let $g \in \mathcal{H}_{\infty}^{\lambda}[Re > 0]$ with Dirichlet series $D = \sum a_{\lambda_n}(g)e^{-\lambda_n s}$.

Theorem (Defant + S. [5], 2020)

$$\mathcal{D}_{\infty}(\lambda)$$
 is a Banach space $\Leftrightarrow \forall g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$:
 $\sigma_{c}(\sum a_{\lambda_{n}}(g)e^{-\lambda_{n}s}) \leq 0.$

Crucial part " \Rightarrow ": Assuming $\mathcal{D}_{\infty}(\lambda)$ is complete, let $g \in \mathcal{H}_{\infty}^{\lambda}[Re > 0]$ with Dirichlet series $D = \sum a_{\lambda_n}(g)e^{-\lambda_n s}$. **Objective:** D converges on [Re > 0].

Theorem (Defant + S. [5], 2020)

$$\mathcal{D}_{\infty}(\lambda)$$
 is a Banach space $\Leftrightarrow \forall g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$:
 $\sigma_{c}(\sum a_{\lambda_{n}}(g)e^{-\lambda_{n}s}) \leq 0.$

Crucial part " \Rightarrow ": Assuming $\mathcal{D}_{\infty}(\lambda)$ is complete, let $g \in \mathcal{H}_{\infty}^{\lambda}[Re > 0]$ with Dirichlet series $D = \sum a_{\lambda_n}(g)e^{-\lambda_n s}$. **Objective:** D converges on [Re > 0]. **Linking element:** Bohr's theorem

Theorem (Defant + S. [5], 2020)

$$\mathcal{D}_{\infty}(\lambda)$$
 is a Banach space $\Leftrightarrow \forall g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$:
 $\sigma_{c}(\sum a_{\lambda_{n}}(g)e^{-\lambda_{n}s}) \leq 0.$

The outstanding theorem of Bohr for $\lambda = (\log n)$

Theorem (Bohr's theorem for $\lambda = (\log n)$, 1913)

Assume that $D = \sum a_n n^{-s}$ is somewhere convergent and its limit function g extents to [Re > 0] to a bounded and holomorphic function. Then D converges on [Re > 0] with uniform convergence on every $[Re > \varepsilon]$, $\varepsilon > 0$.

Theorem (Bohr's theorem for $\lambda = (\log n)$, 1913)

Assume that $D = \sum a_n n^{-s}$ is somewhere convergent and its limit function g extents to [Re > 0] to a bounded and holomorphic function. Then D converges on [Re > 0] with uniform convergence on every $[Re > \varepsilon]$, $\varepsilon > 0$.

Definition

We say that **Bohr's theorem holds for** λ , whenever every somewhere convergent λ -Dirichlet series D with limit function g, that extents to [Re > 0] to a holomorphic and bounded function, converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

We say that **Bohr's theorem holds for** λ , whenever every somewhere convergent λ -Dirichlet series D with limit function g, that extents to [Re > 0] to a holomorphic and bounded function, converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

We say that **Bohr's theorem holds for** λ , whenever every somewhere convergent λ -Dirichlet series D with limit function g, that extents to [Re > 0] to a holomorphic and bounded function, converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

Definition

Let $\mathcal{D}_{\infty}^{ext}(\lambda)$ denote the space of all **somewhere convergent** $D = \sum a_n e^{-\lambda_n s}$ whose limit function extent to [Re > 0] to a bounded and holomorphic function.

We say that **Bohr's theorem holds for** λ , whenever every somewhere convergent λ -Dirichlet series D with limit function g, that extents to [Re > 0] to a holomorphic and bounded function, converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

Definition

Let $\mathcal{D}_{\infty}^{ext}(\lambda)$ denote the space of all **somewhere convergent** $D = \sum a_n e^{-\lambda_n s}$ whose limit function extent to [Re > 0] to a bounded and holomorphic function.

Theorem

For every frequency λ we isometrically have

$$\mathcal{D}_{\infty}(\lambda) \subset \mathcal{D}^{ext}_{\infty}(\lambda) \subset \mathcal{H}^{\lambda}_{\infty}[\textit{Re} > 0].$$

We say that **Bohr's theorem holds for** λ , whenever every somewhere convergent λ -Dirichlet series D with limit function g, that extents to [Re > 0] to a holomorphic and bounded function, converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

Definition

Let $\mathcal{D}_{\infty}^{ext}(\lambda)$ denote the space of all **somewhere convergent** $D = \sum a_n e^{-\lambda_n s}$ whose limit function extent to [Re > 0] to a bounded and holomorphic function.

Observation: Bohr's theorem holds for λ , whenever every $D \in \mathcal{D}_{\infty}^{ext}(\lambda)$ converges uniformly on $[Re > \varepsilon]$, $\varepsilon > 0$.

Excursion: Concrete conditions on λ for Bohr's theorem

Algebraic condition:

 $\{\lambda_n \mid n \in \mathbb{N}\}$ is Q-linearly independent (Bohr, 1913).

Algebraic condition:

 $\{\lambda_n \mid n \in \mathbb{N}\}\$ is \mathbb{Q} -linearly independent (Bohr, 1913).

Geometric condition:

$$L(\lambda) := \sup_{D \in \mathcal{D}(\lambda)} \sigma_a(D) - \sigma_c(D) = 0 \text{ (Bohr, 1913)}$$
Algebraic condition:

 $\{\lambda_n \mid n \in \mathbb{N}\}\$ is \mathbb{Q} -linearly independent (Bohr, 1913).

Geometric condition:

$$L(\lambda) := \sup_{D \in \mathcal{D}(\lambda)} \sigma_a(D) - \sigma_c(D) = 0 \text{ (Bohr, 1913)}$$

$$\sigma_c(\sum e^{-\lambda_n s}) = L(\lambda) = \limsup_{N \to \infty} \frac{\log n}{\lambda_n}$$

Algebraic condition: $\lambda = (log p_n), p_n = nth prime$

 $\{\lambda_n \mid n \in \mathbb{N}\}$ is Q-linearly independent (Bohr, 1913).

Geometric condition: $\lambda = (n)$

$$L(\lambda) := \sup_{D \in \mathcal{D}(\lambda)} \sigma_a(D) - \sigma_c(D) = 0 \text{ (Bohr, 1913)}$$

$$\sigma_c(\sum e^{-\lambda_n s}) = L(\lambda) = \limsup_{N \to \infty} \frac{\log n}{\lambda_n}$$

Analytic conditions:

Analytic conditions:

(1) Bohr's condition (BC), 1913:

 $\exists \ell > 0 \,\, \forall \delta > 0 \,\, \exists C > 0 \,\, \forall n \in \mathbb{N} \colon \,\, \lambda_{n+1} - \lambda_n \geq C e^{-(\ell + \delta)\lambda_n}$

Analytic conditions:

(1) Bohr's condition (BC), 1913:

 $\exists \ell > 0 \,\, \forall \delta > 0 \,\, \exists C > 0 \,\, \forall n \in \mathbb{N} \colon \,\, \lambda_{n+1} - \lambda_n \geq C e^{-(\ell + \delta)\lambda_n}$

(2) Landau's condition (LC), 1921:

$$\forall \delta > 0 \; \exists C > 0 \; \forall n \in \mathbb{N} \colon \lambda_{n+1} - \lambda_n \geq C e^{-e^{\delta \lambda_n}}$$

Analytic conditions:

(1) Bohr's condition (BC), 1913:

 $\exists \ell > 0 \,\, \forall \delta > 0 \,\, \exists C > 0 \,\, \forall n \in \mathbb{N} \colon \,\, \lambda_{n+1} - \lambda_n \geq C e^{-(\ell + \delta)\lambda_n}$

(2) Landau's condition (LC), 1921:

$$\forall \delta > 0 \; \exists C > 0 \; \forall n \in \mathbb{N} \colon \lambda_{n+1} - \lambda_n \geq C e^{-e^{\delta \lambda_n}}$$

(3) Bayart's condition (BaC), 2021:

$$\forall \delta > 0 \exists C > 0 \forall n \in \mathbb{N} \exists m \in \mathbb{N} \colon \log \left(\frac{\lambda_m + \lambda_n}{\lambda_m - \lambda_n}\right) + (m - n) \leq C e^{\delta \lambda_n}$$

Analytic conditions:

(1) Bohr's condition (BC), 1913:

 $\exists \ell > 0 \,\, \forall \delta > 0 \,\, \exists C > 0 \,\, \forall n \in \mathbb{N} \colon \,\, \lambda_{n+1} - \lambda_n \geq C e^{-(\ell + \delta)\lambda_n}$

(2) Landau's condition (LC), 1921:

$$\forall \delta > 0 \; \exists C > 0 \; \forall n \in \mathbb{N} \colon \lambda_{n+1} - \lambda_n \geq C e^{-e^{\delta \lambda_n}}$$

(3) Bayart's condition (BaC), 2021:

$$\forall \delta > 0 \exists C > 0 \forall n \in \mathbb{N} \exists m \in \mathbb{N} \colon \log \left(\frac{\lambda_m + \lambda_n}{\lambda_m - \lambda_n}\right) + (m - n) \leq C e^{\delta \lambda_n}$$

Strict inclusions:

$$(BC) \Rightarrow (LC) \Rightarrow (BaC)$$

Analytic conditions:

(1) Bohr's condition (BC), 1913: $(\log n)$

 $\exists \ell > 0 \ \forall \delta > 0 \ \exists C > 0 \ \forall n \in \mathbb{N} \colon \ \lambda_{n+1} - \lambda_n \geq C e^{-(\ell + \delta)\lambda_n}$

(2) Landau's condition (LC), 1921: $(\sqrt{\log n})$

$$\forall \delta > 0 \ \exists C > 0 \ \forall n \in \mathbb{N} \colon \lambda_{n+1} - \lambda_n \geq C e^{-e^{\delta \lambda_n}}$$

(3) Bayart's condition (BaC), 2021: $\lambda_{2^n+k} = n^2 + ke^{-e^{n^2}}$, where $k = 0, \dots, 2^n - 1$

$$\forall \delta > 0 \ \exists C > 0 \ \forall n \in \mathbb{N} \ \exists m \in \mathbb{N} \colon \log \big(\frac{\lambda_m + \lambda_n}{\lambda_m - \lambda_n} \big) + (m - n) \le C e^{\delta \lambda_n}$$

Strict inclusions:

$$(BC) \Rightarrow (LC) \Rightarrow (BaC)$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

 $\mathcal{D}^{ext}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[Re > 0],$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

$$\mathcal{D}^{\mathsf{ext}}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[\operatorname{\mathsf{Re}} > 0], \ g \sim \sum a_{\log n}(g)n^{-s}$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

$$\mathcal{D}^{\mathsf{ext}}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[\operatorname{\mathsf{Re}} > 0], \ g \sim \sum a_{\log n}(g)n^{-s}$$

$$\sigma_a(\sum n^{-s})=1.$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

$$\mathcal{D}^{ext}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[Re > 0], \ g \sim \sum a_{\log n}(g)n^{-s}$$

$$\sigma_a(\sum n^{-s})=1.$$

For $s \in [Re > 1]$ we have

$$\sum |a_{\log n}(g)n^{-s}| \le \|g\|_{\infty} \sum |n^{-s}| < \infty$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

$$\mathcal{D}^{ext}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[Re > 0], \ g \sim \sum a_{\log n}(g)n^{-s}$$

$$\sigma_{\mathsf{a}}(\sum n^{-\mathsf{s}})=1.$$

For $s \in [Re > 1]$ we have

$$\sum |a_{\log n}(g)n^{-s}| \leq \|g\|_{\infty} \sum |n^{-s}| < \infty$$

Hence

$$\sum a_{\log n}(g)n^{-s} \in \mathcal{D}_{\infty}^{ext}((\log n)).$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

Claim:

$$\mathcal{D}^{\text{ext}}_{\infty}((\log n)) \supset \mathcal{H}^{(\log n)}_{\infty}[\text{Re} > 0], g \sim \sum a_{\log n}(g)n^{-s}$$

$$\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}.$$

For $s \in [Re > 1]$ we have

$$\sum |a_{\log n}(g)n^{-s}| \le \|g\|_{\infty} \sum |n^{-s}| < \infty$$

Hence

$$\sum a_{\log n}(g)n^{-s} \in \mathcal{D}_{\infty}^{ext}((\log n))$$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}^{ext}_{\infty}((\log n)).$$

 $\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}.$

Issues:

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}^{ext}_{\infty}((\log n)).$$

$$\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}.$$

Issues:

(1) In general

$$\sigma_a(\sum e^{-\lambda_n s}) = \infty \tag{1}$$

 $(\lambda = (\log \log n))$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}^{ext}_{\infty}((\log n)).$$

$$\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}.$$

Issues:

(1) In general

$$\sigma_a(\sum e^{-\lambda_n s}) = \infty \tag{1}$$

 $(\lambda = (\log \log n))$ (2) $\exists \lambda$: (1) holds and Bohr's theorem is valid $(\lambda = (\sqrt{\log n}))$

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

$$\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}$$

Issues:

(1) In general

$$\sigma_a(\sum e^{-\lambda_n s}) = \infty \tag{1}$$

(λ = (log log n))
(2) ∃ λ: (1) holds and Bohr's theorem is valid (λ = (√log n))

??? Bohr's theorem holds for $\lambda \Leftrightarrow \mathcal{D}_{\infty}(\lambda)$ is a Banach space **???**

By Bohr's theorem:

$$\mathcal{D}_{\infty}((\log n)) = \mathcal{D}_{\infty}^{ext}((\log n)).$$

$$\sigma_{\mathsf{a}}(\sum \mathsf{n}^{-\mathsf{s}}) = \mathbf{1}$$

Issues:

(1) In general

$$\sigma_a(\sum e^{-\lambda_n s}) = \infty \tag{1}$$

(λ = (log log n))
(2) ∃ λ: (1) holds and Bohr's theorem is valid (λ = (√log n))

??? Bohr's theorem holds for $\lambda \Leftrightarrow \mathcal{D}_{\infty}(\lambda)$ is a Banach space **???**

Let λ be a frequency. Then TFAE: (1) Bohr's theorem holds for λ . (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space. (3) $\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[Re > 0]$. (4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that $\sup_{N} \|\sum_{n=1}^{N} a_{n}(D)e^{-\sigma\lambda_{n}}e^{-\lambda_{n}s}\|_{\infty} \leq C\|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$

Let λ be a frequency. Then TFAE: (1) Bohr's theorem holds for λ . (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space. (3) $\mathcal{D}_{\infty}(\lambda) = \mathcal{H}^{\lambda}_{\infty}[Re > 0]$. (4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that $\sup_{N} \|\sum_{n=1}^{N} a_{n}(D)e^{-\sigma\lambda_{n}}e^{-\lambda_{n}s}\|_{\infty} \leq C\|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$

Crucial ingredients of the proof:

Let λ be a frequency. Then TFAE: (1) Bohr's theorem holds for λ . (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space. (3) $\mathcal{D}_{\infty}(\lambda) = \mathcal{H}^{\lambda}_{\infty}[Re > 0]$. (4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that $\sup_{N} \|\sum_{n=1}^{N} a_{n}(D)e^{-\sigma\lambda_{n}}e^{-\lambda_{n}s}\|_{\infty} \leq C\|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$

Crucial ingredients of the proof:

(1) Introduction of Hardy spaces of general Dirichlet series

Let λ be a frequency. Then TFAE: (1) Bohr's theorem holds for λ . (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space. (3) $\mathcal{D}_{\infty}(\lambda) = \mathcal{H}^{\lambda}_{\infty}[Re > 0]$. (4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that $\sup_{N} \|\sum_{n=1}^{N} a_{n}(D)e^{-\sigma\lambda_{n}}e^{-\lambda_{n}s}\|_{\infty} \leq C\|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$

Crucial ingredients of the proof:

(1) Introduction of Hardy spaces of general Dirichlet series

(2) A Carleson-Hunt type theorem

$$\|\sum_{n=1}^{N} a_n e^{-\lambda_n s}\|_p := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\sum_{n=1}^{N} a_n e^{-\lambda_n i t}|^p dt \right)^{1/p}$$
(2)

$$\|\sum_{n=1}^{N} a_n e^{-\lambda_n s}\|_{p} := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\sum_{n=1}^{N} a_n e^{-\lambda_n i t}|^{p} dt \right)^{1/p}$$
(2)

Definition

Let $\mathcal{H}_{p}(\lambda)$ be the Banach space formed by the completion of

$$\mathcal{P}(\lambda) = span\{e^{-\lambda_n s} \mid n \in \mathbb{N}\}$$
 with respect to (2)

$$\|\sum_{n=1}^{N} a_n e^{-\lambda_n s}\|_{p} := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\sum_{n=1}^{N} a_n e^{-\lambda_n i t}|^{p} dt \right)^{1/p}$$
(2)

Definition

Let $\mathcal{H}_{p}(\lambda)$ be the Banach space formed by the completion of

$$\mathcal{P}(\lambda) = span\{e^{-\lambda_n s} \mid n \in \mathbb{N}\}$$
 with respect to (2)

(1) $\lambda = (n), \ z = e^{-s}$:

$$\mathcal{H}_p((n)) = H_p(\mathbb{T})$$

$$\|\sum_{n=1}^{N} a_n e^{-\lambda_n s}\|_{p} := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\sum_{n=1}^{N} a_n e^{-\lambda_n i t}|^{p} dt \right)^{1/p}$$
(2)

Definition

Let $\mathcal{H}_{\rho}(\lambda)$ be the Banach space formed by the completion of

$$\mathcal{P}(\lambda) = extsf{span}\{e^{-\lambda_n s} \mid n \in \mathbb{N}\}$$
 with respect to (2)

(1) $\lambda = (n), \ z = e^{-s}$:

$$\mathcal{H}_p((n)) = H_p(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bayart 2002:

$$\mathcal{H}_p((\log n)) = H_p(\mathbb{T}^\infty)$$

$$\|\sum_{n=1}^{N} a_n e^{-\lambda_n s}\|_{p} := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\sum_{n=1}^{N} a_n e^{-\lambda_n i t}|^{p} dt \right)^{1/p}$$
(2)

Definition

Let $\mathcal{H}_{\rho}(\lambda)$ be the Banach space formed by the completion of

$$\mathcal{P}(\lambda) = span\{e^{-\lambda_n s} \mid n \in \mathbb{N}\}$$
 with respect to (2)

(1) $\lambda = (n), \ z = e^{-s}$:

$$\mathcal{H}_p((n)) = H_p(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bayart 2002:

$$\mathcal{H}_p((\log n)) = H_p(\mathbb{T}^\infty)$$

(3) λ arbitrary :

$$\|\sum_{n=1}^{N}a_{n}e^{-\lambda_{n}s}\|_{p} := \lim_{T \to \infty} \left(\frac{1}{2T}\int_{-T}^{T}|\sum_{n=1}^{N}a_{n}e^{-\lambda_{n}it}|^{p}dt\right)^{1/p}$$
(2)

Definition

Let $\mathcal{H}_p(\lambda)$ be the Banach space formed by the completion of

$$\mathcal{P}(\lambda) = span\{e^{-\lambda_n s} \mid n \in \mathbb{N}\}$$
 with respect to (2).

(1)
$$\lambda = (n), \ z = e^{-s}$$
:

$$\mathcal{H}_p((n)) = H_p(\mathbb{T})$$

(2) $\lambda = (\log n)$, Bayart 2002:

$$\mathcal{H}_p((\log n)) = H_p(\mathbb{T}^\infty)$$

(3) λ arbitrary :

 $\ref{eq:heat} \mathcal{H}_p(\lambda) = H_p(\mathbf{G}) \ref{eq:heat}$

λ -Dirichlet groups

Let G be a compact abelian group and $\beta : (\mathbb{R}, +) \to G$ a homomorphism of groups.

λ -Dirichlet groups

Let G be a compact abelian group and $\beta : (\mathbb{R}, +) \to G$ a homomorphism of groups. Assume that β is continuous and has dense range.

Let G be a compact abelian group and $\beta : (\mathbb{R}, +) \to G$ a homomorphism of groups. Assume that β is continuous and has dense range. Let $\lambda = (\lambda_n)$ be a frequency.

Definition

The pair (G, β) is called a λ -Dirichlet group, whenever

$$\forall n \in \mathbb{N} \exists ! h_{\lambda_n} \in \widehat{G} \colon h_{\lambda_n} \circ \beta = e^{-i\lambda_n}$$

Let G be a compact abelian group and $\beta : (\mathbb{R}, +) \to G$ a homomorphism of groups. Assume that β is continuous and has dense range. Let $\lambda = (\lambda_n)$ be a frequency.

Definition

The pair (G, β) is called a λ -Dirichlet group, whenever

$$\forall n \in \mathbb{N} \exists ! h_{\lambda_n} \in \widehat{G} \colon h_{\lambda_n} \circ \beta = e^{-i\lambda_n}$$

! For every frequency λ there is such a pair (G,β) !

Let λ be a frequency, (G, $\beta)$ a $\lambda\text{-Dirichlet group}$ and $1\leq p\leq\infty$

Let λ be a frequency, (G, $\beta)$ a $\lambda\text{-Dirichlet group}$ and $1\leq p\leq\infty$

Definition

$$H^{\lambda}_{p}(G) := \{ f \in L_{p}(G) \mid supp \ \widehat{f} \subset \{ h_{\lambda_{n}} \mid n \in \mathbb{N} \} \}$$

Let λ be a frequency, (G, $\beta)$ a $\lambda\text{-Dirichlet group}$ and $1\leq p\leq\infty$

Definition

$$H^{\lambda}_{p}(G) := \{ f \in L_{p}(G) \mid supp \ \widehat{f} \subset \{ h_{\lambda_{n}} \mid n \in \mathbb{N} \} \}$$

$$\mathcal{B}\colon H^{\lambda}_{p}(\mathcal{G})\hookrightarrow \mathcal{D}(\lambda), \ \ f\mapsto \sum \widehat{f}(h_{\lambda_{n}})e^{-\lambda_{n}s}$$

Let λ be a frequency, (\mathcal{G}, β) a λ -Dirichlet group and $1 \leq p \leq \infty$

Definition

$$H^{\lambda}_{p}(G) := \{ f \in L_{p}(G) \mid supp \ \widehat{f} \subset \{ h_{\lambda_{n}} \mid n \in \mathbb{N} \} \}$$

$$\mathcal{B}\colon H^{\lambda}_p(\mathcal{G})\hookrightarrow \mathcal{D}(\lambda), \ \ f\mapsto \sum \widehat{f}(h_{\lambda_n})e^{-\lambda_n s}$$

Definition

 $\mathcal{H}_p(\lambda) := \mathcal{B}(\mathcal{H}_p^{\lambda}(G))$ with $\|D\|_p := \|f\|_p$, whenever $\mathcal{B}(f) = D$

Let λ be a frequency, (G, $\beta)$ a $\lambda\text{-Dirichlet group}$ and $1\leq p\leq\infty$

Definition

$$H^\lambda_p(G) := \{f \in L_p(G) \mid \textit{supp } \widehat{f} \subset \{h_{\lambda_n} \mid n \in \mathbb{N}\}\}$$

$$\mathcal{B}\colon H^\lambda_p(\mathcal{G})\hookrightarrow \mathcal{D}(\lambda), \ \ f\mapsto \sum \widehat{f}(h_{\lambda_n})e^{-\lambda_n s}$$

Definition

 $\mathcal{H}_p(\lambda) := \mathcal{B}(\mathcal{H}_p^{\lambda}(G))$ with $\|D\|_p := \|f\|_p$, whenever $\mathcal{B}(f) = D$

Theorem (Defant + S. [7], 2020)

! $\mathcal{H}_p(\lambda)$ is independent of the chosen λ -Dirichlet group !

Examples

(1) λ arbitrary:

$$\begin{split} \overline{\mathbb{R}} &= \{ \gamma \colon (\mathbb{R}, +) \to \mathbb{T} \mid \gamma \text{ homomorphism} \}, \\ \beta_{\overline{\mathbb{R}}} \colon \mathbb{R} \to \overline{\mathbb{R}}, \ x \mapsto [t \mapsto e^{-ixt}], \\ \mathcal{H}_{\rho}(\lambda) &= H_{\rho}^{\lambda}(\overline{\mathbb{R}}) \end{split}$$

(1) λ arbitrary:

 $\overline{\mathbb{R}} = \{ \gamma \colon (\mathbb{R}, +) \to \mathbb{T} \mid \gamma \text{ homomorphism} \},\$ $\beta_{\overline{\mathbb{R}}} \colon \mathbb{R} \to \overline{\mathbb{R}}, \quad x \mapsto [t \mapsto e^{-ixt}],\$ $\mathcal{H}_{\rho}(\lambda) = H_{\rho}^{\lambda}(\overline{\mathbb{R}})$

(2) $\lambda = (\log n), p_n = \text{nth prime}:$

$$\beta_{\mathbb{T}^{\infty}} \colon \mathbb{R} \to \mathbb{T}^{\infty}, \ t \mapsto \mathfrak{p}^{-it} = (p_n^{-it})$$

Bayart's invention of \mathcal{H}_p -spaces, 2002:

$$\mathcal{H}_p((\log n)) = H_p(\mathbb{T}^\infty)$$

(1) λ arbitrary:

 $\overline{\mathbb{R}} = \{ \gamma \colon (\mathbb{R}, +) \to \mathbb{T} \mid \gamma \text{ homomorphism} \},\$ $\beta_{\overline{\mathbb{R}}} \colon \mathbb{R} \to \overline{\mathbb{R}}, \quad x \mapsto [t \mapsto e^{-ixt}],\$ $\mathcal{H}_{p}(\lambda) = \mathcal{H}_{p}^{\lambda}(\overline{\mathbb{R}})$ (3) $\lambda = (0, 1, 2, \ldots)$: $\beta_{\mathbb{T}} \colon \mathbb{R} \to \mathbb{T}, \quad t \mapsto e^{-it},\$ $\mathcal{H}_{p}((n)) = \mathcal{H}_{p}(\mathbb{T})$

Immediately arising (vague) questions

Let f ∈ H^λ_p(G), where 1 ≤ p ≤ ∞. What can we say about convergence respectively summability of the Fourier series of f

$$\sum \widehat{f}(h_{\lambda_n})h_{\lambda_n}$$
 ?

Let f ∈ H^λ_p(G), where 1 ≤ p ≤ ∞. What can we say about convergence respectively summability of the Fourier series of f

 $\sum \widehat{f}(h_{\lambda_n})h_{\lambda_n}$?

(2) Links between $\mathcal{D}_{\infty}(\lambda)$, $\mathcal{H}_{\infty}(\lambda) = H_{\infty}^{\lambda}(G)$ and $H_{\infty}^{\lambda}[Re > 0]$?

Special case $p = \infty$

Theorem

Let $\lambda = (\lambda_n)$ be an arbitrary frequency and (G, β) a λ -Dirichlet group. Then as Banach spaces

$$\mathcal{H}^\lambda_\infty(\mathcal{G})=\mathcal{H}_\infty(\lambda)=\mathcal{H}^\lambda_\infty[\mathit{Re}>0],$$

such that

$$\widehat{f}(h_{\lambda_n}) = a_n(D) = a_{\lambda_n}(g).$$

Recall: The equivalence theorem part I

Theorem (Defant + S. [5], 2020)

Let λ be a frequency. Then TFAE:

- (1) Bohr's theorem holds for λ .
- (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space.

(3)
$$\mathcal{D}_{\infty}(\lambda) = H_{\infty}^{\lambda}[Re > 0].$$

(4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that

$$\sup_{N} \|\sum_{n=1}^{N} a_n(D) e^{-\sigma\lambda_n} e^{-\lambda_n s}\|_{\infty} \leq C \|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$$

The full equivalence theorem

Theorem (Defant + S. [5], 2020)

Let λ be a frequency. Then TFAE:

- (1) Bohr's theorem holds for λ .
- (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space.

(3)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[Re > 0].$$

(4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that

$$\sup_{N} \|\sum_{n=1}^{N} a_n(D) e^{-\sigma\lambda_n} e^{-\lambda_n s}\|_{\infty} \leq C \|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$$

(5) $\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}(\lambda).$

Theorem (Defant + S. [5], 2020)

Let λ be a frequency. Then TFAE:

- (1) Bohr's theorem holds for λ .
- (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space.

(3)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[\text{Re} > 0].$$

(4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that

$$\sup_{N} \|\sum_{n=1}^{N} a_n(D) e^{-\sigma\lambda_n} e^{-\lambda_n s}\|_{\infty} \leq C \|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$$

(5)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}(\lambda).$$

(6) Bayart's Montel theorem holds in D_∞(λ): Every bounded sequence (D^N) ⊂ D_∞(λ) admits a subsequence (D^{Nk}) and D ∈ D_∞(λ) such that (D^{Nk}) converge to D on [Re > ε] for every ε > 0 as k → ∞.

Theorem (Defant + S. [5], 2020)

Let λ be a frequency. Then TFAE:

- (1) Bohr's theorem holds for λ .
- (2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space.

(3)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[\text{Re} > 0].$$

(4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that

$$\sup_{N} \|\sum_{n=1}^{N} a_n(D) e^{-\sigma\lambda_n} e^{-\lambda_n s}\|_{\infty} \leq C \|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$$

(5) D_∞(λ) = H_∞(λ).
(6) Bayart's Montel theorem holds in D_∞(λ).

$$\mathcal{D}_{\infty}((\sqrt{\log n})) = \mathcal{H}_{\infty}((\sqrt{\log n})) = H_{\infty}^{(\sqrt{\log n})}(\overline{\mathbb{R}})$$

Theorem (see [5] and [3])

Let λ be arbitrary with λ -Dirichlet group (G, β) . Then for every $f \in H_2^{\lambda}(G)$

$$\|\omega\mapsto \sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})h_{\lambda_{n}}(\omega)|\|_{2}\leq CH_{2}\|f\|_{2}.$$

In particular, almost everywhere on G

$$f=\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})h_{\lambda_n}$$

Corollary

Let $D = \sum a_n e^{-\lambda_n s}$ with $(a_n) \in \ell_2$ and $f \in H_2^{\lambda}(G)$ such that $a_n = \widehat{f}(h_{\lambda_n})$ for all $n \in \mathbb{N}$. Then for almost every $\omega \in G$ the vertical limit of D

$$D^{\omega}(s) = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s}$$

converges a.e. on [Re = 0]. For $s = \sigma + it \in [Re > 0]$

$$\sum_{n=1}^{\infty} a_n h_{\lambda_n}(\omega) e^{-\lambda_n(\sigma+it)} = \int_{\mathbb{R}} f(\omega\beta(y)) P_{\sigma}(y-t) dt.$$

Corollary

Let $D = \sum a_n e^{-\lambda_n s}$ with $(a_n) \in \ell_2$ and $f \in H_2^{\lambda}(G)$ such that $a_n = \widehat{f}(h_{\lambda_n})$ for all $n \in \mathbb{N}$. Then for almost every $\omega \in G$ the vertical limit of D

$$\mathsf{D}^\omega(s) = \sum \mathit{a_n} \mathit{h}_{\lambda_n}(\omega) e^{-\lambda_n s}$$

converges a.e. on [Re = 0]. For $s = \sigma + it \in [Re > 0]$

$$\sum_{n=1}^{\infty} a_n h_{\lambda_n}(\omega) e^{-\lambda_n(\sigma+it)} = \int_{\mathbb{R}} f(\omega\beta(y)) P_{\sigma}(y-t) dt.$$

Bohr's theorem for λ implies $\mathcal{D}_{\infty}(\lambda)$ is a Banach space

Claim: If Bohr's theorem holds for λ , then

$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}^{\lambda}_{\infty}[\textit{Re} > 0]$$

Claim: If Bohr's theorem holds for λ , then

$$\mathcal{D}_\infty(\lambda) = \mathcal{H}^\lambda_\infty[{\it Re} > 0]$$

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and define

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Claim: If Bohr's theorem holds for λ , then

$$\mathcal{D}_\infty(\lambda) = \mathcal{H}^\lambda_\infty[{\it Re} > 0]$$

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and define

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Claim: D converges on [Re > 0].

Let $g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$ and define $D = \sum a_n e^{-\lambda_n s}$, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Let
$$g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$$
 and define
 $D = \sum a_n e^{-\lambda_n s}$, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Since $\mathcal{H}^{\lambda}_{\infty}[Re > 0] = \mathcal{H}_{\infty}(\lambda) \subset \mathcal{H}_{2}(\lambda)$, we have $(a_{n}) \in \ell_{2}$.
Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and define

$$D=\sum a_n e^{-\lambda_n s}, ext{ where } a_n=a_{\lambda_n}(g), n\in \mathbb{N}.$$

Since $\mathcal{H}^{\lambda}_{\infty}[Re > 0] = \mathcal{H}_{\infty}(\lambda) \subset \mathcal{H}_{2}(\lambda)$, we have $(a_{n}) \in \ell_{2}$. Moreover, let (G, β) be a λ -Dirichlet group and $f \in \mathcal{H}^{\lambda}_{\infty}(G)$ such that $\widehat{f}(h_{\lambda_{n}}) = a_{n}, n \in \mathbb{N}$. Let $g \in \mathcal{H}^{\lambda}_{\infty}[\textit{Re} > 0]$ and define

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Since $\mathcal{H}^{\lambda}_{\infty}[Re > 0] = \mathcal{H}_{\infty}(\lambda) \subset \mathcal{H}_{2}(\lambda)$, we have $(a_{n}) \in \ell_{2}$. Moreover, let (G, β) be a λ -Dirichlet group and $f \in \mathcal{H}^{\lambda}_{\infty}(G)$ such that $\widehat{f}(h_{\lambda_{n}}) = a_{n}, n \in \mathbb{N}$. Then

$$\exists \omega \in G: \sigma_c(\sum a_n h_{\lambda_n}(\omega)e^{-\lambda_n s}) \leq 0,$$

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and define

$$D=\sum a_n e^{-\lambda_n s}, ext{ where } a_n=a_{\lambda_n}(g), n\in\mathbb{N}.$$

Since $\mathcal{H}^{\lambda}_{\infty}[Re > 0] = \mathcal{H}_{\infty}(\lambda) \subset \mathcal{H}_{2}(\lambda)$, we have $(a_{n}) \in \ell_{2}$. Moreover, let (G, β) be a λ -Dirichlet group and $f \in \mathcal{H}^{\lambda}_{\infty}(G)$ such that $\widehat{f}(h_{\lambda_{n}}) = a_{n}, n \in \mathbb{N}$. Then

$$\exists \ \omega \in \mathcal{G}: \ \sigma_{c}(\sum a_{n}h_{\lambda_{n}}(\omega)e^{-\lambda_{n}s}) \leq 0,$$

where for $s = \sigma + it \in [Re > 0]$ (using density of $\beta(\mathbb{R})$ in G):

$$|\sum_{n=1}^{\infty}a_nh_{\lambda_n}(\omega)e^{-\lambda_n(\sigma+it)}|\leq \int_{\mathbb{R}}|f(w\beta(y))|P_{\sigma}(y-t)dy=\|f\|_{\infty}=\|g\|_{\infty}.$$

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and define

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Since $\mathcal{H}^{\lambda}_{\infty}[Re > 0] = \mathcal{H}_{\infty}(\lambda) \subset \mathcal{H}_{2}(\lambda)$, we have $(a_{n}) \in \ell_{2}$. Moreover, let (G, β) be a λ -Dirichlet group and $f \in \mathcal{H}^{\lambda}_{\infty}(G)$ such that $\widehat{f}(h_{\lambda_{n}}) = a_{n}, n \in \mathbb{N}$. Then

$$\exists \ \omega \in {\sf G} \colon \ \sigma_{\sf c}(\sum {\sf a}_n {\sf h}_{\lambda_n}(\omega) e^{-\lambda_n s}) \leq 0,$$

where for $s = \sigma + it \in [Re > 0]$ (using density of $\beta(\mathbb{R})$ in G):

$$|\sum_{n=1}^{\infty}a_nh_{\lambda_n}(\omega)e^{-\lambda_n(\sigma+it)}| \leq \int_{\mathbb{R}}|f(w\beta(y))|P_{\sigma}(y-t)dy = \|f\|_{\infty} = \|g\|_{\infty}.$$

Hence

$$D^{\omega} = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s} \in \mathcal{D}_{\infty}(\lambda).$$

Let $g \in \mathcal{H}^{\lambda}_{\infty}[\textit{Re} > 0]$ and

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

Lemma

Let $\lambda = (\lambda_n)$ be arbitrary with λ -Dirichlet group (G, β) and $g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$. Then with $a_n = a_{\log n}$, $n \in \mathbb{N}$

$$\exists \ \omega \in {\sf G} \colon \sum {\sf a}_n {\sf h}_{\lambda_n}(\omega) e^{-\lambda_n s} \in {\cal D}_\infty(\lambda).$$

Let
$$g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$$
 and
 $D = \sum a_n e^{-\lambda_n s}$, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.
 $\Rightarrow \exists \ \omega \in \mathbf{G} : D^{\omega} = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s} \in \mathcal{D}_{\infty}(\lambda)$.

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

$$\Rightarrow \exists \ \omega \in \mathbf{G} \colon \mathbf{D}^{\omega} = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s} \in \mathcal{D}_{\infty}(\lambda).$$

By Bohr's theorem:

 D^{ω} converges uniformly on $[Re > \varepsilon], \varepsilon > 0.$

Let
$$g \in \mathcal{H}^{\lambda}_{\infty}[Re > 0]$$
 and
 $D = \sum a_n e^{-\lambda_n s}$, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.
 $\Rightarrow \exists \ \omega \in \mathbf{G} : D^{\omega} = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s} \in \mathcal{D}_{\infty}(\lambda)$.
By Bohr's theorem:

 D^{ω} converges uniformly on $[Re > \varepsilon], \varepsilon > 0$.

By density of $\beta(\mathbb{R})$ in G and $\mathcal{H}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[Re > 0]$:

$$\sup_{s\in [Re>0]} |\sum_{n=1}^{N} a_n e^{-\lambda_n s}| = \sup_{s\in [Re>0]} |\sum_{n=1}^{N} a_n h_{\lambda_n}(\omega) e^{-\lambda_n s}|$$

Let $g \in \mathcal{H}^\lambda_\infty[\mathit{Re} > 0]$ and

$$D = \sum a_n e^{-\lambda_n s}$$
, where $a_n = a_{\lambda_n}(g), n \in \mathbb{N}$.

$$\Rightarrow \exists \ \omega \in \mathbf{G} \colon \mathbf{D}^{\omega} = \sum a_n h_{\lambda_n}(\omega) e^{-\lambda_n s} \in \mathcal{D}_{\infty}(\lambda).$$

By Bohr's theorem:

 D^{ω} converges uniformly on $[Re > \varepsilon], \varepsilon > 0.$

By density of $\beta(\mathbb{R})$ in G and $\mathcal{H}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[Re > 0]$:

$$\sup_{s\in [Re>0]}|\sum_{n=1}^{N}a_{n}e^{-\lambda_{n}s}|=\sup_{s\in [Re>0]}|\sum_{n=1}^{N}a_{n}h_{\lambda_{n}}(\omega)e^{-\lambda_{n}s}|$$

Together,

D converges uniformly on $[Re > \varepsilon], \varepsilon > 0$.

Theorem

(1) Bohr's theorem holds for λ .

(2) $\mathcal{D}_{\infty}(\lambda)$ is a Banach space.

(3)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}^{\lambda}[\text{Re} > 0].$$

(4) For every $\sigma > 0$ there exists $C = C(\lambda, \sigma)$ such that

$$\sup_{N} \|\sum_{n=1}^{N} a_n(D) e^{-\sigma\lambda_n} e^{-\lambda_n s}\|_{\infty} \leq C \|D\|_{\infty}, \ D \in \mathcal{D}_{\infty}(\lambda).$$

(5)
$$\mathcal{D}_{\infty}(\lambda) = \mathcal{H}_{\infty}(\lambda).$$

(6) Bayart's Montel theorem holds in $\mathcal{D}_{\infty}(\lambda)$.

Let f ∈ H^λ_p(G), where 1 ≤ p ≤ ∞. What can we say about convergence respectively summability of the Fourier series of f

 $\sum \widehat{f}(h_{\lambda_n})h_{\lambda_n}$?

(2) Links between $\mathcal{D}_{\infty}(\lambda)$, $\mathcal{H}_{\infty}(\lambda) = H_{\infty}^{\lambda}(G)$ and $H_{\infty}^{\lambda}[Re > 0]$?

Let f ∈ H^λ_p(G), where 1 ≤ p ≤ ∞. What can we say about convergence respectively summability of the Fourier series of f

 $\sum \widehat{f}(h_{\lambda_n})h_{\lambda_n}$?

(2) Links between $\mathcal{D}_{\infty}(\lambda)$, $\mathcal{H}_{\infty}(\lambda) = H_{\infty}^{\lambda}(G)$ and $H_{\infty}^{\lambda}[Re > 0]$?

Let λ be arbitrary with λ -Dirichlet group (G, β) and $1 . Then for every <math>f \in H_p^{\lambda}(G)$

$$\|\omega\mapsto \sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})h_{\lambda_{n}}(\omega)|\|_{p}\leq CH_{p}\|f\|_{p}.$$

In particular, almost everywhere on G

$$f=\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})h_{\lambda_n}$$

Let λ be arbitrary with λ -Dirichlet group (G, β) and $1 . Then for every <math>f \in H_p^{\lambda}(G)$

$$\|\omega\mapsto \sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})h_{\lambda_{n}}(\omega)|\|_{p}\leq CH_{p}\|f\|_{p}.$$

In particular, almost everywhere on G

$$f=\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})h_{\lambda_n}$$

Substitutes for p = 1 under two aspects:

Let λ be arbitrary with λ -Dirichlet group (G, β) and $1 . Then for every <math>f \in H_p^{\lambda}(G)$

$$\|\omega\mapsto \sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})h_{\lambda_{n}}(\omega)|\|_{p}\leq CH_{p}\|f\|_{p}.$$

In particular, almost everywhere on G

$$f=\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})h_{\lambda_n}$$

Substitutes for p = 1 under two aspects:

(1) translations

Let λ be arbitrary with λ -Dirichlet group (G, β) and $1 . Then for every <math>f \in H_p^{\lambda}(G)$

$$\|\omega\mapsto \sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})h_{\lambda_{n}}(\omega)|\|_{p}\leq CH_{p}\|f\|_{p}.$$

In particular, almost everywhere on G

$$f=\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})h_{\lambda_n}$$

Substitutes for p = 1 under two aspects:

(1) translations

(2) changing the summation method (Riesz means)

If λ satisfies **(LC)**, then for every λ -Dirichlet group (G, β) for every u > 0 there exists $\exists C > 0$ such that for every $f \in H_1^{\lambda}(G)$

$$\|\sup_{\sigma>u}\sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})e^{-\sigma\lambda_{n}}h_{\lambda_{n}}|\|_{1,\infty}\leq C\|f\|_{1}.$$

In particular, for almost every $\omega \in G$ for every u > 0

$$\sum_{n=1}^{\infty}\widehat{f}(h_{\lambda_n})e^{-u\lambda_n}h_{\lambda_n}(\omega)=f*p_u(\omega).$$

If λ satisfies **(LC)**, then for every λ -Dirichlet group (G, β) for every u > 0 there exists $\exists C > 0$ such that for every $f \in H_1^{\lambda}(G)$

$$\|\sup_{\sigma>u}\sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})e^{-\sigma\lambda_{n}}h_{\lambda_{n}}|\|_{\mathbf{1},\infty}\leq C\|f\|_{1}.$$

In particular, for almost every $\omega \in G$ for every u > 0

$$\sum_{n=1}^{\infty} \widehat{f}(h_{\lambda_n}) e^{-u\lambda_n} h_{\lambda_n}(\omega) = f * p_u(\omega).$$

Bayart [1], 2021: $\exists \lambda$, λ -Dirichlet group (G, β) and $f \in H_1^{\lambda}(G)$ such that for every u > 0

$$\sum \widehat{f}(h_{\lambda_n})e^{-u\lambda_n}h_{\lambda_n}$$

diverges a.e. on G.

Theorem (Bayart [1], 2021)

If λ satisfies (BaC), then for every λ -Dirichlet group (G, β) for every u > 0 there exists $\exists C > 0$ such that for every $f \in H_1^{\lambda}(G)$

$$|\sup_{\sigma>u}\sup_{N}|\sum_{n=1}^{N}\widehat{f}(h_{\lambda_{n}})e^{-\sigma\lambda_{n}}h_{\lambda_{n}}||_{\mathbf{1}}\leq C||f||_{\mathbf{1}}.$$

Bayart [1], 2021: $\exists \lambda$, λ -Dirichlet group (G, β) and $f \in H_1^{\lambda}(G)$ such that for every u > 0

$$\sum \widehat{f}(h_{\lambda_n})e^{-u\lambda_n}h_{\lambda_n}$$

diverges a.e. on G.

Let $f \in H_1^{\lambda}(G)$ and $x, k \ge 0$. Then the polynomial

$${\mathcal R}^{\lambda,k}_x(f) = \sum_{\lambda_n < x} \widehat{f}(h_{\lambda_n}) ig(1 - rac{\lambda_n}{x}ig)^k h_{\lambda_n}$$

is called the (λ, k) -**Riesz mean** of f of length x and order k.

Let $f \in H_1^{\lambda}(G)$ and $x, k \ge 0$. Then the polynomial

$$\mathcal{R}^{\lambda,k}_x(f) = \sum_{\lambda_n < x} \widehat{f}(h_{\lambda_n}) ig(1 - rac{\lambda_n}{x}ig)^k h_{\lambda_n}$$

is called the (λ, k) -**Riesz mean** of f of length x and order k.

Theorem (Defant + S. [4], 2020)

For every k > 0 there is a constant C = C(k) such that for every frequency λ and $\mathbf{f} \in H_1^{\lambda}(\mathbf{G})$ we have

$$\|\omega\mapsto \sup_{x>0}|R_x^{\lambda,k}(f)(\omega)|\|_{1,\infty}\leq C\|f\|_1.$$

In particular, for almost every $\omega \in G$

$$f(\omega) = \lim_{x \to \infty} \sum_{\lambda_n < x} \widehat{f}(h_{\lambda_n}) (1 - \frac{\lambda_n}{x})^k h_{\lambda_n}(\omega)$$

For every $f \in H_1(\mathbb{T})$ for almost every $z \in \mathbb{T}$:

$$f(z) = \lim_{x \to \infty} \sum_{n < x} \widehat{f}(k) \left(1 - \frac{n}{x}\right) z^k = \lim_{x \to \infty} \frac{1}{x} \sum_{n=0}^{x-1} \sum_{k=0}^n \widehat{f}(k) z^k$$

Theorem (Defant + S. [4], 2020)

For every k > 0 there is a constant C = C(k) such that for every frequency λ and $\mathbf{f} \in H_1^{\lambda}(\mathbf{G})$ we have

$$\|\omega\mapsto \sup_{x>0}|R_x^{\lambda,k}(f)(\omega)|\|_{1,\infty}\leq C\|f\|_1.$$

In particular, for almost every $\omega \in G$

$$f(\omega) = \lim_{x \to \infty} \sum_{\lambda_n < x} \widehat{f}(h_{\lambda_n}) \left(1 - \frac{\lambda_n}{x}\right)^k h_{\lambda_n}(\omega)$$

For every $f \in H_1(\mathbb{T}^\infty)$ for almost every $z \in \mathbb{T}^\infty$:

$$f(z) = \lim_{x \to \infty} \sum_{\log(\mathfrak{p}^{\alpha}) < x} \widehat{f}(\alpha) \left(1 - \frac{\log(\mathfrak{p}^{\alpha})}{x}\right) z^{\alpha}$$

Theorem (Defant + S. [4], 2020)

For every k > 0 there is a constant C = C(k) such that for every frequency λ and $\mathbf{f} \in H_1^{\lambda}(\mathbf{G})$ we have

$$\|\omega\mapsto \sup_{x>0}|R_x^{\lambda,k}(f)(\omega)|\|_{1,\infty}\leq C\|f\|_1.$$

In particular, for almost every $\omega \in G$

$$f(\omega) = \lim_{x \to \infty} \sum_{\lambda_n < x} \widehat{f}(h_{\lambda_n}) \left(1 - \frac{\lambda_n}{x}\right)^k h_{\lambda_n}(\omega)$$

(1) Fréchet spaces of general Dirichlet series [8]

(1) Fréchet spaces of general Dirichlet series [8]

(2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.

- (1) Fréchet spaces of general Dirichlet series [8]
- (2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.
- (3) Summability on the imaginary line [Re = 0] for $D \in \mathcal{D}_{\infty}(\lambda)$:

- (1) Fréchet spaces of general Dirichlet series [8]
- (2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.
- (3) Summability on the imaginary line [Re = 0] for $D \in \mathcal{D}_{\infty}(\lambda)$:

 $\lambda = (n)$, Carleson theorem: a.e. convergence

- (1) Fréchet spaces of general Dirichlet series [8]
- (2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.
- (3) Summability on the imaginary line [Re = 0] for $D \in \mathcal{D}_{\infty}(\lambda)$:

 $\lambda = (n)$, Carleson theorem: a.e. convergence

 $\lambda = (log n)$, BayKonQue: Example of a.e. divergence

- (1) Fréchet spaces of general Dirichlet series [8]
- (2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.
- (3) Summability on the imaginary line [Re = 0] for $D \in \mathcal{D}_{\infty}(\lambda)$:

$$\lambda = (n)$$
, Carleson theorem: a.e. convergence

 $\lambda = (log n)$, BayKonQue: Example of a.e. divergence

But: a.e.
$$f(it) = \lim_{x \to \infty} \sum_{\log n < x} a_n n^{-it} (1 - \frac{\log n}{x})^k, \ k > 0.$$

- (1) Fréchet spaces of general Dirichlet series [8]
- (2) Vector valued aspects [2]: $\mathcal{H}_{\infty}(\lambda, X)$, X Banach space.
- (3) Summability on the imaginary line [Re = 0] for $D \in \mathcal{D}_{\infty}(\lambda)$:

$$\lambda = (n),$$
 Carleson theorem: a.e. convergence

 $\lambda = (log n)$, BayKonQue: Example of a.e. divergence

But: a.e.
$$f(it) = \lim_{x \to \infty} \sum_{\log n < x} a_n n^{-it} (1 - \frac{\log n}{x})^k, \ k > 0.$$

 $\lambda = (\lambda_n)$ arbitrary: Principle of localization? Dini-test?

References

- F. Bayart, Convergence and almost sure properties in Hardy spaces of Dirichlet series. arXiv:2101.02990v1 [math.FA]
- [2] D. Carando, A. Defant, F. Marceca and I. Schoolmann, Vector-valued Hardy spaces of general Dirichlet series. Studia Math., 2020.
- [3] H. Hedenmalm and E. Saskman: Carleson's convergence theorem for Dirichlet series. Pacific J. of Math. 208: 85-109, 2003.
- [4] A. Defant and I. Schoolmann: *Riesz means in Hardy spaces* on *Dirichlet groups*. Math. Ann 378: 57–96, 2020.
- [5] A. Defant and I. Schoolmann, Variants of a theorem of Helson on general Dirichlet series., Journal of Functional Analysis 279 (5), 2020.
- [6] A. Defant and I. Schoolmann: Henry Helson meets other big shots - a brief survey. Math. Proc R. Ir. Acad 119 A (2): 111-132, 2019.

- [7] A. Defant and I. Schoolmann: *H_p-theory of general Dirichlet series*. J. Fourier Anal. Appl. 25 (6): 3220-3258, 2019.
- [8] A. Defant, T. Vidal, I. Schoolmann and P. Sevilla-Peris: *Fréchet spaces of general Dirichlet series.* RACSAM 115.
- [9] A. Defant and I. Schoolmann: Hardy spaces of general Dirichlet series - a survey. Banach Center Publications 119: 123-149, 2019.
- [10] G.H Hardy and M. Riesz: *The general theory of Dirichlet series*. Dover Phenix Editions, 2005.
- [11] I. Schoolmann: On Bohr's theorem for general Dirichlet series. Mathematische Nachrichten 293 (8): 1591-1612, 2020.