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The Kähler world

Let (X , ω) be a compact Kähler manifold of complex dimension n ≥ 1.

Recall that

ω is a Kähler form/metric (closed real and positive (1, 1)-form) and in
local complex coordinates
ω =

∑
α,β gαβ idzα ∧ dzβ where (gαβ) is hermitian positive.

Goal of today = study the singularities of quasi-plurisubharmonic
functions !
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Quasi-plurisubharmonic functions: definition
Fix θ a real closed (1, 1)-form (no positivity condition)

Definition

Let PSH(X , θ) denote the set of L1-functions u : X → R ∪ {−∞} s.t.
locally u = smooth + psh and θ + i∂∂u ≥ 0 (“weak” sense).

Note: on a compact complex manifold the only psh functions are the
constants (by the maximum principle). Also,

PSH(X , θ) 6= ∅ ⇐⇒ {θ} ∈ H1,1(X ,R) is pseudoeffective

PSH(X , θ − εω) 6= ∅ ⇐⇒ {θ} is big

Assume {θ} is big (“there are plenty of qpsh functions”).

A special θ-psh function is

Vθ := sup{u ∈ PSH(X , θ) : u ≤ 0}

Example: θ = ω=Kähler, Vω = 0.
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Quasi-psh functions: singularity types

We say that

u is more singular than v (u � v), if there exists C ∈ R such that
u ≤ v + C

u has the same singularity as v (u ' v), if u � v and v � u.

Note: Vθ has minimal singularities (any u is more singular).

We denote by [u] the classes (= singularity types ) of this latter
equivalence relation and we set

S(X , θ) = the set of all singularity types

Goal of today: Define a (pseudo)-metric dS on this space!
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Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense

I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82

I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Quasi-psh functions: properties

u ∈ Lp for any p > 0

The set {u ∈ PSH(X , θ) : supX u = 0} is compact w.r.t. the
L1-metric (Hartog’s theorem)

Given θ-psh functions u, u1, · · · , un, one can define the so called
non-pluripolar Monge-Ampère measures

θnu := (θ + i∂∂u)n (1)

θu1 ∧ · · · ∧ θun := (θ + i∂∂u1) ∧ · · · ∧ (θ + i∂∂un) (2)

I If u, uj smooth, (1) and (2) are defined in the classical sense
I If u, uj bounded: Bedford-Taylor theory ′82
I If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi ′10

5 / 14



Monge-Ampère masses

If u, uj are smooth or bounded∫
X
θnu =

∫
X
θu1 ∧ · · · ∧ θun = vol({θ}) :=

∫
X
θnVθ> 0 (↔ {θ} is big)

If u, uj are singular

0 ≤
∫
X
θnu ,

∫
X
θu1 ∧ · · · ∧ θun ≤

∫
X
θnVθ

During the construction procedure we can lose mass!

Warning: The zero mass case is problematic.
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Monotonicity of Monge-Ampère masses

IMPORTANT FACT (Witt-Nyström ’17): The mass is monotone, i.e.

u � v =⇒
∫
X
θnu ≤

∫
X
θnv

u ' v =⇒
∫
X
θnu =

∫
X
θnv

The reverse implication is not true:
Consider θ = ω =Kähler and u ∼ −(− log ‖z‖)α, α ∈ (0, 1), then∫

X
ωn
u =

∫
X
ωn

BUT clearly u � 0.

 Look for the least singular function with a given mass...
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The ceiling operator C

Let u ∈ PSH(X , θ) be s.t.
∫
X θ

n
u > 0 and consider

C(u) := sup

{
v ∈ PSH(X , θ) : [u] ≤ [v ], v ≤ 0,

∫
X
θnv =

∫
X
θnu

}
.

FACTS:

C(u) is θ-psh

u � C(u) and
∫
X θ

n
C(u) =

∫
X θ

n
u

C(C(u)) = C(u)

Example: Let u ∈ PSH(X , θ) be s.t.
∫
X θ

n
u = vol({θ}) then C(u) = Vθ.
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The (pseudo)-metric dS

Disclaimer: The precise definition uses the formalism of geodesic rays and
we are not going to talk about that today...BUT

If [u], [v ] ∈ S(X , θ) with [u] ≤ [v ] then

dS([u], [v ]) =
1

n + 1

n∑
k=0

(∫
X
θkVθ ∧ θ

n−k
v −

∫
X
θkVθ ∧ θ

n−k
u

)
≥ 0

In general, there exists an absolute constant C = C (n) > 1:

dS([u], [v ]) ≤
n∑

k=0

(
2

∫
X

θkVθ
∧θn−k

max(u,v)−
∫
X

θkVθ
∧θn−k

v −
∫
X

θkVθ
∧θn−k

u

)
≤ CdS([u], [v ]).
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The space (S(X , θ), dS)

Theorem (DDL’19)

(S(X , θ), dS) is a pseudo-metric space. Also,

dS([u], [v ]) = 0⇐⇒ C(u) = C(v).

Note: dS([u], [C(u)]) = 0

Theorem (DDL’19)

Fix δ > 0 and set Sδ(X , θ) := {[u] ∈ S(X , θ) :
∫
X θ

n
u ≥ δ}.

Then (Sδ(X , θ), dS) is complete.

This is not the case in the zero mass case!
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About the proof
Three technical but crucial ingredients :

If [uj ] ≤ [u] or [u] ≤ [uj ]. Then, for any k

dS([uj ], [u])→ 0 ⇐⇒
∫
X
θkuj ∧ θ

n−k
Vθ
→
∫
X
θku ∧ θn−kVθ

Suppose {[uj ]}j is a dS-Cauchy sequence, uj ≤ 0. Then there exists a
decreasing sequence {[vj ]}j ⊂ S(X , θ) equivalent to {[uj ]}j
(i.e. dS([uj ], [vj ])→ 0)

Consider uj ↘ u with C(uj) = uj . If
∫
X θ

n
uj
≥ δ then∫

X
θkuj ∧ θ

n−k
Vθ
→
∫
X
θku ∧ θn−kVθ

Note: Convergence results for MA measures of singular functions are not
trivial at all!
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Applications: Semicontinuity of multiplier ideal sheaves

Let J [u] = multiplier ideal sheaf associated to the singularity type [u]
= sheaf of germs of holomorphic funct f s.t. |f |2e−u is locally integrable

Note: It depends only on the singularity type of u!

Rmk: It is a powerful tool to extract algebraic data from arbitrary
singularities of (quasi)-psh functions.

Theorem

Let [u], [uj ] ∈ S(X , θ) be s.t. dS([uj ], [u])→ 0. Then, for j big enough,
J [u] ⊆ J [uj ].

“Version” of the strong openess theorem conjectured by Demailly ’00
and proved by Guan-Zhou ’15,’16.
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Applications: MA equations with prescribed singularitites

Jump into the past (DDL ’17,’18): One starts with a potential
φ ∈ PSH(X , θ), and a density 0 ≤ f ∈ Lp(X ), p > 1, and is looking for a
solution ψ ∈ PSH(X , θ) such that{

θnψ = f ωn

[ψ] = [φ]
(MAφ)

Theorem (DDL’18)

Let φ = C(φ) be s.t.
∫
X θ

n
φ > 0. Assume∫

X
f ωn =

∫
X
θnφ.

Then there exists a unique ψ (supX ψ = 0) solution of (MAφ)

“Historical” Note: it is a generalisation of the Calabi-Yau theorem
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Back to the present: Work with a family of Monge-Ampère equations

Setting:

[φj ], [φ] ∈ Sδ(X , θ) with φj = C(φj), φ = C(φ) and dS([φj ], [φ])→ 0

‖f ‖Lp , ‖fj‖Lp are uniformly bounded and fj →L1 f .

ψj , ψ (normalized with supX ψj = 0, supX ψ = 0) solutions of{
θnψj

= fj ω
n

[ψj ] = [φj ]
,

{
θnψ = f ωn

[ψ] = [φ]
.

(ψj , ψ exist thanks to the previous theorem)

Theorem (DDL’19)

Solutions to a family of Monge-Ampère equations with varying singularity
type converge as governed by the dS-topology.
More precisely, ‖ψ − ψj‖L1 → 0.
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