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Abstract: I will lecture about ongoing joint work with Arosio, Benini and
Peters. This mixes the theories of iteration of entire functions in one
complex variable and polynomial Henon maps in two complex
variables.
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Plan of talk

Polynomials on C
Transcendental functions on C
Henon maps on C2

Transcendental Henon maps on C2
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This is a joint work with Leandro Arosio, Anna Miriam Benini and Han
Peters.

What is holomorphic dynamics?
Let X be a complex manifold and let f : X → X be a holomorphic
self-map. Holomorphic dynamics studies the behaviour of the orbits
(z0, f (z0), f 2(z0), . . . ), where z0 ∈ X .

Example
Let f : C→ C be a polynomial in one complex variable. Its Fatou set is
the open set where the family (f n) is equicontinuous. Its complement is
called the Julia set.
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Polynomial dynamics

There exists a radius R > 0 such that D(0,R){ is mapped into itself
and every orbit starting in D(0,R){ goes to infinity. Hence the escaping
set I∞ := {z : f n(z)→∞} is a Fatou component.

Classification of invariant components [Fatou-Julia]
An invariant Fatou component Ω different from I∞ is either

the basin of attraction of an attracting fixed point |f ′(p)| < 1 in Ω,
the basin of attraction of a parabolic fixed point f ′(p) = 1 in ∂Ω,
a Siegel disk, biholomorphically equivalent to an irrational rotation
on the unit disk D.

There is no wandering Fatou component, that is Ω: f n(Ω) 6= f m(Ω) for
all n 6= m. [Sullivan ’85]
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Transcendental dynamics

If f : C→ C is transcendental (entire with essential singularity at∞),
there can be

escaping wandering domain [Baker ’76]:

f (z) = z + sin z + 2π,

oscillating wandering domain [Eremenko-Lyubich ’87]
it is an open question whether there can be orbitally bounded
wandering domains.

Theorem
(Benini-F-Peters (2018)) All entire transcendental functions have
infinite entropy.
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What about C2?

A polynomial Hénon map is F (z,w) = (p(z)− δw , z), where p ∈ C[z]
and δ 6= 0 is a constant [Hénon ’76]. It is an automorphism of C2 with
constant jacobian δ.
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Let F be a polynomial Hénon map: Oscillating and escaping
wandering domains cannot exist. Bounded wandering domains?
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Theorem (Astorg-Buff-Dujardin-Peters-Raissy)

(Annals 2016) There is a polynomial map on C2 with a wandering
domain with bounded orbits. (This map is not invertible)

Theorem (Han Peters-David Hahn (2018))

There is an invertible polynomial map on C4 with a wandering domain
with bounded orbits.
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Definition
We introduce the family of transcendental Hénon maps of the type
F (z,w) = (f (z)− δw , z), where f is a transcendental function and
δ 6= 0 is a constant.

Every such F is an automorphism with constant jacobian δ and has
nontrivial dynamics:

Theorem (Arosio-Benini-F-Peters (2018), Huu Tai Terje Nguyen
(2018))
Every transcendental Henon map F has a periodic point p,F ◦n(p) = p.
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We have the existence of an escaping orbit for any transcendental
Henon map. This is known already for entire functions on C.

Theorem
Let F (z,w) = (f (z)− δw , z) where f is an entire transcendental
function. Then there exists an orbit (zn,wn)→∞.
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Theorem
The Julia set of a Henon map is always nonempty.

Proof.
If the Julia set is empty, then there is a subsequence F ◦nk which
converges uniformly on compact sets to a holomorphic map
G : C2 → P2. Since there is an escaping orbit, G must map at least one
point to the line at infinity. The line at infinity is the zero set of a
holomorphic function locally. By the Hurwitz theorem it follows that G
maps all of C2 to the line at infinity. However, since F has a periodic
point, this is a contradiction.
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We explain the main ingredient in the construction of an escaping orbit.
It is similar to the proof in one variable. The key ingredient is Wiman
Valiron theory.
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Let f (z) =
∑

n anzn be an entire transcendental function. For any
radius r , let M(r) be the maximum value of |f (z)|, |z| = r . Note that
anrn → 0. Hence there is a power n = N(r) which maximizes |an|rn.
For a given r , pick a point wr , |wr | = r for which |f (wr )| = M(r). Then in
a small disc around wr , f is very close to a monomial, (z/wr )N(r)f (wr ).
This shows that the image of this disc maps much closer to infinity and
the image will cover a very thich annulus. This makes it possible to
repeat and thereby construct an escaping orbit.
More precisely, the main result in Wiman Valiron Theory is the
following, but I wont say anything more about it.
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Theorem (Wiman-Valiron estimates)

Let f be entire transcendental, 1
2 < α < 1. Let q be a positive integer.

Let r > 0 and let wr be a point of maximum modulus for r , that is, such
that |wr | = r and |f (wr )| = M(r). Let z be such that

|z − wr | <
r

(N(r))α
, (1)

then

f (z) =

(
z
wr

)N(r)

f (wr )(1 + ε0), (2)

f (j)(z) =
N(r)j

w j
r

f (z)(1 + εj), (3)

for all 1 ≤ j ≤ q, where εi are functions converging uniformly to 0 in z
as r →∞ provided r stays outside an exceptional set E of finite
logarithmic measure.
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The disk
{
|z − wr | < r

(N(r))α

}
is called a Wiman-Valiron disk.
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We next discuss the theorem mentioned earlier.

Theorem
(Benini-F-Peters (2018)) All entire transcendental functions have
infinite entropy.

This is a first step towards proving that entire Henon maps have infinite
entropy. This is still open.
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Example

The map f = eiθ → e2iθ doubles distance. The iterate
f ◦n(eiθ)→ e2n iθ multiply distances by 2n. The entropy normalizes
this to log(2n)

n = log 2.
The map z → z2 on C has entropy log 2. This comes from the unit
circle. The inside of the circle converges to zero and gives no
entropy. The same goes for the outside.
The map z → zk has entropy log k .
A polynomial P of degree d has entropy log d . A key property is
that if R is large enough, then the image P(∆(0,R)) ⊃ ∆(0,R)
and moreover for each w ∈ ∆(0,R), there are d preimages
z1, . . . , zd ∈ ∆(0,R) (counted with multiplicy)
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Topological Entropy

Definition (Topological Entropy)

Let f : X → X be a self-map of a compact metric space (X ,d). A set
A ⊂ X is called (n, δ)-separated, for n ∈ N and δ > 0, if for any
z 6= w ∈ A there exists k ≤ n − 1 such that d(f k (z), f k (w)) > δ. Let
K (n, δ) be the maximal cardinality of an (n, δ)-separated set. Then the
topological entropy is defined as

top(f ) = sup
δ>0
{lim sup

n→∞

1
n

log K (n, δ)}.
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Example
Let f =

∑
k εkznk for a rapidly increasing sequence nk and rapidly

decreasing sequence εk . Then f has infinite entropy on C. There will
be a sequence Rk so that f (∆(0,Rk )) ⊃ ∆(0,Rk ) and moreover for
each w ∈ ∆(0,Rk ), there are nk preimages z1, . . . , znk ∈ ∆(0,Rk )
(counted with multiplicy)
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Topological Entropy
In the case when the space X is not compact, it is not clear how to
define entropy. One possibility is to restrict to compact subsets.

Definition (Topological Entropy in the noncompact case)

Let f : X → X be a self-map of a metric space (X ,d). Let Y ⊂ X be a
compact subset. A set A ⊂ Y is called (n, δ)-separated, for n ∈ N and
δ > 0, if for any z 6= w ∈ A for which f k (z), f k (w) ∈ Y for all k ≤ n − 1,
there exists k ≤ n − 1 such that d(f k (z), f k (w)) > δ. Let K (n, δ,Y ) be
the maximal cardinality of an (n, δ)-separated set. Then the topological
entropy is defined as

top(Y , f ) = sup
δ>0
{lim sup

n→∞

1
n

log K (n, δ,Y )}.

top(f ) = sup
Y⊂X

top(Y , f ).
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We show that a similar result as for polynomials (see an above
example, point 4) also holds for all entire functions:

Theorem
Let f be a transcendental entire function, and let n ∈ N. There exists a
non-empty bounded open set V ⊂ C so that V ⊂ f (V ) and such that
any point in V has at least n preimages for f in V counted with
multiplicity.
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The Kobayashi metric

A key property of the Kobayashi metric is that it is distance decreasing
under holomorphic maps.

Lemma
The Kobayashi metric on C \ {0,1} is larger than 1

2|z| log |z| for all large
enough |z|.

This implies that if f : ∆(0,1)→ C \ {0,1}, then if |f (0)| is very large,
then |f (z)| is very large for all |z| < 1/2. The reason is that the
Kobayashi metric is distance decreasing.
More generally, if C ⊂⊂ D ⊂ C and f : D → C \ {0,1} and |f (p)| is very
large for some p ∈ C, then |f (p)| is very large for all p ∈ C.
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Note on entire transcendental functions f : The max value M(R) for f
on the circle of radius R goes to infinity faster then any power R j of R.
Another important fact: The Picard theorem says that all values in C
except at most 1 are taken infinitely many times. This has an important
consequence:

Lemma
There exist for any j arbitrarily large R so that M(R) > R j and the
minimum m(R) on the circle is less than 1.
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Corollary
Let f be entire, transcendental. Then there exist arbitrarily large R so
that the image of the annulus AR = {R/2 < |z| < 2R} cannot avoid
both 0 and 1.
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In fact, we can prove a stronger result: The point 1 can be replaced by
any value α ∈ AR.

Corollary
Let f be entire, transcendental. Then there exist arbitrarily large R so
that if f 6= 0 on AR, then f (AR) ⊃ AR.

This suffices to prove that nonvanishing entire transcendental
functions have infinite entropy.
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Note that if we replace AR by two halves, DR, midpoints θ = θR, then f
will have roots because DR is simply connected.

Corollary
Let f be entire, transcendental. Let n be an integer. Then there exist
arbitrarily large R so that if f 6= 0 on AR, then f (AR) ⊃ AR and covers
AR at least n times.

We can finally do the same argument, replacing 0 by any point in AR.

Theorem

Let f be a transcendental function. Let n ∈ N. Then there exist
arbitrarily large R and j large and θ ∈ [0,2π] so that either AR ⊂ f (DR)

or else there exists α ∈ AR \ f (DR) so that
(

AR \∆(α, 1
R j/2 )

)
⊂ f (DR).

In the latter case, each β ∈
(

AR \∆(α, 1
R j/2 )

)
has at least n distinct

and uniformly separated preimages in DR.
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Using this, we prove:

Theorem
(Benini, F, Peters, 2018) All entire transcendental f : C→ C (not a
polynomial) have infinite topological entropy.
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Theorem (Arosio-Benini-F-Peters)
(Math. Ann. 2019) There are examples of transcendental Hénon maps
with

an escaping wandering domain biholomorphic to C2,
an oscillating wandering domain biholomorphic to C2.
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The oscillating wandering domain

Let 0 < a < 1. We construct a sequence of maps

Fk (z,w) = (fk (z) + aw ,az)→ F

with oscillating orbit (Pn) and

diam F n(B(P0,1))→ 0. (4)

We ensure that every Fk has a saddle fixed point at the origin.
Assume that we defined Fk with an orbit P1, . . . ,Pnk .
First step: use the Lambda Lemma to construct a new oscillation
Q0, . . . ,QN coming in along the stable manifold of Fk and going out
along the unstable manifold of Fk .
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Second step: use Runge approximation to obtain Fk+1 connecting the
old orbit P0, . . . ,Pnk with the new oscillation (Qj) via a contracting
detour T0, . . . ,TM , long enough to neutralize (possible) expansion on
(Qj). We modify only the 1-dimensional function fk .
Finally we send QN far away and obtain the point Pnk+1 .
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Why are the Pj ’s in different Fatou components?

Let Ωj be the Fatou component containing Pj . Assume by contradiction
that Ω0 = Ωm.
All limit functions on Ω0 are constant.
Let K be a compact neighborhood of 0 which does not contain any
nonzero point of period m of F . Then there exists Pnj → P 6= 0,P ∈ K .
By normality, F nj → P on Ω0, but

F nj (Pm) = F m(F nj (P0))→ F m(P) 6= P.
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Example
Let F (z,w) = 2(z,w). Then for (z,w) 6= 0 the iterates converge to the
line of infinity, where the map is the identity. Hence the Fatou set
equals C2 \ {(0,0)}. Hence the fixed point (0,0) is an isolated point in
the Julia set.

This is not possible for transcendental Henon maps.

Theorem
(Arosio, Benini, F, Peters) Let F be a transcendental Henon map. Then
there can be no fixed point which is an isolated point in the Julia set.

John Erik Fornæss (NTNU) Dynamics of transcendental Hénon maps November 2, 2019 34 / 39



We assume that 0 is an isolated fixed point in the Julia set.
(1) First we prove that 0 must be repelling. (2) Secondly we show that
this is impossible.
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(1) Choose two real numbers 0 < δ << ε < 1. Let A = {δ < ‖z‖ < ε}.
Let U be the connected component of the Fatou set which is punctured
at the origin. If ε is small enough, A will divide U into three connected
components, A,B,C where B = {0 < ‖z‖ ≤ δ} and C = U \ (A ∪ B). If
there exists R so that F n(A) ⊂ B(0,R) for all n, then by the maximum
principle F n(B) ⊂ B(0,R) for all n and then 0 is in the Fatou set, a
contradiction. Hence there must exist a sequence nk so that F nk

converges uniformly on A to the line at infinity. In particular there is an
n so that f n(A) ∩ {‖z‖ < ε} = ∅. We also have that
U = F n(A) ∪ F n(B) ∪ F n(C) which again divides U into three disjoint
connected sets. Clearly F n(B) contains a punctured neighborhood of
the origin. It follows that {0 < ‖z‖ < ε} ⊂ F n(B). This implies that
F−n({‖z‖ < ε}) ⊂ {‖z‖ < δ}. Hence both eigenvalues of (F−n)′(0) are
strictly less than one. Hence the same is true for (F−1)′(0) so indeed 0
is a repelling fixed point for F .
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(2) Suppose that 0 is an isolated repelling fixed point in the Julia set
and let U be the Fatou component with a puncture at 0. Since the
Jacobian is larger than one, all limits of F n must be in the line at
infinity. Let V be the subset of C2 consisting of those points for which
F−n(z)→ 0. This is a Fatou Bieberbach domain. Since F−1 has an
escaping point, V is not the whole space. So V has a boundary point
p. Let A = {δ < ‖z‖ < ε} for 0 < δ << ε << 1. Then the sequence
F n(A) converges uniformly to infinity, and hence cannot cluster at p.
But there are points q arbitrarily close to p so that F−n(q)→ 0. Hence
for some n, F−n(q) ∈ A. Contradiction.
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A stronger result is the following:

Theorem
(Arosio-Benini-F-Peters) There is no isolated point in the Julia set

and finally:

Theorem
(Arosio-Benini-F-Peters) The Fatou set is pseudoconvex.
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Thank you for listening!
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