Supercurrents, minimal manifolds and mean curvature flow.

Bo Berndtsson
Chalmers University of Technology
The aim of the talk is to introduce a formalism to study real submanifolds of \mathbb{R}^n through methods that imitate complex analysis.

It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.

We start with $\mathbb{R}^n = \{ x = (x_1, \ldots, x_n) \}$ and its complexification $\mathbb{C}^n = \{ x + i \xi = (x_1 + i \xi_1, \ldots, x_n + i \xi_n) \} =: \mathbb{R}^n_s$. We will think of \mathbb{C}^n as the superspace of \mathbb{R}^n. A superform on \mathbb{R}^n is a form on \mathbb{C}^n $a = \sum a_{I, J}(x) \, dx^I \wedge d\xi^J$, where the coefficients $a_{I, J}$ do not depend on ξ.

If $|I| = p$ and $|J| = q$ we say that a has bidegree (p, q). The complex structure on \mathbb{C}^n, J, acts on superforms. If a is of bidegree $(p, 0)$ we sometimes write $J(a) = a^\#$. If $J(a) = a$, a is symmetric, $a_{I, J} = a_{J, I}$.
The aim of the talk is to introduce a formalism to study real submanifolds of \mathbb{R}^n through methods that imitate complex analysis. It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.
The aim of the talk is to introduce a formalism to study real submanifolds of \mathbb{R}^n through methods that imitate complex analysis. It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.

We start with $\mathbb{R}^n = \{x = (x_1, ... x_n)\}$ and its complexification $\mathbb{C}^n = \{x + i\xi = (x_1 + i\xi_1, ... x_n + i\xi_n) =: \mathbb{R}^n_s\}$. We will think of \mathbb{C}^n as the *superspace* of \mathbb{R}^n.

A superform on \mathbb{R}^n is a form on \mathbb{C}^n $\sum a_I, J(x) dx_I \wedge d\xi_J$, where the coefficients a_I, J do not depend on ξ. If $|I| = p$ and $|J| = q$ we say that a has bidegree (p, q). The complex structure on \mathbb{C}^n, J, acts on superforms. If a is of bidegree $(p, 0)$ we sometimes write $J(a) = a\#$. If $J(a) = a$, a is symmetric, $a_I, J = a_J, I$.
The aim of the talk is to introduce a formalism to study real submanifolds of \(\mathbb{R}^n \) through methods that imitate complex analysis. It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.

We start with \(\mathbb{R}^n = \{ x = (x_1, \ldots, x_n) \} \) and its complexification \(\mathbb{C}^n = \{ x + i\xi = (x_1 + i\xi_1, \ldots, x_n + i\xi_n) \} =: \mathbb{R}^n_s \). We will think of \(\mathbb{C}^n \) as the *superspace* of \(\mathbb{R}^n \).

A *superform* on \(\mathbb{R}^n \) is a form on \(\mathbb{C}^n \)

\[
a = \sum a_{I,J}(x) dx_I \wedge d\xi_J,
\]

where the coefficients \(a_{I,J} \) do not depend on \(\xi \).
The aim of the talk is to introduce a formalism to study real submanifolds of \mathbb{R}^n through methods that imitate complex analysis. It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.

We start with $\mathbb{R}^n = \{ x = (x_1, \ldots x_n) \}$ and its complexification $\mathbb{C}^n = \{ x + i\xi = (x_1 + i\xi_1, \ldots x_n + i\xi_n) \} =: \mathbb{R}_s^n$. We will think of \mathbb{C}^n as the superspace of \mathbb{R}^n.

A superform on \mathbb{R}^n is a form on \mathbb{C}^n

$$a = \sum a_{I,J}(x) dx_I \wedge d\xi_J,$$

where the coefficients $a_{I,J}$ do not depend on ξ.

If $|I| = p$ and $|J| = q$ we say that a has bidegree (p, q).
The aim of the talk is to introduce a formalism to study real submanifolds of \mathbb{R}^n through methods that imitate complex analysis. It is an elaboration of the work of Lagerberg, who applied similar techniques to tropical geometry.

We start with $\mathbb{R}^n = \{x = (x_1, \ldots, x_n)\}$ and its complexification $\mathbb{C}^n = \{x + i\xi = (x_1 + i\xi_1, \ldots, x_n + i\xi_n)\} =: \mathbb{R}_s^n$. We will think of \mathbb{C}^n as the superspace of \mathbb{R}^n.

A superform on \mathbb{R}^n is a form on \mathbb{C}^n

$$a = \sum a_{I,J}(x)dx_I \wedge d\xi_J,$$

where the coefficients $a_{I,J}$ do not depend on ξ.

If $|I| = p$ and $|J| = q$ we say that a has bidegree (p, q).

The complex structure on \mathbb{C}^n, J, acts on superforms. If a is of bidegree $(p, 0)$ we sometimes write $J(a) = a^\#$. If $J(a) = a$, a is symmetric, $a_{I,J} = a_{J,I}$.
We also define positivity for symmetric \((p, p)\) forms:

\[a \geq 0 \]

if

\[a \wedge \alpha_1 \wedge \alpha_1^\# \wedge ... \alpha_m \wedge \alpha_m^\# \geq 0. \]

Here \(m = n - p\), \(\alpha_j\) are \((1, 0)\).
Integration

Let \(a = a_0 dx \wedge d\xi \) be superform of bidgree \((n, n)\).
Integration

Let \(a = a_0 dx \wedge d\xi \) be superform of bidgree \((n, n)\). We define its (super)integral as

\[
\int_{\mathbb{R}^n_s} a := \int_{\mathbb{R}^n} a_0 dx \int d\xi,
\]

where \(\int d\xi := c_n = (-1)^n (n+1)/2 \) (if \(\xi_j \) are oriented and orthonormal). This is essentially the Berezin integral; the constant \(c_n \) is chosen so that \(\int a_0 dx_1 \wedge d\xi_1 \ldots dx_n \wedge d\xi_n > 0 \) if \(a_0 > 0 \). The superintegral does not depend on the orientation of \(\mathbb{R}^n \), but it does depend on a choice of scalar product on \(\mathbb{R}^n \).
Integration

Let $a = a_0 dx \wedge d\xi$ be superform of bidgree (n, n). We define its (super)integral as

$$\int_{\mathbb{R}^n} a := \int_{\mathbb{R}^n} a_0 dx \int d\xi,$$

where

$$\int d\xi := c_n = (-1)^{n(n+1)/2}$$

(if ξ_j are oriented and orthonormal).
Integration

Let $a = a_0 dx \wedge d\xi$ be superform of bidgree (n, n). We define its (super)integral as

$$\int_{\mathbb{R}_s^n} a := \int_{\mathbb{R}^n} a_0 \, dx \int d\xi,$$

where

$$\int d\xi := c_n = (-1)^{n(n+1)/2}$$

(if ξ_j are oriented and orthonormal). This is essentially the Berezin integral; the constant c_n is choosen so that

$$\int a_0 dx_1 \wedge d\xi_1...dx_n \wedge d\xi_n > 0$$

if $a_0 > 0$.
Let $a = a_0 dx \wedge d\xi$ be superform of bidgree (n, n). We define its (super)integral as

$$
\int_{\mathbb{R}^n_s} a := \int_{\mathbb{R}^n} a_0 dx \int d\xi,
$$

where

$$
\int d\xi := c_n = (-1)^{n(n+1)/2}
$$

(if ξ_j are oriented and orthonormal). This is essentially the *Berezin integral*; the constant c_n is choosen so that

$$
\int a_0 dx_1 \wedge d\xi_1 ... dx_n \wedge d\xi_n > 0
$$

if $a_0 > 0$.

The superintegral does not depend on the orientation of \mathbb{R}^n, but it does depend on a choice of scalar product on \mathbb{R}^n.
Differentiation

Ordinary exterior differentiation, \(d \), acts on superforms and we also define

\[
d^\# a = \sum \frac{\partial a_{l,j}}{\partial x_j} d\xi_j \wedge dx_l \wedge d\xi_J.
\]
Differentiation

Ordinary exterior differentiation, d, acts on superforms and we also define

$$d^# a = \sum \frac{\partial a_{I,J}}{\partial x_j} d\xi_j \wedge dx_I \wedge d\xi_J.$$

Thus $d^# = d^c$, but we stress that it only acts on superforms. E.g. if ϕ is a function

$$dd^# \phi = \sum \phi_{jk} dx_j \wedge d\xi_k.$$
Differentiation

Ordinary exterior differentiation, \(d \), acts on superforms and we also define

\[
d^\# a = \sum \frac{\partial a_{I,J}}{\partial x_j} d\xi_j \wedge dx_I \wedge d\xi_J.
\]

Thus \(d^\# = d^c \), but we stress that it only acts on superforms. E.g. if \(\phi \) is a function

\[
\dd d^\# \phi = \sum \phi_{jk} dx_j \wedge d\xi_k.
\]

In particular

\[
\dd d^\# |x|^2/2 = \sum dx_j \wedge d\xi_j = \beta,
\]

the metric form.
Differentiation

Ordinary exterior differentiation, d, acts on superforms and we also define

$$d^# a = \sum \frac{\partial a_{l,j}}{\partial x_j} d\xi_j \wedge dx_l \wedge d\xi_J.$$

Thus $d^# = d^c$, but we stress that it only acts on superforms. E.g. if ϕ is a function

$$dd^# \phi = \sum \phi_{jk} dx_j \wedge d\xi_k.$$

In particular

$$dd^# |x|^2/2 = \sum dx_j \wedge d\xi_j = \beta,$$

the *metric form*.
Supercurrents

A supercurrent of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology.

\[T_{IJ} = \sum_{|I| = n - p, |J| = n - q} T_{IJ} d\xi_j \]

where \(T_{IJ}\) are distributions (for us, mostly measures).

Notice that a 'superfunction' is a function on \(\mathbb{R}^n\).

Therefore, a 'supermeasure', i.e., an \((n, n)\)-current of order zero, is a measure on \(\mathbb{R}^n\).

For instance (following Bedford-Taylor) we can define \((dd^\# \varphi)^{n/n!}\) for \(\varphi\) convex and not necessarily smooth. It is the Alexandrov Monge-Ampère measure of \(\varphi\).
Supercurrents

A supercurrent of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology. It has bidegree \((n - p, n - q)\) and can be written

\[
T = \sum_{|I|=n-p,|J|=n-q} T_{I,J} dx_I \wedge d\xi_j
\]

where \(T_{I,J}\) are distributions (for us, mostly measures).
Supercurrents

A supercurrent of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology. It has bidegree \((n - p, n - q)\) and can be written

\[
T = \sum_{|I| = n - p, |J| = n - q} T_{l,J} dx_I \wedge d\xi_j
\]

where \(T_{l,J}\) are distributions (for us, mostly measures).

Notice that a ‘superfunction’ is a function on \(\mathbb{R}^n\).
Supercurrents

A *supercurrent* of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology. It has bidegree \((n - p, n - q)\) and can be written

\[
T = \sum_{|I| = n-p, |J| = n-q} T_{I,J} dx_I \wedge d\xi_j
\]

where \(T_{I,J}\) are distributions (for us, mostly measures).

Notice that a ’superfunction’ is a function on \(\mathbb{R}^n\). Therefore, a ’supermeasure’, i. e. an \((n, n)\)-current of order zero, is a measure on \(\mathbb{R}^n\).
Supercurrents

A *supercurrent* of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology. It has bidegree \((n − p, n − q)\) and can be written

\[
T = \sum_{|I|=n-p, |J|=n-q} T_{I,J} \, dx_I \wedge d\xi_j
\]

where \(T_{I,J}\) are distributions (for us, mostly measures).

Notice that a 'superfunction' is a function on \(\mathbb{R}^n\). Therefore, a 'supermeasure', i.e. an \((n, n)\)-current of order zero, is a measure on \(\mathbb{R}^n\).

For instance (following Bedford-Taylor) we can define

\[
(dd^\# \phi)^n / n!
\]

for \(\phi\) convex and not necessarily smooth.
Supercurrents

A *supercurrent* of bidimension \((p, q)\) is a linear form on the space of compactly supported superforms with the usual topology. It has bidegree \((n - p, n - q)\) and can be written

\[
T = \sum_{|I| = n - p, |J| = n - q} T_{I, J} dx_I \wedge d\xi_j
\]

where \(T_{I, J}\) are distributions (for us, mostly measures).

Notice that a 'superfunction' is a function on \(\mathbb{R}^n\). Therefore, a 'supermeasure', i.e. an \((n, n)\)-current of order zero, is a measure on \(\mathbb{R}^n\).

For instance (following Bedford-Taylor) we can define

\[
(dd^\# \phi)^n / n!
\]

for \(\phi\) convex and not necessarily smooth. It is the Alexandrov Monge-Ampère measure of \(\phi\).
Let V be a hyperplane in \mathbb{R}^n. Its complexification V_s is a complex hyperplane in \mathbb{R}^n_s so we can (super)integrate $(n - 1, n - 1)$-forms over V_s.
Subspaces

Let V be a hyperplane in \mathbb{R}^n. Its complexification V_s is a complex hyperplane in \mathbb{R}^n_s so we can (super)integrate $(n-1, n-1)$-forms over V_s. Thus V defines a supercurrent, $[V]_s$ of bidegree $(1, 1)$.
Subspaces

Let V be a hyperplane in \mathbb{R}^n. Its complexification V_s is a complex hyperplane in \mathbb{R}^n_s so we can (super)integrate $(n-1, n-1)$-forms over V_s. Thus V defines a supercurrent, $[V]_s$ of bidegree $(1, 1)$.

A short computation gives that

$$[V]_s = [V] \wedge n^\#,$$

where n is a unit normal (sign chosen so that $[V]_s \geq 0$).
Subspaces

Let V be a hyperplane in \mathbb{R}^n. Its complexification V_s is a complex hyperplane in \mathbb{R}_s^n so we can (super)integrate $(n-1, n-1)$-forms over V_s. Thus V defines a supercurrent, $[V]_s$ of bidegree $(1, 1)$.

A short computation gives that

$$[V]_s = [V] \wedge n^\#,$$

where n is a unit normal (sign chosen so that $[V]_s \geq 0$).

A subspace of codim p defines a supercurrent in the same way

$$[V]_s = c_p [V] \wedge n_1^\# \wedge ... n_p^\#.$$
Submanifolds

If M is a submanifold of \mathbb{R}^n of dimension m and codimension $p = n - m$, we define its associated supercurrent by

$$[M]_s = c_p[M] \wedge n_1^\# \wedge ... n_p^\# = (\ast dS_M) n_1 \wedge n_1^\# \wedge ... n_p \wedge n_p^\#,$$

where n_j form an ON-basis for its normal space.

Is it closed?

When $p = 1$ we have

$$d[M]_s = -c_p[M] \wedge F,$$

where $F = dn_\#$.

This is (when restricted to M) the second fundamental form of M, the derivative of the Gauss map. This vanishes only when n is constant, i.e. M is a linear subspace. But, ...
Submanifolds

If M is a submanifold of \mathbb{R}^n of dimension m and codimension $p = n - m$, we define its associated supercurrent by

$$[M]_s = c_p[M] \wedge n_1^\# \wedge ... n_p^\# = (\ast dS_M)n_1 \wedge n_1^\# \wedge ... n_p \wedge n_p^\#,$$

where n_j form an ON-basis for its normal space. Hence

$$|M| = \int [M]_s \wedge \beta^m / m!.$$

Is it closed?
Submanifolds

If M is a submanifold of \mathbb{R}^n of dimension m and codimension $p = n - m$, we define its associated supercurrent by

$$[M]_s = c_p[M] \wedge n_1^\# \wedge \ldots n_p^\# = (\star dS_M) n_1 \wedge n_1^\# \wedge \ldots n_p \wedge n_p^\#,$$

where n_j form an ON-basis for its normal space. Hence

$$|M| = \int [M]_s \wedge \beta^m / m!.$$

Is it closed? When $p = 1$ we have

$$d[M]_s = -c_p[M] \wedge F,$$

where $F = dn^\#$.
Submanifolds

If M is a submanifold of \mathbb{R}^n of dimension m and codimension $p = n - m$, we define its associated supercurrent by

$$[M]_s = c_p[M] \wedge n_1^\# \wedge ... n_p^\# = (\ast dS_M)n_1 \wedge n_1^\# \wedge ... n_p \wedge n_p^\#,$$

where n_j form an ON-basis for its normal space. Hence

$$|M| = \int [M]_s \wedge \beta^m / m!.$$

Is it closed? When $p = 1$ we have

$$d[M]_s = -c_p[M] \wedge F,$$

where $F = dn^\#$. This is (when restricted to M) the second fundamental form of M, the derivative of the Gauss map.
Submanifolds

If M is a submanifold of \mathbb{R}^n of dimension m and codimension $p = n - m$, we define its associated supercurrent by

$$[M]_s = c_p [M] \wedge n_1^\# \wedge \ldots n_p^\# = (\ast dS_M) n_1 \wedge n_1^\# \wedge \ldots n_p \wedge n_p^\#,$$

where n_j form an ON-basis for its normal space. Hence

$$|M| = \int [M]_s \wedge \beta^m/m!.$$

Is it closed? When $p = 1$ we have

$$d[M]_s = -c_p [M] \wedge F,$$

where $F = dn^\#$. This is (when restricted to M) the second fundamental form of M, the derivative of the Gauss map. This vanishes only when n is constant, i.e. M is a linear subspace. But, ...
Minimal submanifolds

A small computation gives

\[d[M]_s \wedge \beta^{n-2} / (n - 2)! = tr(F)n^\# [M]_s \wedge \beta^{n-1} / (n - 1)! \]
Minimal submanifolds

A small computation gives

\[d[M]_s \wedge \beta^{n-2}/(n-2)! = tr(F)n^# [M]_s \wedge \beta^{n-1}/(n-1)! \].

Here \(tr(F) = H \) is the trace of the second fundamental form and \(H\bar{n} \) is the mean curvature vector.
Minimal submanifolds

A small computation gives

\[d[M]_s \wedge \beta^{n-2}/(n - 2)! = tr(F) n\# [M]_s \wedge \beta^{n-1}/(n - 1)! \].

Here \(tr(F) =: H \) is the trace of the second fundamental form and \(H\vec{n} \) is the mean curvature vector. Hence

\[[M]_s \wedge \beta^{n-2} \]

is closed if and only if the mean curvature vanishes, i.e. \(M \) is a minimal manifold.
Minimal submanifolds

A small computation gives

\[d[M]_s \wedge \beta^{n-2} / (n - 2)! = \text{tr}(F) n^\# [M]_s \wedge \beta^{n-1} / (n - 1)! . \]

Here \(\text{tr}(F) =: H \) is the trace of the second fundamental form and \(H \vec{n} \) is the *mean curvature vector*. Hence

\[[M]_s \wedge \beta^{n-2} \]

is closed if and only if the mean curvature vanishes, i.e. \(M \) is a *minimal manifold*.

In general dimension \(m \)

\[d[M]_s \wedge \beta^{m-1} / (m - 1)! = \sum \text{tr}(F_j) n_j^\# [M]_s \wedge \beta^m / m! , \]

with \(F_j = dn_j^\# \) and \(\sum \text{tr}(F_j) \vec{n}_j \) is again the mean curvature vector.
Minimal submanifolds

A small computation gives

\[d[M]_s \wedge \beta^{n-2} / (n-2)! = tr(F) n^\# [M]_s \wedge \beta^{n-1} / (n-1)! . \]

Here \(tr(F) =: H \) is the trace of the second fundamental form and \(H\vec{n} \) is the mean curvature vector. Hence

\[[M]_s \wedge \beta^{n-2} \]

is closed if and only if the mean curvature vanishes, i.e., \(M \) is a minimal manifold.

In general dimension \(m \)

\[d[M]_s \wedge \beta^{m-1} / (m-1)! = \sum tr(F_j) n_j^\# [M]_s \wedge \beta^m / m! , \]

with \(F_j = d n_j^\# \) and \(\sum tr(F_j) \vec{n}_j \) is again the mean curvature vector. So, \([M]_s \wedge \beta^{m-1} \) is closed precisely when \(M \) is minimal.
Note that $S := [M]_s \wedge \beta^{m-1}/(m - 1)!$ is of bidegree $(n - 1, n - 1)$, i.e., of bidimension $(1, 1)$. But it is not an arbitrary $(n - 1, n - 1)$-current; it has the form $S = A \wedge \beta^{m-1}$, where $A \geq 0$.
Note that $S := [M]_s \wedge \beta^{m-1} / (m - 1)!$ is of bidegree $(n - 1, n - 1)$, i.e. of bidimension $(1, 1)$. But it is not an arbitrary $(n - 1, n - 1)$-current; it has the form $S = A \wedge \beta^{m-1}$, where $A \geq 0$. This is a positivity condition on S, which is not shared by all $(n - 1, n - 1)$-currents.
Note that $S := [M]_s \wedge \beta^{m-1} / (m - 1)!$ is of bidegree $(n - 1, n - 1)$, i.e. of bidimension $(1, 1)$. But it is not an arbitrary $(n - 1, n - 1)$-current; it has the form $S = A \wedge \beta^{m-1}$, where $A \geq 0$. This is a positivity condition on S, which is *not* shared by all $(n - 1, n - 1)$-currents.

Now assume that M is minimal, so that S is closed.
Note that \(S := [M]_s \wedge \beta^{m-1}/(m - 1)! \) is of bidegree
\((n - 1, n - 1)\), i.e. of bidimension \((1, 1)\). But it is not an arbitrary
\((n - 1, n - 1)\)-current; it has the form \(S = A \wedge \beta^{m-1} \), where
\(A \geq 0 \). This is a positivity condition on \(S \), which is \textit{not} shared by
all \((n - 1, n - 1)\)-currents.

Now assume that \(M \) is minimal, so that \(S \) is closed. If \(u \) is a
function

\[
dd^\# u S = (dd^\# u) \wedge S.
\]

This defines a Laplace operator on \(M \) which has no first order
or second order terms, just like on a complex manifold.
Note that $S := [M]_s \wedge \beta^{m-1}/(m - 1)!$ is of bidegree $(n - 1, n - 1)$, i.e., of bidimension $(1, 1)$. But it is not an arbitrary $(n - 1, n - 1)$-current; it has the form $S = A \wedge \beta^{m-1}$, where $A \geq 0$. This is a positivity condition on S, which is not shared by all $(n - 1, n - 1)$-currents.

Now assume that M is minimal, so that S is closed. If u is a function

$$dd^\# u S = (dd^\# u) \wedge S.$$

This defines a Laplace operator on M which has no first order or second order terms, just like on a complex manifold. One verifies that the Newton kernel

$$E_{m-2} := - (1/(m - 2)) \frac{1}{|x|^{m-2}}$$

is subharmonic on $[M]_s$.

Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

$$\sigma(r) = |M \cap B(0, r)| = \int_{|x|<r} [M]_s \wedge \beta^m / m! = a_m \int_{|x|<r} S \wedge \beta.$$
Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

$$\sigma(r) = |M \cap B(0, r)| = \int_{|x|<r} [M]_s \wedge \beta^m / m! = a_m \int_{|x|<r} S \wedge \beta.$$

Stokes’ gives

$$\sigma(r) = a_m \int_{|x|=r} d^# |x|^2 / 2 \wedge S$$
Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

$$\sigma(r) = |M \cap B(0, r)| = \int_{|x|<r} [M]_s \wedge \beta^m / m! = a_m \int_{|x|<r} S \wedge \beta.$$

Stokes’ gives

$$\sigma(r) = a_m \int_{|x|=r} d^\# |x|^2 / 2 \wedge S = a_m r^m \int_{|x|=r} d^\# E_m \wedge S =$$

$$a_m r^m \int_{|x|<r} dd^\# E_{m-2} \wedge S.$$
Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

$$\sigma(r) = |M \cap B(0, r)| = \int_{|x|<r} [M]_s \wedge \beta^m / m! = a_m \int_{|x|<r} S \wedge \beta.$$

Stokes’ gives

$$\sigma(r) = a_m \int_{|x|=r} d\# |x|^2 / 2 \wedge S = a_m r^m \int_{|x|=r} d\# E_m \wedge S =$$

$$a_m r^m \int_{|x|<r} d d\# E_{m-2} \wedge S.$$

From this we get the monotonicity theorem; $\sigma(r)/r^m$ is increasing.
Volume computation à la Lelong

We look at the volume of M intersected with a ball of radius r

$$\sigma(r) = \left| M \cap B(0, r) \right| = \int_{|x|<r} [M]_s \wedge \beta^m / m! = a_m \int_{|x|<r} S \wedge \beta.$$

Stokes’ gives

$$\sigma(r) = a_m \int_{|x|=r} d^\# |x|^2/2 \wedge S = a_m r^m \int_{|x|=r} d^\# E_m \wedge S = a_m r^m \int_{|x|<r} dd^\# E_{m-2} \wedge S.$$

From this we get the monotonicity theorem; $\sigma(r)/r^m$ is increasing. We also get that the Laplacian of E_{m-2} on M contains a point mass at the origin.
General domains

The proof used that $|x|$ is constant on the boundary of the ball.
General domains

The proof used that $|x|$ is constant on the boundary of the ball. For a general domain, say that $|x - a|^m = w(x)$ on the boundary.
The proof used that $|x|$ is constant on the boundary of the ball. For a general domain, say that $|x - a|^m = w(x)$ on the boundary. A similar computation gives

Theorem

*Let D be a bounded domain and assume that $|x - a|^m = w(x)$ on the boundary of D. Let M be a minimal manifold without boundary in D that contains a.***
General domains

The proof used that $|x|$ is constant on the boundary of the ball. For a general domain, say that $|x - a|^m = w(x)$ on the boundary. A similar computation gives

Theorem

Let D be a bounded domain and assume that $|x - a|^m = w(x)$ on the boundary of D. Let M be a minimal manifold without boundary in D that contains a. Assume w is convex.
The proof used that $|x|$ is constant on the boundary of the ball. For a general domain, say that $|x - a|^m = w(x)$ on the boundary. A similar computation gives

Theorem

Let D be a bounded domain and assume that $|x - a|^m = w(x)$ on the boundary of D. Let M be a minimal manifold without boundary in D that contains a. Assume w is convex. Then

$$|M| \geq \omega_m w(a).$$
As a consequence we get a result by Alexander-Osserman and Brendle-Hung:

Theorem

Let a be a point in the unit ball. Let M be an m-dimensional minimal manifold in the ball that contains a. Then

$$|M| \geq \omega_m (1 - |a|^2)^{m/2}.$$
As a consequence we get a result by Alexander-Osserman and Brendle-Hung:

Theorem

Let a be a point in the unit ball. Let M be an m-dimensional minimal manifold in the ball that contains a. Then

$$|M| \geq \omega_m (1 - |a|^2)^{m/2}.$$

To see how this follows we note that, on the boundary,

$$|x - a|^2 = 1 + |a|^2 - 2a \cdot x.$$
As a consequence we get a result by Alexander-Osserman and Brendle-Hung:

Theorem

Let a be a point in the unit ball. Let M be an m-dimensional minimal manifold in the ball that contains a. Then

$$|M| \geq \omega_m(1 - |a|^2)^{m/2}.$$

To see how this follows we note that, on the boundary,

$$|x - a|^2 = 1 + |a|^2 - 2a \cdot x.$$

So we can choose $w(x) = (1 + |a|^2 - 2a \cdot x)^{m/2}$,
$w(a) = (1 - |a|^2)^{m/2}$.
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,

$$S = [M]_s \wedge \beta^{m-1}/(m - 1)!. $$
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,

$$S = [M]_S \wedge \beta^{m-1}/(m-1)!.$$

What is $dd^# S$?
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,

$$S = [M]_s \wedge \beta^{m-1}/(m-1)!.$$

What is $dd^\# S$? Recall that when $m = n - 1$

$$dS = -[M] \wedge F.$$
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,

$$S = [M]_s \wedge \beta^{m-1}/(m-1)!.$$

What is $dd\# S$? Recall that when $m = n - 1$

$$dS = -[M] \wedge F.$$

Thus $d\# dS$ does not have measure coefficients, which looks bad.
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,

$$S = [M]_s \wedge \beta^{m-1}/(m - 1)!.$$

What is $dd^\# S$? Recall that when $m = n - 1$

$$dS = -[M] \wedge F.$$

Thus $d^\# dS$ does not have measure coefficients, which looks bad. But it turns out that $dd^\# S$ has a nice interpretation in terms of the mean curvature flow.
Mean curvature flow

Let M be an arbitrary submanifold of \mathbb{R}^n of dimension m,
\[S = [M]_s \wedge \beta^{m-1}/(m-1)!. \]

What is $dd^# S$? Recall that when $m = n - 1$
\[dS = -[M] \wedge F. \]

Thus $d^# dS$ does not have measure coefficients, which looks bad. But it turns out that $dd^# S$ has a nice interpretation in terms of the mean curvature flow.

Recall that $\vec{H} := \sum tr(F_j)\vec{n}_j \ (F_j = dn^#)$ is the mean curvature vector field. It does not depend on the choice of ON-basis n_j.
Assume M is compact without boundary.
Assume M is compact without boundary. Intuitively the mean curvature flow of M is defined as follows: We move M a very short time in the direction of $-\vec{H}$. Then we get a new manifold, with a new \vec{H}. Then repeat.
Assume M is compact without boundary. Intuitively the mean curvature flow of M is defined as follows: We move M a very short time in the direction of $-\vec{H}$. Then we get a new manifold, with a new \vec{H}. Then repeat. More formally: Let \vec{V} be a vector field defined in a neighbourhood of M and let M flow by \vec{V} to get a one-parameter family of M_t. Assume \vec{V} restricts to the mean curvature field on each M_t.
Assume M is compact without boundary. Intuitively the mean curvature flow of M is defined as follows: We move M a very short time in the direction of $-\vec{H}$. Then we get a new manifold, with a new \vec{H}. Then repeat. More formally: Let \vec{V} be a vector field defined in a neighbourhood of M and let M flow by \vec{V} to get a one-parameter family of M_t. Assume \vec{V} restricts to the mean curvature field on each M_t. Then this flow is the mean curvature flow.
Assume M is compact without boundary. Intuitively the mean curvature flow of M is defined as follows: We move M a very short time in the direction of $-\vec{H}$. Then we get a new manifold, with a new \vec{H}. Then repeat. More formally: Let \vec{V} be a vector field defined in a neighbourhood of M and let M flow by \vec{V} to get a one-parameter family of M_t. Assume \vec{V} restricts to the mean curvature field on each M_t. Then this flow is the mean curvature flow.

The flow exists for short times, but always collapses in finite time. (Look at a sphere.)
Recall that

\[dS = \bar{H}^\# [M]_s \wedge \beta^m/m!. \]
Recall that
\[dS = \vec{H} \, [M]_s \wedge \beta^m / m! . \]
This gives
\[d\# S = -\vec{H} \, [M]_s \beta^m / m! . \]
Recall that
\[dS = \tilde{H} [M] S \wedge \beta^m / m! \]
This gives
\[d\# S = -\tilde{H} [M] S \beta^m / m! \]
Hence \(dd\# S \) has the form
\[dd\# S = -d\tilde{H} \sigma \]
Recall that
\[dS = \bar{H}^\# \lfloor [M]_s \wedge \beta^m / m! . \]
This gives
\[d^\# S = -\bar{H} \lfloor [M]_s \beta^m / m! . \]
Hence \(dd^\# S \) has the form
\[dd^\# S = -d\bar{H} \lfloor \sigma . \]

By Cartan’s formula, this is the Lie derivative of \(\sigma \) along the flow (since \(d\sigma = 0 \)). Keeping track of signs etc we get
Theorem

Let M_t be moving under the mean curvature flow. Then

$$
\frac{d}{dt} [M_t]_s \wedge \beta^m / m! = -|\vec{H}|^2 [M_t]_s \wedge \beta^m / m! - dd^\# S.
$$

Integrating this we see that the volume decreases under the mean curvature flow. Integrating against a function ρ we get

$$
\frac{d}{dt} \int_{M_t} \rho \, dV_t = -\int_{M_t} \rho |\vec{H}|^2 \, dV_t - \int dd^\# \rho \wedge S.
$$

If ρ is convex, this is negative, so $\int_{M_t} \rho \, dV_t$ decreases. As a consequence, if M_0 is contained in a convex set, M_t stays there.
Theorem

Let M_t be moving under the mean curvature flow. Then

$$\frac{d}{dt} [M_t]_s \wedge \beta^m / m! = -|\vec{H}|^2 [M_t]_s \wedge \beta^m / m! - dd^\# S.$$

Integrating this we see that the volume decreases under the mean curvature flow.
Theorem

Let M_t be moving under the mean curvature flow. Then

$$\frac{d}{dt} [M_t]_s \wedge \beta^m / m! = -|\vec{H}|^2 [M_t]_s \wedge \beta^m / m! - dd^\# S.$$

Integrating this we see that the volume decreases under the mean curvature flow. Integrating against a function ρ we get

$$\frac{d}{dt} \int_{M_t} \rho dV_t = - \int_{M_t} \rho |\vec{H}|^2 dV_t - \int dd^\# \rho \wedge S.$$
Theorem

Let \(M_t \) be moving under the mean curvature flow. Then

\[
\frac{d}{dt} [M_t]_s \wedge \beta^m / m! = -|\vec{H}|^2 [M_t]_s \wedge \beta^m / m! - dd^\# S.
\]

Integrating this we see that the volume decreases under the mean curvature flow. Integrating against a function \(\rho \) we get

\[
\frac{d}{dt} \int_{M_t} \rho dV_t = - \int_{M_t} \rho |\vec{H}|^2 dV_t - \int dd^\# \rho \wedge S.
\]

If \(\rho \) is convex, this is negative, so

\[
\int_{M_t} \rho dV_t
\]

decreases.
Theorem

Let M_t be moving under the mean curvature flow. Then

$$\frac{d}{dt}[M_t]_{s} \wedge \beta^m/m! = -|\vec{H}|^2[M_t]_{s} \wedge \beta^m/m! - dd^\# S.$$

Integrating this we see that the volume decreases under the mean curvature flow. Integrating against a function ρ we get

$$\frac{d}{dt} \int_{M_t} \rho dV_t = - \int_{M_t} \rho |\vec{H}|^2 dV_t - \int dd^\# \rho \wedge S.$$

If ρ is convex, this is negative, so

$$\int_{M_t} \rho dV_t$$

decreases. As a consequence, if M_0 is contained in a convex set, M_t stays there.
Thanks!