Metric geometry of singularity types Joint work with T. Darvas and C. Lu

Eleonora Di Nezza

Sorbonne Université

Oslo, November 1st, 2019

The Kähler world

Let (X, ω) be a compact Kähler manifold of complex dimension $n \geq 1$.

The Kähler world

Let (X, ω) be a compact Kähler manifold of complex dimension $n \geq 1$. Recall that

- ω is a Kähler form/metric (closed real and positive (1,1)-form)

The Kähler world

Let (X, ω) be a compact Kähler manifold of complex dimension $n \geq 1$. Recall that

- ω is a Kähler form/metric (closed real and positive (1,1)-form) and in local complex coordinates
$\omega=\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} i d z_{\alpha} \wedge d \bar{z}_{\beta}$ where $\left(g_{\alpha \bar{\beta}}\right)$ is hermitian positive.

The Kähler world

Let (X, ω) be a compact Kähler manifold of complex dimension $n \geq 1$. Recall that

- ω is a Kähler form/metric (closed real and positive (1,1)-form) and in local complex coordinates
$\omega=\sum_{\alpha, \beta} g_{\alpha \bar{\beta}} i d z_{\alpha} \wedge d \bar{z}_{\beta}$ where $\left(g_{\alpha \bar{\beta}}\right)$ is hermitian positive.

Goal of today $=$ study the singularities of quasi-plurisubharmonic functions !

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

```
Definition
Let \(\operatorname{PSH}(X, \theta)\) denote the set of \(L^{1}\)-functions \(u: X \rightarrow \mathbb{R} \cup\{-\infty\}\) s.t. locally \(u=\) smooth \(+p s h\) and \(\theta+i \partial \bar{\partial} u \geq 0\) ("weak" sense).
```


Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

```
Definition
Let \(\operatorname{PSH}(X, \theta)\) denote the set of \(L^{1}\)-functions \(u: X \rightarrow \mathbb{R} \cup\{-\infty\}\) s.t. locally \(u=\) smooth \(+p s h\) and \(\theta+i \partial \bar{\partial} u \geq 0\) ("weak" sense).
```

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle).

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $\operatorname{PSH}(X, \theta)$ denote the set of L^{1}-functions $u: X \rightarrow \mathbb{R} \cup\{-\infty\}$ s.t. locally $u=$ smooth + psh and $\theta+i \partial \bar{\partial} u \geq 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$
\operatorname{PSH}(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \in H^{1,1}(X, \mathbb{R}) \text { is pseudoeffective }
$$

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $\operatorname{PSH}(X, \theta)$ denote the set of L^{1}-functions $u: X \rightarrow \mathbb{R} \cup\{-\infty\}$ s.t. locally $u=$ smooth + psh and $\theta+i \partial \bar{\partial} u \geq 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$
\begin{gathered}
P S H(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \in H^{1,1}(X, \mathbb{R}) \text { is pseudoeffective } \\
P S H(X, \theta-\varepsilon \omega) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \text { is } \mathbf{~ b i g}
\end{gathered}
$$

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $\operatorname{PSH}(X, \theta)$ denote the set of L^{1}-functions $u: X \rightarrow \mathbb{R} \cup\{-\infty\}$ s.t. locally $u=$ smooth + psh and $\theta+i \partial \bar{\partial} u \geq 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$
\begin{gathered}
P S H(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \in H^{1,1}(X, \mathbb{R}) \text { is pseudoeffective } \\
P S H(X, \theta-\varepsilon \omega) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \text { is } \mathbf{~ b i g}
\end{gathered}
$$

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions").

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $\operatorname{PSH}(X, \theta)$ denote the set of L^{1}-functions $u: X \rightarrow \mathbb{R} \cup\{-\infty\}$ s.t. locally $u=$ smooth $+p s h$ and $\theta+i \partial \bar{\partial} u \geq 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$
\begin{gathered}
P S H(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \in H^{1,1}(X, \mathbb{R}) \text { is pseudoeffective } \\
\operatorname{PSH}(X, \theta-\varepsilon \omega) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \text { is big }
\end{gathered}
$$

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions").
A special θ-psh function is

$$
V_{\theta}:=\sup \{u \in P S H(X, \theta): u \leq 0\}
$$

Quasi-plurisubharmonic functions: definition

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $\operatorname{PSH}(X, \theta)$ denote the set of L^{1}-functions $u: X \rightarrow \mathbb{R} \cup\{-\infty\}$ s.t. locally $u=$ smooth $+p s h$ and $\theta+i \partial \bar{\partial} u \geq 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$
\begin{gathered}
P S H(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \in H^{1,1}(X, \mathbb{R}) \text { is pseudoeffective } \\
P S H(X, \theta-\varepsilon \omega) \neq \emptyset \quad \Longleftrightarrow \quad\{\theta\} \text { is big }
\end{gathered}
$$

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions").
A special θ-psh function is

$$
V_{\theta}:=\sup \{u \in P S H(X, \theta): u \leq 0\}
$$

Example: $\theta=\omega=$ Kähler, $V_{\omega}=0$.

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$
- u has the same singularity as $v(u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$
- u has the same singularity as $v(u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any u is more singular).

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$
- u has the same singularity as $v(u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any u is more singular).
We denote by $[u]$ the classes (= singularity types) of this latter equivalence relation and we set

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$
- u has the same singularity as $v(u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any u is more singular).
We denote by $[u]$ the classes (= singularity types) of this latter equivalence relation and we set

$$
\mathcal{S}(X, \theta)=\text { the set of all singularity types }
$$

Quasi-psh functions: singularity types

We say that

- u is more singular than $v(u \preceq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v+C$
- u has the same singularity as $v(u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any u is more singular).
We denote by $[u]$ the classes (= singularity types) of this latter equivalence relation and we set

$$
\mathcal{S}(X, \theta)=\text { the set of all singularity types }
$$

Goal of today: Define a (pseudo)-metric $d_{\mathcal{S}}$ on this space!

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)
- Given θ-psh functions u, u_{1}, \cdots, u_{n}, one can define the so called non-pluripolar Monge-Ampère measures

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)
- Given θ-psh functions u, u_{1}, \cdots, u_{n}, one can define the so called non-pluripolar Monge-Ampère measures

$$
\begin{gather*}
\theta_{u}^{n}:=(\theta+i \partial \bar{\partial} u)^{n} \tag{1}\\
\theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}:=\left(\theta+i \partial \bar{\partial} u_{1}\right) \wedge \cdots \wedge\left(\theta+i \partial \bar{\partial} u_{n}\right) \tag{2}
\end{gather*}
$$

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)
- Given θ-psh functions u, u_{1}, \cdots, u_{n}, one can define the so called non-pluripolar Monge-Ampère measures

$$
\begin{gather*}
\theta_{u}^{n}:=(\theta+i \partial \bar{\partial} u)^{n} \tag{1}\\
\theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}:=\left(\theta+i \partial \bar{\partial} u_{1}\right) \wedge \cdots \wedge\left(\theta+i \partial \bar{\partial} u_{n}\right) \tag{2}
\end{gather*}
$$

- If u, u_{j} smooth, (1) and (2) are defined in the classical sense

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)
- Given θ-psh functions u, u_{1}, \cdots, u_{n}, one can define the so called non-pluripolar Monge-Ampère measures

$$
\begin{gather*}
\theta_{u}^{n}:=(\theta+i \partial \bar{\partial} u)^{n} \tag{1}\\
\theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}:=\left(\theta+i \partial \bar{\partial} u_{1}\right) \wedge \cdots \wedge\left(\theta+i \partial \bar{\partial} u_{n}\right) \tag{2}
\end{gather*}
$$

- If u, u_{j} smooth, (1) and (2) are defined in the classical sense
- If u, u_{j} bounded: Bedford-Taylor theory ' 82

Quasi-psh functions: properties

- $u \in L^{p}$ for any $p>0$
- The set $\left\{u \in P S H(X, \theta): \sup _{X} u=0\right\}$ is compact w.r.t. the L^{1}-metric (Hartog's theorem)
- Given θ-psh functions u, u_{1}, \cdots, u_{n}, one can define the so called non-pluripolar Monge-Ampère measures

$$
\begin{gather*}
\theta_{u}^{n}:=(\theta+i \partial \bar{\partial} u)^{n} \tag{1}\\
\theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}:=\left(\theta+i \partial \bar{\partial} u_{1}\right) \wedge \cdots \wedge\left(\theta+i \partial \bar{\partial} u_{n}\right) \tag{2}
\end{gather*}
$$

- If u, u_{j} smooth, (1) and (2) are defined in the classical sense
- If u, u_{j} bounded: Bedford-Taylor theory ' 82
- If u, u_{j} singular: Boucksom-Eyssidieux-Guedj-Zeriahi '10

Monge-Ampère masses

If u, u_{j} are smooth or bounded

$$
\int_{X} \theta_{u}^{n}=\int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}=\operatorname{vol}(\{\theta\}):=\int_{X} \theta_{v_{\theta}}^{n}>0 \quad(\leftrightarrow\{\theta\} \text { is big })
$$

Monge-Ampère masses

If u, u_{j} are smooth or bounded

$$
\int_{X} \theta_{u}^{n}=\int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}=\operatorname{vol}(\{\theta\}):=\int_{X} \theta_{v_{\theta}}^{n}>0 \quad(\leftrightarrow\{\theta\} \text { is big })
$$

If u, u_{j} are singular

$$
0 \leq \int_{X} \theta_{u}^{n}, \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}
$$

Monge-Ampère masses

If u, u_{j} are smooth or bounded

$$
\int_{X} \theta_{u}^{n}=\int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}=\operatorname{vol}(\{\theta\}):=\int_{X} \theta_{v_{\theta}}^{n}>0 \quad(\leftrightarrow\{\theta\} \text { is big })
$$

If u, u_{j} are singular

$$
0 \leq \int_{X} \theta_{u}^{n}, \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}
$$

During the construction procedure we can lose mass!

Monge-Ampère masses

If u, u_{j} are smooth or bounded

$$
\int_{X} \theta_{u}^{n}=\int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}}=\operatorname{vol}(\{\theta\}):=\int_{X} \theta_{V_{\theta}}^{n}>0 \quad(\leftrightarrow\{\theta\} \text { is big })
$$

If u, u_{j} are singular

$$
0 \leq \int_{X} \theta_{u}^{n}, \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}
$$

During the construction procedure we can lose mass!
Warning: The zero mass case is problematic.

Monotonicity of Monge-Ampère masses

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

Monotonicity of Monge-Ampère masses
IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$
\begin{aligned}
& u \preceq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n} \\
& u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n}=\int_{X} \theta_{v}^{n}
\end{aligned}
$$

Monotonicity of Monge-Ampère masses

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$
\begin{aligned}
& u \preceq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n} \\
& u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n}=\int_{X} \theta_{v}^{n}
\end{aligned}
$$

The reverse implication is not true:
Consider $\theta=\omega=$ Kähler and $u \sim-(-\log \|z\|)^{\alpha}, \alpha \in(0,1)$, then

$$
\int_{X} \omega_{u}^{n}=\int_{X} \omega^{n}
$$

BUT clearly $u \preceq 0$.

Monotonicity of Monge-Ampère masses

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$
\begin{aligned}
& u \preceq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n} \\
& u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n}=\int_{X} \theta_{v}^{n}
\end{aligned}
$$

The reverse implication is not true:
Consider $\theta=\omega=$ Kähler and $u \sim-(-\log \|z\|)^{\alpha}, \alpha \in(0,1)$, then

$$
\int_{X} \omega_{u}^{n}=\int_{X} \omega^{n}
$$

BUT clearly $u \preceq 0$.
\rightsquigarrow Look for the least singular function with a given mass...

The ceiling operator \mathcal{C}

Let $u \in \operatorname{PSH}(X, \theta)$ be s.t. $\int_{X} \theta_{u}^{n}>0$ and consider

$$
\mathcal{C}(u):=\sup \left\{v \in P S H(X, \theta):[u] \leq[v], v \leq 0, \int_{X} \theta_{v}^{n}=\int_{X} \theta_{u}^{n}\right\}
$$

The ceiling operator \mathcal{C}

Let $u \in \operatorname{PSH}(X, \theta)$ be s.t. $\int_{X} \theta_{u}^{n}>0$ and consider

$$
\mathcal{C}(u):=\sup \left\{v \in P S H(X, \theta):[u] \leq[v], v \leq 0, \int_{X} \theta_{v}^{n}=\int_{X} \theta_{u}^{n}\right\}
$$

FACTS:

- $\mathcal{C}(u)$ is θ-psh
- $u \preceq \mathcal{C}(u)$ and $\int_{X} \theta_{\mathcal{C}(u)}^{n}=\int_{X} \theta_{u}^{n}$
- $\mathcal{C}(\mathcal{C}(u))=\mathcal{C}(u)$

The ceiling operator \mathcal{C}

Let $u \in \operatorname{PSH}(X, \theta)$ be s.t. $\int_{X} \theta_{u}^{n}>0$ and consider

$$
\mathcal{C}(u):=\sup \left\{v \in P S H(X, \theta):[u] \leq[v], v \leq 0, \int_{X} \theta_{v}^{n}=\int_{X} \theta_{u}^{n}\right\}
$$

FACTS:

- $\mathcal{C}(u)$ is θ-psh
- $u \preceq \mathcal{C}(u)$ and $\int_{X} \theta_{\mathcal{C}(u)}^{n}=\int_{X} \theta_{u}^{n}$
- $\mathcal{C}(\mathcal{C}(u))=\mathcal{C}(u)$

Example: Let $u \in \operatorname{PSH}(X, \theta)$ be s.t. $\int_{X} \theta_{u}^{n}=\operatorname{vol}(\{\theta\})$ then $\mathcal{C}(u)=V_{\theta}$.

The (pseudo)-metric $d_{\mathcal{S}}$

The (pseudo)-metric $d_{\mathcal{S}}$

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

The (pseudo)-metric $d_{\mathcal{S}}$

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

- If $[u],[v] \in \mathcal{S}(X, \theta)$ with $[u] \leq[v]$ then

$$
d_{\mathcal{S}}([u],[v])=\frac{1}{n+1} \sum_{k=0}^{n}\left(\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k}-\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k}\right) \geq 0
$$

The (pseudo)-metric $d_{\mathcal{S}}$

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

- If $[u],[v] \in \mathcal{S}(X, \theta)$ with $[u] \leq[v]$ then

$$
d_{\mathcal{S}}([u],[v])=\frac{1}{n+1} \sum_{k=0}^{n}\left(\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k}-\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k}\right) \geq 0
$$

- In general, there exists an absolute constant $C=C(n)>1$:

$$
d_{\mathcal{S}}([u],[v]) \leq \sum_{k=0}^{n}\left(2 \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{\max }^{n-k}(u, v)-\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k}-\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k}\right) \leq \operatorname{Cd}_{\mathcal{S}}([u],[v]) .
$$

The space $\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$

Theorem (DDL'19)
$\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$ is a pseudo-metric space. Also,

$$
d_{\mathcal{S}}([u],[v])=0 \Longleftrightarrow \mathcal{C}(u)=\mathcal{C}(v) .
$$

The space $\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$

Theorem (DDL'19)
$\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$ is a pseudo-metric space. Also,

$$
d_{\mathcal{S}}([u],[v])=0 \Longleftrightarrow \mathcal{C}(u)=\mathcal{C}(v) .
$$

Note: $d_{\mathcal{S}}([u],[\mathcal{C}(u)])=0$

The space $\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$

Theorem (DDL'19)

$\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$ is a pseudo-metric space. Also,

$$
d_{\mathcal{S}}([u],[v])=0 \Longleftrightarrow \mathcal{C}(u)=\mathcal{C}(v) .
$$

Note: $d_{\mathcal{S}}([u],[\mathcal{C}(u)])=0$
Theorem (DDL'19)
Fix $\delta>0$ and $\operatorname{set} \mathcal{S}_{\delta}(X, \theta):=\left\{[u] \in \mathcal{S}(X, \theta): \int_{X} \theta_{u}^{n} \geq \delta\right\}$. Then $\left(\mathcal{S}_{\delta}(X, \theta), d_{\mathcal{S}}\right)$ is complete.

The space $\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$

Theorem (DDL'19)

$\left(\mathcal{S}(X, \theta), d_{\mathcal{S}}\right)$ is a pseudo-metric space. Also,

$$
d_{\mathcal{S}}([u],[v])=0 \Longleftrightarrow \mathcal{C}(u)=\mathcal{C}(v) .
$$

Note: $d_{\mathcal{S}}([u],[\mathcal{C}(u)])=0$

Theorem (DDL'19)

Fix $\delta>0$ and set $\mathcal{S}_{\delta}(X, \theta):=\left\{[u] \in \mathcal{S}(X, \theta): \int_{X} \theta_{u}^{n} \geq \delta\right\}$. Then $\left(\mathcal{S}_{\delta}(X, \theta), d_{\mathcal{S}}\right)$ is complete.

This is not the case in the zero mass case!

About the proof

Three technical but crucial ingredients :

About the proof

Three technical but crucial ingredients :

- If $\left[u_{j}\right] \leq[u]$ or $[u] \leq\left[u_{j}\right]$. Then, for any k

$$
d_{\mathcal{S}}\left(\left[u_{j}\right],[u]\right) \rightarrow 0 \Longleftrightarrow \int_{X} \theta_{u_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

About the proof

Three technical but crucial ingredients :

- If $\left[u_{j}\right] \leq[u]$ or $[u] \leq\left[u_{j}\right]$. Then, for any k

$$
d_{\mathcal{S}}\left(\left[u_{j}\right],[u]\right) \rightarrow 0 \Longleftrightarrow \int_{X} \theta_{u_{j}}^{k} \wedge \theta_{v_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

- Suppose $\left\{\left[u_{j}\right]\right\}_{j}$ is a $d_{\mathcal{S}}$-Cauchy sequence, $u_{j} \leq 0$. Then there exists a decreasing sequence $\left\{\left[v_{j}\right]\right\}_{j} \subset \mathcal{S}(X, \theta)$ equivalent to $\left\{\left[u_{j}\right]\right\}_{j}$ (i.e. $d_{\mathcal{S}}\left(\left[u_{j}\right],\left[v_{j}\right]\right) \rightarrow 0$)

About the proof

Three technical but crucial ingredients :

- If $\left[u_{j}\right] \leq[u]$ or $[u] \leq\left[u_{j}\right]$. Then, for any k

$$
d_{\mathcal{S}}\left(\left[u_{j}\right],[u]\right) \rightarrow 0 \Longleftrightarrow \int_{X} \theta_{u_{j}}^{k} \wedge \theta_{v_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

- Suppose $\left\{\left[u_{j}\right]\right\}_{j}$ is a $d_{\mathcal{S}}$-Cauchy sequence, $u_{j} \leq 0$. Then there exists a decreasing sequence $\left\{\left[v_{j}\right]\right\}_{j} \subset \mathcal{S}(X, \theta)$ equivalent to $\left\{\left[u_{j}\right]\right\}_{j}$ (i.e. $d_{\mathcal{S}}\left(\left[u_{j}\right],\left[v_{j}\right]\right) \rightarrow 0$)
- Consider $u_{j} \searrow u$ with $\mathcal{C}\left(u_{j}\right)=u_{j}$. If $\int_{X} \theta_{u_{j}}^{n} \geq \delta$ then

$$
\int_{X} \theta_{u_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

About the proof

Three technical but crucial ingredients :

- If $\left[u_{j}\right] \leq[u]$ or $[u] \leq\left[u_{j}\right]$. Then, for any k

$$
d_{\mathcal{S}}\left(\left[u_{j}\right],[u]\right) \rightarrow 0 \Longleftrightarrow \int_{X} \theta_{u_{j}}^{k} \wedge \theta_{v_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

- Suppose $\left\{\left[u_{j}\right]\right\}_{j}$ is a $d_{\mathcal{S}^{-}}$-Cauchy sequence, $u_{j} \leq 0$. Then there exists a decreasing sequence $\left\{\left[v_{j}\right]\right\}_{j} \subset \mathcal{S}(X, \theta)$ equivalent to $\left\{\left[u_{j}\right]\right\}_{j}$ (i.e. $d_{\mathcal{S}}\left(\left[u_{j}\right],\left[v_{j}\right]\right) \rightarrow 0$)
- Consider $u_{j} \searrow u$ with $\mathcal{C}\left(u_{j}\right)=u_{j}$. If $\int_{X} \theta_{u_{j}}^{n} \geq \delta$ then

$$
\int_{X} \theta_{u_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k} \rightarrow \int_{X} \theta_{u}^{k} \wedge \theta_{v_{\theta}}^{n-k}
$$

Note: Convergence results for MA measures of singular functions are not trivial at all!

Applications: Semicontinuity of multiplier ideal sheaves

Let $\mathcal{J}[u]=$ multiplier ideal sheaf associated to the singularity type $[u]$
$=$ sheaf of germs of holomorphic funct f s.t. $|f|^{2} e^{-u}$ is locally integrable

Applications: Semicontinuity of multiplier ideal sheaves

Let $\mathcal{J}[u]=$ multiplier ideal sheaf associated to the singularity type $[u]$
$=$ sheaf of germs of holomorphic funct f s.t. $|f|^{2} e^{-u}$ is locally integrable
Note: It depends only on the singularity type of u !

Applications: Semicontinuity of multiplier ideal sheaves

Let $\mathcal{J}[u]=$ multiplier ideal sheaf associated to the singularity type $[u]$
$=$ sheaf of germs of holomorphic funct f s.t. $|f|^{2} e^{-u}$ is locally integrable
Note: It depends only on the singularity type of u !
Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

Applications: Semicontinuity of multiplier ideal sheaves

Let $\mathcal{J}[u]=$ multiplier ideal sheaf associated to the singularity type $[u]$
$=$ sheaf of germs of holomorphic funct f s.t. $|f|^{2} e^{-u}$ is locally integrable
Note: It depends only on the singularity type of u !
Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

```
Theorem
Let [u],[ [uj] }\mathcal{S}(X,0)\mathrm{ be s.t. d}\mp@subsup{d}{\mathcal{S}}{}([\mp@subsup{u}{j}{}],[u])->0.Then, for j big enough
J [u]\subseteq\mathcal{J}[\mp@subsup{u}{j}{}].
```


Applications: Semicontinuity of multiplier ideal sheaves

Let $\mathcal{J}[u]=$ multiplier ideal sheaf associated to the singularity type $[u]$ $=$ sheaf of germs of holomorphic funct f s.t. $|f|^{2} e^{-u}$ is locally integrable Note: It depends only on the singularity type of u !
Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

```
Theorem
Let [u], [uj] }\mathcal{S}(X,0)\mathrm{ be s.t. d}\mp@subsup{d}{\mathcal{S}}{}([\mp@subsup{u}{j}{}],[u])->0.Then, for j big enough
J [u]\subseteq\mathcal{J}[\mp@subsup{u}{j}{}].
```

"Version" of the strong openess theorem conjectured by Demailly '00 and proved by Guan-Zhou '15, '16.

Applications: MA equations with prescribed singularitites

Applications: MA equations with prescribed singularitites Jump into the past (DDL '17,'18):

Applications: MA equations with prescribed singularitites
Jump into the past (DDL '17,'18): One starts with a potential $\phi \in \operatorname{PSH}(X, \theta)$,

Applications: MA equations with prescribed singularitites

Jump into the past (DDL '17,'18): One starts with a potential $\phi \in \operatorname{PSH}(X, \theta)$, and a density $0 \leq f \in L^{p}(X), p>1$,

Applications: MA equations with prescribed singularitites

Jump into the past (DDL '17,'18): One starts with a potential $\phi \in \operatorname{PSH}(X, \theta)$, and a density $0 \leq f \in L^{p}(X), p>1$, and is looking for a solution $\psi \in \operatorname{PSH}(X, \theta)$ such that

$$
\left\{\begin{array}{l}
\theta_{\psi}^{n}=f \omega^{n} \\
{[\psi]=[\phi]}
\end{array}\right.
$$

Applications: MA equations with prescribed singularitites

 Jump into the past (DDL '17,'18): One starts with a potential $\phi \in \operatorname{PSH}(X, \theta)$, and a density $0 \leq f \in L^{p}(X), p>1$, and is looking for a solution $\psi \in \operatorname{PSH}(X, \theta)$ such that$$
\left\{\begin{array}{l}
\theta_{\psi}^{n}=f \omega^{n} \\
{[\psi]=[\phi]}
\end{array}\right.
$$

Theorem (DDL'18)
Let $\phi=\mathcal{C}(\phi)$ be s.t. $\int_{X} \theta_{\phi}^{n}>0$. Assume

$$
\int_{X} f \omega^{n}=\int_{X} \theta_{\phi}^{n}
$$

Then there exists a unique $\psi\left(\sup _{X} \psi=0\right)$ solution of $\left(\mathrm{MA}_{\phi}\right)$
"Historical" Note: it is a generalisation of the Calabi-Yau theorem

Back to the present: Work with a family of Monge-Ampère equations

Setting:

Back to the present: Work with a family of Monge-Ampère equations Setting:

- $\left[\phi_{j}\right],[\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_{j}=\mathcal{C}\left(\phi_{j}\right), \phi=\mathcal{C}(\phi)$ and $d_{\mathcal{S}}\left(\left[\phi_{j}\right],[\phi]\right) \rightarrow 0$

Back to the present: Work with a family of Monge-Ampère equations Setting:

- $\left[\phi_{j}\right],[\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_{j}=\mathcal{C}\left(\phi_{j}\right), \phi=\mathcal{C}(\phi)$ and $d_{\mathcal{S}}\left(\left[\phi_{j}\right],[\phi]\right) \rightarrow 0$
- $\|f\|_{L^{p}},\left\|f_{j}\right\|_{L^{p}}$ are uniformly bounded and $f_{j} \rightarrow_{L^{1}} f$.

Back to the present: Work with a family of Monge-Ampère equations Setting:

- $\left[\phi_{j}\right],[\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_{j}=\mathcal{C}\left(\phi_{j}\right), \phi=\mathcal{C}(\phi)$ and $d_{\mathcal{S}}\left(\left[\phi_{j}\right],[\phi]\right) \rightarrow 0$
- $\|f\|_{L^{p}},\left\|f_{j}\right\|_{L^{p}}$ are uniformly bounded and $f_{j} \rightarrow L^{1} f$.
- $\psi_{j}, \psi\left(\right.$ normalized with $\left.\sup _{X} \psi_{j}=0, \sup _{X} \psi=0\right)$ solutions of

$$
\left\{\begin{array}{l}
\theta_{\psi_{j}}^{n}=f_{j} \omega^{n} \\
{\left[\psi_{j}\right]=\left[\phi_{j}\right]}
\end{array} \quad, \quad\left\{\begin{array}{l}
\theta_{\psi}^{n}=f \omega^{n} \\
{[\psi]=[\phi]}
\end{array}\right.\right.
$$

(ψ_{j}, ψ exist thanks to the previous theorem)

Back to the present: Work with a family of Monge-Ampère equations Setting:

- $\left[\phi_{j}\right],[\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_{j}=\mathcal{C}\left(\phi_{j}\right), \phi=\mathcal{C}(\phi)$ and $d_{\mathcal{S}}\left(\left[\phi_{j}\right],[\phi]\right) \rightarrow 0$
- $\|f\|_{L^{p}},\left\|f_{j}\right\|_{L^{p}}$ are uniformly bounded and $f_{j} \rightarrow_{L^{1}} f$.
- $\psi_{j}, \psi\left(\right.$ normalized with $\left.\sup _{X} \psi_{j}=0, \sup _{X} \psi=0\right)$ solutions of

$$
\left\{\begin{array}{l}
\theta_{\psi_{j}}^{n}=f_{j} \omega^{n} \\
{\left[\psi_{j}\right]=\left[\phi_{j}\right]}
\end{array} \quad, \quad\left\{\begin{array}{l}
\theta_{\psi}^{n}=f \omega^{n} \\
{[\psi]=[\phi]}
\end{array}\right.\right.
$$

(ψ_{j}, ψ exist thanks to the previous theorem)

Theorem (DDL'19)

Solutions to a family of Monge-Ampère equations with varying singularity type converge as governed by the $d_{\mathcal{S}}$-topology. More precisely, $\left\|\psi-\psi_{j}\right\|_{L^{1}} \rightarrow 0$.

