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Recall that
@ w is a Kahler form/metric (closed real and positive (1,1)-form) and in
local complex coordinates
w =), 58npdZa N dZg where (g 3) is hermitian positive.

Goal of today = study the singularities of quasi-plurisubharmonic
functions !
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Fix 6 a real closed (1,1)-form (no positivity condition)

Definition

Let PSH(X,0) denote the set of Ll—fi/nctions u: X —RU{—oc0} s.t.
locally u = smooth + psh and 6 + i00u > 0 (“weak” sense).

Note: on a compact complex manifold the only psh functions are the
constants (by the maximum principle). Also,

PSH(X,0) #0 <= {0} € HYY(X,R) is pseudoeffective

PSH(X,0 —ew) #0 <= {0} is big
Assume {6} is big (“there are plenty of qpsh functions”).
A special #-psh function is
Vp :=sup{u € PSH(X,0) : u <0}
Example: § = w=Kahler, V,, = 0.
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Quasi-psh functions: singularity types

We say that
° uis than v ( ), if there exists C € R such that
u<v+4+C
@ u has the as v ( ), ifu=<vandv=<u

Note: Vjy has minimal singularities (any u is more singular).

We denote by [u] the classes (= singularity types ) of this latter
equivalence relation and we set

S(X,0) = the set of all singularity types

Goal of today: Define a (pseudo)-metric ds on this space!
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@ uelPforany p>0

@ The set {u € PSH(X,0) : supyx u= 0} is compact w.r.t. the
L1-metric (Hartog's theorem)

@ Given 6-psh functions u, uq,--- , u,, one can define the so called
non-pluripolar Monge-Ampére measures

07 = (0 + i0ou)" (1)
Ouy A=+ A0y, = (0 +i0du) A--- A (04 i00u,) (2)
> If u, uj smooth, (1) and (2) are defined in the classical sense

» If u, uj bounded: Bedford-Taylor theory '82
» If u, uj singular: Boucksom-Eyssidieux-Guedj-Zeriahi '10
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Monge-Ampére masses

If u, uj are smooth or bounded

/Xeﬂ—/xeul/\...wu"—vo/({e}) ;_/X 020 (e {0} s big)

If u,uj are singular

og/eg,/eulA---Aeung/enve
X X X

During the construction procedure we can lose mass!

Warning: The zero mass case is problematic.
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IMPORTANT FACT (Witt-Nystrom '17): The mass is monotone, i.e.
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The reverse implication is not true:
Consider § = w =Kahler and u ~ —(—log ||z||)*, « € (0,1), then

/wZ:/w"
X X

~> Look for the least singular function with a given mass...

BUT clearly u < 0.
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The ceiling operator C

Let u € PSH(X,0) bes.t. [, 0] >0 and consider

C(u) ::sup{vePSH(X,G) [u] < [v], v <0, /Xeg:/xeg}.

e C(u) is 6-psh
o u=C(u)and [y 0w = Jx 05
e C(C(u)) =C(u)

Example: Let u € PSH(X,0) be s.t. [, 0] = vol({0}) then C(u) = V.
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The (pseudo)-metric ds

Disclaimer: The precise definition uses the formalism of geodesic rays and
we are not going to talk about that today...BUT

o If [u],[v] € S(X,0) with [u] < [v] then

n

sl ) = 5 3 ([ oty not [ of,nor)=o

k=0

@ In general, there exists an absolute constant C = C(n) > 1:

ds([u V) < 3 (2 JECE A | ekvewz*) < Cds([ul, V).
k=0
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Theorem (DDL'19)
(S(X,0),ds) is a pseudo-metric space. Also,

ds([u], [v]) = 0 <= C(u) = C(v).

Note: ds([u], [C(u)]) =0

Theorem (DDL'19)

Fix 6 > 0 and set S5(X,0) := {[u] € S(X,0) : [, 0] > d}.
Then (Ss(X, 0),ds) is complete.

This is not the case in the zero mass case!
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About the proof

Three technical but crucial ingredients :

o If [uj] < [u] or [u] < [uj]. Then, for any k
ds([u] [u]) = 0 > / 0k A 07" %/ 0k p 07
X X

@ Suppose {[uj]}; is a ds-Cauchy sequence, u; < 0. Then there exists a

decreasing sequence {[vj|}; C S(X, ) equivalent to {[uj]};

(i.e. ds([uj], [v]) — 0)
o Consider u; \, u with C(u;) = u;. If [, 07, = 0 then

/ 05 NOYK — / 0 A O7
X X

Note: Convergence results for MA measures of singular functions are not
trivial at alll
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Applications: Semicontinuity of multiplier ideal sheaves

Let J[u] =

= sheaf of germs of holomorphic funct f s.t. |f|?e~" is locally integrable
Note: It depends only on the singularity type of u!

Rmk: It is a powerful tool to extract algebraic data from arbitrary
singularities of (quasi)-psh functions.

Let [u], [uj] € S(X,8) be s.t. ds([uj], [u]) = 0. Then, for j big enough,
[ € Tl

“Version” of the strong openess theorem conjectured by Demailly '00
and proved by Guan-Zhou '15,'16.
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Applications: MA equations with prescribed singularitites

: One starts with a potential
¢ € PSH(X, ), and a density 0 < f € LP(X), p > 1, and is looking for a
solution 1 € PSH(X, 6) such that

01 = fun
{[w] "y (MAg)

Theorem (DDL'18)
Let ¢ = C(p) bes.t. [y 03 > 0. Assume

fw":/H”.
o= o

Then there exists a unique 1 (supx ¢ = 0) solution of (MA)

“Historical” Note: it is a generalisation of the Calabi-Yau theorem
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: Work with a family of Monge-Ampére equations
Setting:

o [¢j],[¢] € S5(X,0) with ¢; = C(¢;), ¢ = C(¢) and ds([¢;], [¢]) — O
 [[f|re,||fj||r are uniformly bounded and f; —1 f.
@ 1,1 (normalized with supy 1); = 0, supy ¥» = 0) solutions of

{eg,j = fiw" {9; = fw"
wl=1lel =9l

(1}, 1 exist thanks to the previous theorem)

Theorem (DDL'19)

Solutions to a family of Monge-Ampeére equations with varying singularity
type converge as governed by the ds-topology.
More precisely, ||1) — 1j|[;2 — 0.




	Geometric motivation

