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The aim of the talk is to introduce a formalism to study real
submanifolds of Rn through methods that imitate complex
analysis.

It is an elaboration of the work of Lagerberg, who
applied similar techniques to tropical geometry.

We start with Rn = {x = (x1, ...xn)} and its complexification
Cn = {x + iξ = (x1 + iξ1, ...xn + iξn} =: Rn

s . We will think of Cn

as the superspace of Rn.
A superform on Rn is a form on Cn

a =
∑

aI,J(x)dxI ∧ dξJ ,

where the coefficients aI,J do not depend on ξ.
If |I| = p and |J| = q we say that a has bidegree (p,q).

The complex structure on Cn, J, acts on superforms. If a is of
bidegree (p,0) we sometimes write J(a) = a#. If J(a) = a, a is
symmetric, aI,J = aJ,I .
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We also define positivity for symmetric (p,p) forms:

a ≥ 0

if
a ∧ α1 ∧ α#

1 ∧ ...αm ∧ α#
m ≥ 0.

Here m = n − p, αj are (1,0).



Integration
Let a = a0dx ∧ dξ be superform of bidgree (n,n).

We define its
(super)integral as ∫

Rn
s

a :=

∫
Rn

a0dx
∫

dξ,

where ∫
dξ := cn = (−1)n(n+1)/2

(if ξj are oriented and orthonormal). This is essentially the
Berezin integral; the constant cn is choosen so that∫

a0dx1 ∧ dξ1...dxn ∧ dξn > 0

if a0 > 0.

The superintegral does not depend on the orientation of Rn, but
it does depend on a choice of scalar product on Rn.
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Differentiation

Ordinary exterior differentiation, d , acts on superforms and we
also define

d#a =
∑ ∂aI,J

∂xj
dξj ∧ dxI ∧ dξJ .

Thus d# = dc , but we stress that it only acts on superforms. E.
g. if φ is a function

dd#φ =
∑

φjkdxj ∧ dξk .

In particular
dd#|x |2/2 =

∑
dxj ∧ dξj = β,

the metric form.
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Supercurrents
A supercurrent of bidimension (p,q) is a linear form on the
space of compactly supported superforms with the usual
topology.

It has bidegree (n − p,n − q) and can be written

T =
∑

|I|=n−p,|J|=n−q

TI,JdxI ∧ dξj

where TI,J are distributions (for us, mostly measures).

Notice that a ’superfunction’ is a function on Rn. Therefore, a
’supermeasure’, i. e. an (n,n)-current of order zero, is a
measure on Rn.

For instance (following Bedford-Taylor) we can define

(dd#φ)n/n!

for φ convex and not necessarily smooth. It is the Alexandrov
Monge-Ampère measure of φ.
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Subspaces

Let V be a hyperplane in Rn. Its complexification Vs is a
complex hyperplane in Rn

s so we can (super)integrate
(n − 1,n − 1)-forms over Vs.

Thus V defines a supercurrent,
[V ]s of bidegree (1,1) .

A short computation gives that

[V ]s = [V ] ∧ n#,

where n is a unit normal (sign chosen so that [V ]s ≥ 0).

A subspace of codim p defines a supercurrent in the same way

[V ]s = cp[V ] ∧ n#
1 ∧ ...n

#
p .
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Submanifolds
If M is a submanifold of Rn of dimension m and codimension
p = n −m, we define its associated supercurrent by

[M]s = cp[M] ∧ n#
1 ∧ ...n

#
p = (∗dSM)n1 ∧ n#

1 ∧ ...np ∧ n#
p ,

where nj form an ON-basis for its normal space.

Hence

|M| =
∫

[M]s ∧ βm/m!.

Is it closed? When p = 1 we have

d [M]s = −cp[M] ∧ F ,

where F = dn#. This is (when restricted to M) the second
fundamental form of M, the derivative of the Gauss map. This
vanishes only when n is constant, i e M is a linear subspace.
But, ...
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Minimal submanifolds

A small computation gives

d [M]s ∧ βn−2/(n − 2)! = tr(F )n#c[M]s ∧ βn−1/(n − 1)!.

Here tr(F ) =: H is the trace of the second fundamental form
and H~n is the mean curvature vector. Hence

[M]s ∧ βn−2

is closed if and only if the mean curvature vanishes, i e M is a
minimal manifold.
In general dimension m

d [M]s ∧ βm−1/(m − 1)! =
∑

tr(Fj)n
#
j c[M]s ∧ βm/m!,

with Fj = dn#
j and

∑
tr(Fj)~nj is again the mean curvature

vector. So, [M]s ∧ βm−1 is closed precisely when M is minimal.
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Note that S := [M]s ∧ βm−1/(m − 1)! is of bidegree
(n − 1,n − 1), i e of bidimension (1,1). But it is not an arbitrary
(n − 1,n − 1)-current; it has the form S = A ∧ βm−1, where
A ≥ 0.

This is a positivity condition on S, which is not shared by
all (n − 1,n − 1)-currents.

Now assume that M is minimal, so that S is closed. If u is a
function

dd#uS = (dd#u) ∧ S.

This defines a Laplace operator on M which has no first order
or second order terms, just like on a complex manifold. One
verifies that the Newton kernel

Em−2 := −(1/(m − 2))
1

|x |m−2

is subharmonic on [M]s.
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Em−2 := −(1/(m − 2))
1

|x |m−2

is subharmonic on [M]s.
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Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

σ(r) = |M ∩ B(0, r)| =
∫
|x |<r

[M]s ∧ βm/m! = am

∫
|x |<r

S ∧ β.

Stokes’ gives

σ(r) = am

∫
|x |=r

d#|x |2/2 ∧ S = amrm
∫
|x |=r

d#Em ∧ S =

amrm
∫
|x |<r

dd#Em−2 ∧ S.

From this we get the monotonicity theorem; σ(r)/rm is
increasing. We also get that the Laplacian of Em−2 on M
contains a point mass at the origin.
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General domains

The proof used that |x | is constant on the boundary of the ball.

For a general domain, say that |x − a|m = w(x) on the
boundary. A similar computation gives

Theorem
Let D be a bounded domain and assume that |x − a|m = w(x)
on the boundary of D. Let M be a minimal manifold without
baoundary in D that contains a. Assume w is convex. Then

|M| ≥ ωmw(a).
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As a consequence we get a result by Alexander-Osserman and
Brendle-Hung:

Theorem
Let a be a point in the unit ball. Let M be an m-dimensional
minimal manifold in the ball that contains a. Then

|M| ≥ ωm(1− |a|2)m/2.

To see how this follows we note that, on the boundary,

|x − a|2 = 1 + |a|2 − 2a · x .

So we can choose w(x) = (1 + |a|2 − 2a · x)m/2,
w(a) = (1− |a|2)m/2.
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Mean curvature flow

Let M be an arbitrary submanifold of Rn of dimension m,

S = [M]s ∧ βm−1/(m − 1)!.

What is dd#S? Recall that when m = n − 1

dS = −[M] ∧ F .

Thus d#dS does not have measure coefficients, which looks
bad. But it turns out that dd#S has a nice interpretation in
terms of the mean curvature flow.

Recall that ~H :=
∑

tr(Fj)~nj (Fj = dn#
j ) is the mean curvature

vector field. It does not depend on the choice of ON-basis nj .
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Assume M is compact without boundary.

Intuitively the mean
curvature flow of M is defined as follows: We move M a very
short time in the direction of −~H. Then we get a new manifold,
with a new ~H. Then repeat. More formally: Let ~V be a vector
field defined in a neighbourhood of M and let M flow by ~V to get
a one-parameter family of Mt . Assume ~V restricts to the mean
curvature field on each Mt . Then this flow is the mean curvature
flow.

The flow exists for short times, but always collapses in finite
time. (Look at a sphere.)
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Recall that
dS = ~H#c[M]s ∧ βm/m!.

This gives
d#S = −~Hc[M]sβ

m/m!.

Hence dd#S has the form

dd#S = −d ~Hcσ.

By Cartan’s formula, this is the Lie derivative of σ along the flow
(since dσ = 0). Keeping track of signs etc we get
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Theorem
Let Mt be moving under the mean curvature flow. Then

d
dt

[Mt ]s ∧ βm/m! = −|~H|2[Mt ]s ∧ βm/m!− dd#S.

Integrating this we see that the volume decreases under the
mean curvature flow. Integrating against a function ρ we get

d
dt

∫
Mt

ρdVt = −
∫

Mt

ρ|~H|2dVt −
∫

dd#ρ ∧ S.

If ρ is convex, this is negative, so∫
Mt

ρdVt

decreases. As a consequence, if M0 is contained in a convex
set, Mt stays there.
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Thanks!


