TROND MOHN STIFTELSE (TMS) OG
TROMSJ FORSKNINGSSTIFTELSE (TFS)
TROND MOHN FOUNDATION (TMS) AND
TROMSQJ RESEARCH FOUNDATION (TFS)

TMS-TFS COLLOQUIUM
COMPLEX GEOMETRY AND COMPLEX DYNAMICS
NOV 1-NOV 2, 2019
UNIVERSITY OF OSLO
OSLO, NORWAY
COHOSTED BY
SEVERAL COMPLEX VARIABLES (SCV) GROUPS AT
CHALMERS AND UNIVERSITY OF GOTHENBURG, SWEDEN AND
UNIVERSITY OF OSLO
Noted with thanks:
TMS and TFS are both founded by TROND MOHN

John Erik Fornzess (NTNU) Dynamics of transcendental Hénon maps



Abstract: | will lecture about ongoing joint work with Arosio, Benini and
Peters. This mixes the theories of iteration of entire functions in one
complex variable and polynomial Henon maps in two complex
variables.
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Plan of talk

@ Polynomials on C

@ Transcendental functions on C

@ Henon maps on C?

@ Transcendental Henon maps on C?
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This is a joint work with Leandro Arosio, Anna Miriam Benini and Han
Peters.

What is holomorphic dynamics?

Let X be a complex manifold and let f: X — X be a holomorphic
self-map. Holomorphic dynamics studies the behaviour of the orbits
(20, f(20), ?(20),...), where zy € X.

Example

Let f: C — C be a polynomial in one complex variable. Its Fatou set is
the open set where the family (f") is equicontinuous. Its complement is
called the Julia set.

v
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Polynomial dynamics

There exists a radius R > 0 such that D(0, R)® is mapped into itself
and every orbit starting in D(0, R)C goes to infinity. Hence the escaping
set I :={z: f’(z) — oo} is a Fatou component.
Classification of invariant components [Fatou-Julia]
An invariant Fatou component Q different from I, is either

@ the basin of attraction of an attracting fixed point |f'(p)| < 1in Q,

@ the basin of attraction of a parabolic fixed point f'(p) = 1 in 02,

@ a Siegel disk, biholomorphically equivalent to an irrational rotation
on the unit disk D.

There is no wandering Fatou component, that is Q: f(Q2) # f"(Q) for
all n # m. [Sullivan ’85]
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Transcendental dynamics

If f: C — Cis transcendental (entire with essential singularity at o),
there can be

@ escaping wandering domain [Baker '76]:
f(z) =z+sinz+ 2m,

@ oscillating wandering domain [Eremenko-Lyubich ’87]

@ it is an open question whether there can be orbitally bounded
wandering domains.

Theorem

(Benini-F-Peters (2018)) All entire transcendental functions have
infinite entropy.
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What about C2?

A polynomial Hénon mapis F(z,w) = (p(z) — 0w, z), where p € C|[Z]
and 0§ # 0 is a constant [Hénon '76]. It is an automorphism of C? with
constant jacobian 6.
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Let F be a polynomial Hénon map: Oscillating and escaping
wandering domains cannot exist. Bounded wandering domains?
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Theorem (Astorg-Buff-Dujardin-Peters-Raissy)

(Annals 2016) There is a polynomial map on C? with a wandering
domain with bounded orbits. (This map is not invertible)

Theorem (Han Peters-David Hahn (2018))

There is an invertible polynomial map on C* with a wandering domain
with bounded orbits.
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Definition

We introduce the family of transcendental Hénon maps of the type
F(z,w) = (f(z) — 0w, z), where f is a transcendental function and
0 # 0 is a constant.

Every such F is an automorphism with constant jacobian é and has
nontrivial dynamics:

Theorem (Arosio-Benini-F-Peters (2018), Huu Tai Terje Nguyen
(2018))

Every transcendental Henon map F has a periodic point p, F°"(p) = p.
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We have the existence of an escaping orbit for any transcendental
Henon map. This is known already for entire functions on C.

Theorem

Let F(z,w) = (f(z) — dw, z) where f is an entire transcendental
function. Then there exists an orbit (z,, wp) — 0.
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Theorem
The Julia set of a Henon map is always nonempty.

Proof.

If the Julia set is empty, then there is a subsequence F°« which
converges uniformly on compact sets to a holomorphic map

G : C? — P2, Since there is an escaping orbit, G must map at least one
point to the line at infinity. The line at infinity is the zero set of a
holomorphic function locally. By the Hurwitz theorem it follows that G
maps all of C? to the line at infinity. However, since F has a periodic
point, this is a contradiction.
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We explain the main ingredient in the construction of an escaping orbit.
It is similar to the proof in one variable. The key ingredient is Wiman
Valiron theory.
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Let f(z) = >, anz" be an entire transcendental function. For any
radius r, let M(r) be the maximum value of |f(z)|, |z| = r. Note that
anr” — 0. Hence there is a power n = N(r) which maximizes |an|r".
For a given r, pick a point w;, |w,| = r for which |f(w;)| = M(r ) Thenin
a small disc around w;, f is very close to a monomial, (z/w; )N f(w;).
This shows that the image of this disc maps much closer to infinity and
the image will cover a very thich annulus. This makes it possible to
repeat and thereby construct an escaping orbit.

More precisely, the main result in Wiman Valiron Theory is the
following, but | wont say anything more about it.
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Theorem (Wiman-Valiron estimates)

Let f be entire transcendental, % < a < 1. Let g be a positive integer.
Letr > 0 and let w, be a point of maximum modulus for r, that is, such
that \w;| = r and |f(w;)| = M(r). Let z be such that

r
|Z_Wr|<(N(r))a7 (1)
then
N(r)
f(z) = (;) Fwe)(1 + o), @
0)(2) = ‘ Y R @ +a) @3)

for all1 < j < q, where ¢; are functions converging uniformly to 0 in z
as r — oo provided r stays outside an exceptional set E of finite
logarithmic measure.

v
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The disk { |z — wy| < 45 ¢ is called a Wiman-Valiron disk.
(N(r))
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We next discuss the theorem mentioned earlier.

Theorem

(Benini-F-Peters (2018)) All entire transcendental functions have
infinite entropy.

This is a first step towards proving that entire Henon maps have infinite
entropy. This is still open.
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Example

@ The map f = ¥ — €? doubles distance. The iterate
for(e') — €2"® multiply distances by 2. The entropy normalizes
this to % =log2.

@ The map z — z2 on C has entropy log 2. This comes from the unit
circle. The inside of the circle converges to zero and gives no

entropy. The same goes for the outside.

@ The map z — z¥ has entropy log k.

@ A polynomial P of degree d has entropy log d. A key property is
that if R is large enough, then the image P(A(0, R)) > A(0, R)
and moreover for each w € A(0, R), there are d preimages
Zy,...,2Z4 € A0, R) (counted with multiplicy)
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Topological Entropy

Definition (Topological Entropy)

Let f: X — X be a self-map of a compact metric space (X, d). A set
A C X is called (n, d)-separated, for n € N and ¢ > 0, if for any

z # w € Athere exists k < n— 1 such that d(f%(z), f*(w)) > 6. Let
K(n, ) be the maximal cardinality of an (n, §)-separated set. Then the
topological entropy is defined as

top(f) = sup{lim sup ,1—7 log K(n,0)}.

6>0 N—oo
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Example

Let f = ), ex2 for a rapidly increasing sequence n, and rapidly
decreasing sequence ¢,. Then f has infinite entropy on C. There will
be a sequence A so that f(A(0, Rx)) D A(0, Rx) and moreover for
each w € A(0, Rk), there are ny preimages zy, ..., 25, € A(0, Ry)
(counted with multiplicy)
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Topological Entropy

In the case when the space X is not compact, it is not clear how to
define entropy. One possibility is to restrict to compact subsets.

Definition (Topological Entropy in the noncompact case)

Let f: X — X be a self-map of a metric space (X, d). Let Y C X be a
compact subset. A set A C Y is called (n, 0)-separated, for n € N and
§ > 0, if for any z # w € Afor which f%(2), f*(w) € Y forall k < n—1,
there exists k < n— 1 such that d(f%(z), f*(w)) > 6. Let K(n, s, Y) be
the maximal cardinality of an (n, ¢)-separated set. Then the fopological
entropy is defined as

top(Y,f) = sup{lim sup—log K(n,é,Y)}.

0>0 n—o0

top(f) = sup top(Y, f).
ycX
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We show that a similar result as for polynomials (see an above
example, point 4) also holds for all entire functions:

Theorem

Let f be a transcendental entire function, and let n € N. There exists a
non-empty bounded open set V C C so that V C f(V) and such that
any point in V has at least n preimages for f in V counted with
multiplicity.
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The Kobayashi metric

A key property of the Kobayashi metric is that it is distance decreasing
under holomorphic maps.

Lemma

The Kobayashi metric on C \ {0, 1} is larger than
enough |z|.

1
2T2[log 2] for all large

This implies that if f : A(0,1) — C\ {0, 1}, then if |f(0)| is very large,
then |f(z)| is very large for all |z| < 1/2. The reason is that the
Kobayashi metric is distance decreasing.

More generally,if Ccc Dc Cand f: D — C\ {0,1} and |f(p)| is very
large for some p € C, then |f(p)| is very large for all p € C.
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Note on entire transcendental functions f: The max value M(R) for f
on the circle of radius R goes to infinity faster then any power R/ of R.
Another important fact: The Picard theorem says that all values in C
except at most 1 are taken infinitely many times. This has an important
consequence:

Lemma

There exist for any j arbitrarily large R so that M(R) > R/ and the
minimum m(R) on the circle is less than 1.
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Corollary

Let f be entire, transcendental. Then there exist arbitrarily large R so

that the image of the annulus Ag = {R/2 < |z| < 2R} cannot avoid
both 0 and 1.

John Erik Fornaess (NTNU) Dynamics of transcendental Hénon maps November 2, 2019 26/39



In fact, we can prove a stronger result: The point 1 can be replaced by
any value a € Ag.

Corollary
Let f be entire, transcendental. Then there exist arbitrarily large R so
that if f # 0 on Ag, then f(Ag) D Ag.

This suffices to prove that nonvanishing entire transcendental
functions have infinite entropy.
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Note that if we replace Ag by two halves, Dg, midpoints § = 0z, then f
will have roots because Dg is simply connected.

Corollary

Let f be entire, transcendental. Let n be an integer. Then there exist
arbitrarily large R so that if f ## 0 on Ag, then f(Ag) D Ag and covers
Apg at least n times.

We can finally do the same argument, replacing 0 by any point in Ag.
Theorem

Let f be a transcendental function. Let n € N. Then there exist
arbitrarily large R and j large and 6 € [0, 2x] so that either Ag C f(Dg)

or else there exists a € Ag \ f(Dpg) so that (A,:, \ A(a, ﬁ)) C f(Dg).

In the latter case, each ( € <A,q \ Aa, #)) has at least n distinct
and uniformly separated preimages in Dg.
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Using this, we prove:

Theorem
(Benini, F, Peters, 2018) All entire transcendental f : C — C (not a
polynomial) have infinite topological entropy.
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Theorem (Arosio-Benini-F-Peters)
(Math. Ann. 2019) There are examples of transcendental Hénon maps
with

@ an escaping wandering domain biholomorphic to C?,

@ an oscillating wandering domain biholomorphic to C2.
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The oscillating wandering domain

Let 0 < a < 1. We construct a sequence of maps

Fx(z,w) = (fx(2) + aw,az) — F

with oscillating orbit (P,) and
diam F"(B(Py, 1)) — 0. (4)

We ensure that every Fx has a saddle fixed point at the origin.
Assume that we defined Fx with an orbit Py, ..., Pp,.
First step: use the Lambda Lemma to construct a new oscillation

Qo, - .., Qn coming in along the stable manifold of Fx and going out
along the unstable manifold of F.
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Second step: use Runge approximation to obtain F, 1 connecting the
old orbit Py, ..., Py, with the new oscillation (Qj) via a contracting
detour Ty,..., Ty, long enough to neutralize (possible) expansion on
(Qj). We modify only the 1-dimensional function f.

Finally we send Qy far away and obtain the point Pp, _,.
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Why are the P’s in different Fatou components?

Let €; be the Fatou component containing P;. Assume by contradiction
that Qg = Q.

All limit functions on Qg are constant.

Let K be a compact neighborhood of 0 which does not contain any

nonzero point of period m of F. Then there exists P,, — P #0,P € K.
By normality, F"7 — P on Qg, but

F(Pm) = F™(F™(Py)) — F™(P) # P.
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Example

Let F(z,w) = 2(z, w). Then for (z, w) # 0 the iterates converge to the
line of infinity, where the map is the identity. Hence the Fatou set
equals C?\ {(0,0)}. Hence the fixed point (0, 0) is an isolated point in
the Julia set.

This is not possible for transcendental Henon maps.

Theorem
(Arosio, Benini, F, Peters) Let F be a transcendental Henon map. Then
there can be no fixed point which is an isolated point in the Julia set.
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We assume that 0 is an isolated fixed point in the Julia set.
(1) First we prove that 0 must be repelling. (2) Secondly we show that
this is impossible.
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(1) Choose two real numbers 0 < § << e<1.Let A={d < ||Z|| < €}.
Let U be the connected component of the Fatou set which is punctured
at the origin. If € is small enough, A will divide U into three connected
components, A, B,Cwhere B={0 < ||z| <d}and C= U\ (AUB). If
there exists R so that F"(A) c B(0, R) for all n, then by the maximum
principle F"(B) c B(0, R) for all nand then 0 is in the Fatou set, a
contradiction. Hence there must exist a sequence ny so that F
converges uniformly on A to the line at infinity. In particular there is an
nso that f"(A) N {||z|]| < e} = 0. We also have that

U = F"(A)uU F"(B) U F"(C) which again divides U into three disjoint
connected sets. Clearly F"(B) contains a punctured neighborhood of
the origin. It follows that {0 < ||z|| < €} € F"(B). This implies that
F="({||z|]| < €}) € {]|z]| < §}. Hence both eigenvalues of (F~")'(0) are
strictly less than one. Hence the same is true for (F~")'(0) so indeed 0
is a repelling fixed point for F.
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(2) Suppose that 0 is an isolated repelling fixed point in the Julia set
and let U be the Fatou component with a puncture at 0. Since the
Jacobian is larger than one, all limits of F” must be in the line at
infinity. Let V be the subset of C? consisting of those points for which
F~"(z) — 0. This is a Fatou Bieberbach domain. Since F~' has an
escaping point, V is not the whole space. So V has a boundary point
p.Let A={d < ||z|| < €} for 0 < § << e << 1. Then the sequence
F"(A) converges uniformly to infinity, and hence cannot cluster at p.
But there are points g arbitrarily close to p so that F~"(q) — 0. Hence
for some n, F~"(q) € A. Contradiction.
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A stronger result is the following:

Theorem

(Arosio-Benini-F-Peters) There is no isolated point in the Julia set J
and finally:

Theorem

(Arosio-Benini-F-Peters) The Fatou set is pseudoconvex. J
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Thank you for listening!
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