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A natural space of general Dirichlet series

Let Doo(A) denote the space of all A-Dirichlet series >~ a,e~*»°
that converge on [Re > 0] and define a bounded limit function

g:[Re>0—C, s— Zane”‘”s.

n=1

IDllc = sup |g(s)]
s€[Re>0]

Theorem (Defant + S. [11], 2020)
For every frequency \ = (A\p) and D € Do (N)

sup |an(D)| < || D|co-
neN

In particular, (Doo(\), || - |loo) defines a normed space.
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(2) A = (logn), Bohr's transform, HLS 1997:

Hoo(Bey) = Doo((log n)) = Hoo(T™)

Theorem (S. [11], 2020)

In general (Do (M), || - ||oc) does not form a Banach space.

3 'natural’ Banach space X C Hoo[Re > 0]: Doo(A) — X and

Doo(A) is a Banach space < X = Dy ()
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Holomorphic almost periodic functions on half planes

Definition

Let H) [Re > 0] denote the space of all holomorphic and
bounded g: [Re > 0] — C such that every restriction

g&:R—>C, t—g(oc+it), c >0

defines an almost periodic function on R and for every x € R the
xth Bohr coefficient of g

1 /7 .
— i e\ o(o+it)x
a.(g) Tll_lgoz_’_/__rg,,(lt)e dt

vanishes, whenever x ¢ {\, | n € N}.

Theorem

A
H, [Re > 0] forms a Banach space for every frequency \.
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Holomorphic almost periodic functions on half planes

Crucial part "=": Assuming D..()\) is complete, let

g € H) [Re > 0] with Dirichlet series D = 3" ay (g)e .
Objective: D converges on [Re > 0].

Linking element: Bohr's theorem

Theorem (Defant + S. [5], 2020)

Let \ be an arbitrary frequency. Then

Doo()) is a Banach space < Y g € HA[Re > 0]:
73 an,(g)e ™) <0.
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Definition
Let DX(X) denote the space of all somewhere convergent

D =" a,e ** whose limit function extent to [Re > 0] to a
bounded and holomorphic function.

Theorem
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For every frequency \ we isometrically have
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Another natural space of general Dirichlet series

Definition

We say that Bohr’s theorem holds for A, whenever every
somewhere convergent A-Dirichlet series D with limit function g,
that extents to [Re > 0] to a holomorphic and bounded function,
converges uniformly on [Re > ¢], € > 0.

Definition

| \

Let DEX(X) denote the space of all somewhere convergent
D =" a,e~** whose limit function extent to [Re > 0] to a
bounded and holomorphic function.

\

Observation: Bohr's theorem holds for A, whenever every
D € DE*(\) converges uniformly on [Re > €], € > 0.
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Algebraic condition: A\ = (log py), pn, = nth prime
{A\n | n € N} is Q-linearly independent (Bohr, 1913).

Geometric condition: A = (n)

L(A):= sup o0a(D)— oc(D) =0 (Bohr, 1913)
DeD(N)

I
O'C(Z e ) = L(\) = limsup °gn

N—oo n
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Excursion: Concrete conditions on )\ for Bohr's theorem

Analytic conditions:
(1) Bohr's condition (BC), 1913: (log n)

3 >0¥5>03C>0VYneN: Appg — Ay > Ce (FA

(2) Landau's condition (LC), 1921: (\/log n)
V6>03C>0¥neN: Apyy— Ay > Ce "

2
(3) Bayart's condition (BaC), 2021: A\pnyy = n® + ke~ €" , where
—0,...,2"—1
Am + An
Am — An

V6 >03C >0Vne N3me N: log( )+(m—n) < Ce™.

Strict inclusions:
(BC) = (LC) = (BaC)
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Application: Completeness of D..((log n))

By Bohr’s theorem:

Doo((log n)) = DI ((log n)).

Claim:

D ((logn)) > HIEM[Re > 0.6 ~ Y aogn(g)n*

ga(d n%)=1.

For s € [Re > 1] we have

Z |aiog n(8)n°| < |lg o Z In™*| < o0

Hence
> agn(g)n* € DI ((log n))
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Application: Completeness of D..((log n))

By Bohr’s theorem:

Doo((log n)) = D ((log n))-

Ua(z n®) =1

Issues:

(1) In general
0a()_e M) =00 (1)

(A = (loglog n))
(2) 3 X: (1) holds and Bohr's theorem is valid (A = (1/log n))

7?7 Bohr's theorem holds for A < D, (\) is a Banach space 777
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The equivalence theorem part |

Theorem (Defant + S. [5], 2020)
Let \ be a frequency. Then TFAE:
(1) Bohr’s theorem holds for \.

(2) Doo(N) is a Banach space.
(3) Doo(A) = H2[Re > 0].
(4) For every o > 0 there exists C = C(\, o) such that

sup 1) " an(D)e*e %l < C||Dllos, D € Dog(N).

Crucial ingredients of the proof:
(1) Introduction of Hardy spaces of general Dirichlet series

(2) A Carleson-Hunt type theorem
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Abstract Hardy spaces as completion for 1 < p < oo

N

- 1T N
HZane >\n5Hp = Tlinoo (H/T’Za”e )\nt’pdt)l/p (2)
- n=1

Let Hp(A) be the Banach space formed by the completion of

P()\) = span{e ** | n € N} with respect to (2).

Hp((n)) = Hp(T)
(2) A = (logn), Bayart 2002:
Hp((log n)) = Hy(T™)

(3) A arbitrary :
777 H,y(\) = Hy(G) 777
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A-Dirichlet groups

Let G be a compact abelian group and 3: (R, +) — G a
homomorphism of groups. Assume that 3 is continuous and has
dense range. Let A\ = ()\,) be a frequency.

Definition

The pair (G, 3) is called a A-Dirichlet group, whenever

VneN3 hy, €G: hy,0of=e*n

I For every frequency A there is such a pair (G, 3) !
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Hardy spaces of general Dirichlet series

Let X\ be a frequency, (G, 3) a A-Dirichlet group and 1 < p < co

Definition

H)(G) = {f € Ly(G) | supp f C {hy, | n € N}}

B: H)(G) = D(\), f > F(hy,)e s

Definition

Hp(A) = B(H;J\(G)) with ||D||p := ||f||p, whenever B(f) = D

Theorem (Defant + S. [7], 2020)

I Hp(N) is independent of the chosen A-Dirichlet group !







(1) X arbitrary:
R = {v: (R,+) = T | v homomorphism},
B R =R, x [t e ™

Hp(N) = H(E)



(1) A arbitrary:
R={y: (R,+) — T | ¥ homomorphism},
B R =R, x [t e ™
Hp(A) = Hy(R)
(2) A= (logn), pn = nth prime:
Breot R T, £ p~" = (p,")
Bayart’s invention of #,-spaces, 2002:

Hp((log n)) = Hp(T)



(1) X arbitrary:
R={y: (R,+) — T | v homomorphism},
Bg: R — R, x> [tr e*"Xt],
Hp(A) = Hp(R)
(3) A=(0,1,2,...):

Br:R—=T, t—e ",

Hp((n)) = Hp(T)
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Immediately arising (vague) questions

(1) Let f € H,),‘(G), where 1 < p < co. What can we say about
convergence respectively summability of the Fourier

series of f R
> F(ha)hy, ?

(2) Links between Duo()), Hoo(A) = HL(G) and HX [Re > 0]?
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Special case p =

Theorem

Let A = (\,) be an arbitrary frequency and (G, 3) a A-Dirichlet
group. Then as Banach spaces

H2 (G) = Hoo(A) = H2[Re > 0],

such that

~

f(hx,) = an(D) = ax,(g)-
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Theorem (Defant + S. [5], 2020)
Let \ be a frequency. Then TFAE:
(1) Bohr's theorem holds for \.

(2) Doo(A) is @ Banach space.
(3) Doo(N) = HA[Re > 0].
(4) For every o > 0 there exists C = C(\, o) such that

sup 1) " an(D)e e %l < C||Dllos, D € Doo(N).
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Theorem (Defant + S. [5], 2020)
Let X\ be a frequency. Then TFAE:
(1) Bohr’s theorem holds for \.
(2) Doo(A) is @ Banach space.
(3) Doo(A) = H2[Re > 0].

(

N
sup | " an(D)e= "M e ™|
N n=1

(5) ,Doo(A) = Hoo()‘)

) D
) D
4) For every o > 0 there exists C = C(\, o) such that

< C[|D]los, D € Doo(A).
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Theorem (Defant + S. [5], 2020)
Let X\ be a frequency. Then TFAE:
(1) Bohr’s theorem holds for \.

(2) Doo(A) is @ Banach space.
(3) Doo(A) = H2[Re > 0].
(4) For every o > 0 there exists C = C(\, o) such that

sup | Y an(D)e 7" **||g < C||Dllos, D € Dao(N).
N

(5) ’Doo(>‘) = Hoo()‘)
(6) Bayart’s Montel theorem holds in Do (\): Every bounded
sequence (D) C Duo()\) admits a subsequence (D<) and

D € Duo()) such that (DNk) converge to D on [Re > €] for
every € > 0 as k — oo.




The full equivalence theorem

Theorem (Defant + S. [5], 2020)

Let \ be a frequency. Then TFAE:
(1) Bohr’s theorem holds for A.

(2) Doo(A) is @ Banach space.
(3) Doo(X) = Hio[Re > 0].
(4) Fo

r every o > 0 there exists C = C(\, o) such that

N
sup | Y an(D)e "M |
N n=1

(5) DOO(A) = HOO(A)
(6) Bayart's Montel theorem holds in Do (\)

< C|IDloe, D € Doc().

Doo((v/Iog 1)) = Hoo((VIog n)) = HY'* " (R)




Special case p = 2: The Carleson-Hunt theorem

Theorem (see [5] and [3])

Let A\ be arbitrary with A-Dirichlet group (G, 3). Then for every
f € H)(G)

e > supny ha ), (W), < CHa[f 2.
n=1

In particular, almost everywhere on G

(o o)

=" f(h,)h,




Proof of Bohr's theorem implies completeness

Corollary

Let D =" ane " with (a,) € £2 and f € H3(G) such that
ap = f(hy,) for all n € N. Then for almost every w € G the
vertical limit of D

D¥(s) =) anhy,(w)e

converges a.e. on [Re =0]. Fors =0 + it € [Re > (]

Z anhA,, _>\n (o+it) _ /R f(wﬁ(y))PU(y — t)dt'




Proof of Bohr's theorem implies completeness

Corollary
Let D =" a,e " with (a,) € £2 and f € H3(G) such that

o~

ap = f(hy,) for all n € N. Then for almost every w € G the
vertical limit of D

D“(s) =) aphy,(w)e

converges a.e. on [Re = 0]. Fors =0 + it € [Re > 0]

S anhy, (w)e M) = / F(wB(y))Poly — t)dt.
n=1 R
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Bohr's theorem for A implies D, () is a Banach space

Claim: If Bohr's theorem holds for A, then
Doo(N) = H[Re > 0]
Let g € H) [Re > 0] and define
D= Z ane S, where a, = ay (g),n € N.

Claim: D converges on [Re > 0].
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Let g € H) [Re > 0] and define

D= Z ane °, where a, = ay,(g),n € N.
Since HA [Re > 0] = Hoo(N) C Ha(N), we have (a,) € £o.
Moreover, let (G, 8) be a A-Dirichlet group and f € H2 (G) such

that f(hy,) = an, n € N. Then

Jwe G: 0c() ] anhy,(w)e ™) <0,



Bohr's theorem for A implies D, () is a Banach space

Let g € HA [Re > 0] and define
D= Z ane °, where a, = ay,(g),n € N.
Since HA [Re > 0] = Hoo(N) C Ha(N), we have (a,) € £o.
Moreover, let (G, 3) be a A-Dirichlet group and f € H2 (G) such
that f(hy,) = an, n € N. Then
JweG: O'C(Z anhy,(w)e %) <0,

where for s = o + it € [Re > 0] (using density of S(R) in G):

1Y anhy, (w)e 70| < /R [F(wBY)IPe(y—t)dy = |[flloc = [Ig ]l
n=1



Bohr's theorem for A implies D, () is a Banach space

Let g € H) [Re > 0] and define
D= Z ane ", where a, = ay (g),n € N.
Since H) [Re > 0] = Hoo(A) C Ha(N), we have (a,) € £5.

Moreover, let (G, 8) be a A-Dirichlet group and f € H2.(G) such
that f(hy,) = an, n € N. Then

Jwe G: e anhy,(w)e %) <0,

where for s = o + it € [Re > 0] (using density of S(R) in G):

1S anh, (w)e M| < /R F(WBO))|Poly—1)dy = [IFlloe = llgloc.
n=1

Hence
DY = " aphy,(w)e ™ € Doo(N).



Bohr's theorem for A implies D, () is a Banach space

Let g € H) [Re > 0] and

D= Z ane ™ where a, = ay,(g),n € N.

Let A = (\,) be arbitrary with \-Dirichlet group (G, [3) and
g € H)[Re > 0]. Then with a, = ajogn, N € N

Jw € G: Y anhy,(w)e " € Doo(A).
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Bohr's theorem for A implies D, () is a Banach space

Let g € H) [Re > 0] and

D= Z ane S, where a, = ay (g),n e N.

= 3w € G: DY =) aphy,(w)e™ € Doo(N).

By Bohr's theorem:
D% converges uniformly on [Re > ], > 0.

By density of B(R) in G and Hoo()\) = HA[Re > 0]:

N

N
sup | ae ™= sup | anhy,(w)e

s€[Re>0] s€[Re>0]



Bohr's theorem for A implies D, () is a Banach space

Let g € H) [Re > 0] and

D= Z ane °, where a, = ay,(g),n € N.

=3JweG: DY = Za,,hA"(w)e_A”s € Doo(N).
By Bohr's theorem:

D% converges uniformly on [Re > £],& > 0.

By density of (R) in G and Hoo()\) = HA[Re > 0]:

N N
sup |> ane ™ = sup | anhy, (w)e M|
s€[Re>0] =1 s€[Re>0] n—=1
Together,

D converges uniformly on [Re > €], > 0.



The full equivalence theorem

(1) Bohr’s theorem holds for \.

(2) Doo(N) is @ Banach space.
(3) Doo(A) = H2,[Re > 0].
(4) For every o > 0 there exists C = C(\, o) such that

sup 1Y " an(D)e™*e %l < C||Dllos, D € Do)

(5) Doo(A) = Hoo(H).
(6) Bayart’s Montel theorem holds in Doo(\).




Immediately arising (vague) questions

(1) Let f € H,),‘(G), where 1 < p < co. What can we say about
convergence respectively summability of the Fourier

series of f R
> F(ha)hy, ?

(2) Links between Duo()), Hoo(A) = HL(G) and HX [Re > 0]?
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Let X\ be arbitrary with \-Dirichlet group (G, 3) and
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N
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Reflexive case 1 < p < oo

Theorem (Defant + S. [5], 2020)

Let X\ be arbitrary with \-Dirichlet group (G, 3) and
1 < p < co. Then for every f € H;‘(G)

N
Hw — SLI:Ip ’ Z f(h)\n)h)\n(w)mp < CHprHP'

n=1

In particular, almost everywhere on G

oo o~
F=Y F(h,)h,
n=1

Substitutes for p = 1 under two aspects:
(1) translations

(2) changing the summation method (Riesz means)
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Special case p = 1: Translation

Theorem (Defant + S. [5], 2020)

If X satisfies (LC), then for every A\-Dirichlet group (G, 3) for
every u > 0 there exists 3C > 0 such that for every f € H(G)

N
| supsup | F(h,)e "y, |l1,00 < CIF]1-
G0 n=1
In particular, for almost every w € G for every u > 0

> F(ha,)e " hy, (w) = £ 5 pu(w)-

n=1




Special case p = 1: Translation

Theorem (Defant + S. [5], 2020)

If X satisfies (LC), then for every A\-Dirichlet group (G, 3) for
every u > 0 there exists 3C > 0 such that for every f € H(G)

N
[supsup | > F(hn,)e" Ay, 1,00 < C|lFll1-
o>u N n—1
In particular, for almost every w € G for every u > 0

i F(hr,)e " hy, (w) = F * pu(w).

n=1

Bayart [1], 2021: 3 )\, A-Dirichlet group (G, 3) and f € H}(G)
such that for every u > 0

Z f(h,\n)e_”/\"h,\n

diverges a.e. on G.



Special case p = 1: Translation

Theorem (Bayart [1], 2021)

If X satisfies (BaC), then for every A-Dirichlet group (G, 3) for
every u > 0 there exists 3C > 0 such that for every f € H(G)

N
I SIS > f(ha)e " llln < ClIfa.

n=1

Bayart [1], 2021: 3 )\, A-Dirichlet group (G, 3) and f € H}(G)
such that for every u >0

Z f(hkn)e_w\"h)\n

diverges a.e. on G.
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Let f € H(G) and x, k > 0. Then the polynomial

An

RVA(F) = 3 F(hn) (1= 25) "y,

)\n <X

is called the (), k)-Riesz mean of f of length x and order k.



Special case p = 1: Riesz summability

Let f € H(G) and x, k > 0. Then the polynomial

An

RVA(F) = 3 F(hn) (1= 25) "y,

)\n<X
is called the (), k)-Riesz mean of f of length x and order k.

Theorem (Defant + S. [4], 2020)

For every k > 0 there is a constant C = C(k) such that for every
frequency A and f € H(G) we have

llw — su%|R)i"k(f)(w)| 1,00 < C||fl1.
x>

In particular, for almost every w € G

F(w) = lim >~ F(hy,)(1 - i")khA"(w)
An<x




Special case p = 1: Riesz summability

For every f € Hi(T) for almost every z € T:

x—1 n
z:llmgf 1——zk:||m—§ Ef
X—00 X—00 X
n<x n=0 k=0

Theorem (Defant + S. [4], 2020)
For every k > 0 there is a constant C = C(k) such that for every
frequency A and f € H(G) we have

Hw|—>su%|R§"k(f)(uJ) < C[[f]1
x>

In particular, for almost every w € G

f(w) = lim > f(hy,) (1 — 7) hy, (w)

)\,, <x




Special case p = 1: Riesz summability

For every f € Hy(T°) for almost every z € T*:

flz) = lim > ?(a)(l—l()g(xpa))za
log(pe)<x

Theorem (Defant + S. [4], 2020)

For every k > 0 there is a constant C = C(k) such that for every
frequency A and f € H(G) we have

lw = sup |RI¥(F)(w)]
x>0

1,00 < CHf”l

In particular, for almost every w € G

fw) = lim 3" F(h,)(1— i‘(")khA"(w)
An<x
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Other aspects and outlook

(1) Fréchet spaces of general Dirichlet series [8]
(2) Vector valued aspects [2]: Hoo(A, X), X Banach space.
(3) Summability on the imaginary line [Re = 0] for D € Dy (N):

A = (n), Carleson theorem: a.e. convergence

A = (log n), BayKonQue: Example of a.e. divergence

) _ _i log n
But: a.e. f(it) = lem Z apnn~ (1 - %)k, k > 0.

log n<x

A = (\p) arbitrary: Principle of localization? Dini-test?
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