Metric geometry of singularity types Joint work with T. Darvas and C. Lu

Eleonora Di Nezza

Sorbonne Université

Oslo, November 1st, 2019

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$.

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. Recall that

• ω is a Kähler form/metric (closed real and positive (1,1)-form)

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. Recall that

• ω is a Kähler form/metric (closed real and positive (1,1)-form) and in local complex coordinates

 $\omega = \sum_{\alpha,\beta} g_{\alpha\overline{\beta}} idz_{\alpha} \wedge d\overline{z}_{\beta}$ where $(g_{\alpha\overline{\beta}})$ is hermitian positive.

Let (X, ω) be a compact Kähler manifold of complex dimension $n \ge 1$. Recall that

• ω is a Kähler form/metric (closed real and positive (1,1)-form) and in local complex coordinates

 $\omega = \sum_{\alpha,\beta} g_{\alpha\overline{\beta}} idz_{\alpha} \wedge d\overline{z}_{\beta}$ where $(g_{\alpha\overline{\beta}})$ is hermitian positive.

Goal of today = study the *singularities* of **quasi-plurisubharmonic** functions !

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle).

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

 $PSH(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad \{\theta\} \in H^{1,1}(X, \mathbb{R}) \text{ is pseudoeffective}$

イロト 不得 トイヨト イヨト ヨー ろくで

Fix θ a real closed (1, 1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$\mathsf{PSH}(X, heta)
eq \emptyset \quad \Longleftrightarrow \quad \{ heta\} \in H^{1,1}(X, \mathbb{R}) ext{ is pseudoeffective }$$

$$PSH(X, \theta - \varepsilon \omega) \neq \emptyset \iff \{\theta\} \text{ is big}$$

Fix θ a real closed (1, 1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$PSH(X, \theta) \neq \emptyset \quad \Longleftrightarrow \quad \{\theta\} \in H^{1,1}(X, \mathbb{R}) \text{ is pseudoeffective}$$

$$PSH(X, \theta - \varepsilon \omega) \neq \emptyset \quad \iff \quad \{\theta\} \text{ is big}$$

イロト 不得 トイヨト イヨト ヨー ろくで

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions").

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$\mathsf{PSH}(X, heta)
eq \emptyset \quad \Longleftrightarrow \quad \{ heta\}\in \mathsf{H}^{1,1}(X,\mathbb{R}) ext{ is pseudoeffective }$$

$$PSH(X, \theta - \varepsilon \omega) \neq \emptyset \quad \iff \quad \{\theta\} \text{ is big}$$

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions"). A special θ -psh function is

$$V_{\theta} := \sup\{u \in PSH(X, \theta) : u \leq 0\}$$

Fix θ a real closed (1,1)-form (no positivity condition)

Definition

Let $PSH(X, \theta)$ denote the set of L^1 -functions $u : X \to \mathbb{R} \cup \{-\infty\}$ s.t. locally u = smooth + psh and $\theta + i\partial\overline{\partial}u \ge 0$ ("weak" sense).

Note: on a compact complex manifold the only psh functions are the constants (by the maximum principle). Also,

$$\mathsf{PSH}(X, heta)
eq \emptyset \quad \Longleftrightarrow \quad \{ heta\}\in \mathsf{H}^{1,1}(X,\mathbb{R}) ext{ is pseudoeffective }$$

$$PSH(X, \theta - \varepsilon \omega) \neq \emptyset \quad \iff \quad \{\theta\} \text{ is big}$$

Assume $\{\theta\}$ is big ("there are plenty of qpsh functions"). A special θ -psh function is

$$V_{\theta} := \sup\{u \in PSH(X, \theta) : u \leq 0\}$$

Example: $\theta = \omega = K \ddot{a}hler$, $V_{\omega} = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

We say that

• *u* is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$

We say that

• u is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$

• u has the same singularity as $v (u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

We say that

• *u* is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$

• *u* has the same singularity as $v (u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any *u* is more singular).

We say that

- *u* is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$
- u has the same singularity as $v (u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any *u* is more singular).

We denote by [u] the classes (= **singularity types**) of this latter equivalence relation and we set

We say that

- *u* is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$
- u has the same singularity as $v (u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any *u* is more singular).

We denote by [u] the classes (= **singularity types**) of this latter equivalence relation and we set

 $S(X, \theta)$ = the set of all singularity types

We say that

- *u* is more singular than $v (u \leq v)$, if there exists $C \in \mathbb{R}$ such that $u \leq v + C$
- u has the same singularity as $v (u \simeq v)$, if $u \preceq v$ and $v \preceq u$.

Note: V_{θ} has minimal singularities (any *u* is more singular).

We denote by [u] the classes (= **singularity types**) of this latter equivalence relation and we set

 $S(X, \theta) =$ the set of all singularity types

Goal of today: Define a (pseudo)-metric d_S on this space!

• $u \in L^p$ for any p > 0

- $u \in L^p$ for any p > 0
- The set {u ∈ PSH(X, θ) : sup_X u = 0} is compact w.r.t. the L¹-metric (Hartog's theorem)

イロト 不得 トイヨト イヨト ヨー ろくで

- $u \in L^p$ for any p > 0
- The set $\{u \in PSH(X, \theta) : \sup_X u = 0\}$ is compact w.r.t. the L^1 -metric (Hartog's theorem)
- Given θ-psh functions u, u₁, · · · , u_n, one can define the so called non-pluripolar Monge-Ampère measures

- $u \in L^p$ for any p > 0
- The set {u ∈ PSH(X, θ) : sup_X u = 0} is compact w.r.t. the L¹-metric (Hartog's theorem)
- Given θ-psh functions u, u₁, · · · , u_n, one can define the so called non-pluripolar Monge-Ampère measures

$$\theta_u^n := (\theta + i\partial\overline{\partial}u)^n \tag{1}$$

$$\theta_{u_1} \wedge \cdots \wedge \theta_{u_n} := (\theta + i\partial\overline{\partial}u_1) \wedge \cdots \wedge (\theta + i\partial\overline{\partial}u_n)$$
(2)

- $u \in L^p$ for any p > 0
- The set $\{u \in PSH(X, \theta) : \sup_X u = 0\}$ is compact w.r.t. the L^1 -metric (Hartog's theorem)
- Given θ-psh functions u, u₁, · · · , u_n, one can define the so called non-pluripolar Monge-Ampère measures

$$\theta_u^n := (\theta + i\partial\overline{\partial}u)^n \tag{1}$$

$$\theta_{u_1} \wedge \cdots \wedge \theta_{u_n} := (\theta + i\partial\overline{\partial}u_1) \wedge \cdots \wedge (\theta + i\partial\overline{\partial}u_n)$$
(2)

• If u, u_j smooth, (1) and (2) are defined in the classical sense

- $u \in L^p$ for any p > 0
- The set $\{u \in PSH(X, \theta) : \sup_X u = 0\}$ is compact w.r.t. the L^1 -metric (Hartog's theorem)
- Given θ-psh functions u, u₁, · · · , u_n, one can define the so called non-pluripolar Monge-Ampère measures

$$\theta_u^n := (\theta + i\partial\overline{\partial}u)^n \tag{1}$$

$$\theta_{u_1} \wedge \cdots \wedge \theta_{u_n} := (\theta + i\partial\overline{\partial}u_1) \wedge \cdots \wedge (\theta + i\partial\overline{\partial}u_n)$$
(2)

If u, u_j smooth, (1) and (2) are defined in the classical sense
 If u, u_i bounded: Bedford-Taylor theory '82

- $u \in L^p$ for any p > 0
- The set {u ∈ PSH(X, θ) : sup_X u = 0} is compact w.r.t. the L¹-metric (Hartog's theorem)
- Given θ-psh functions u, u₁, · · · , u_n, one can define the so called non-pluripolar Monge-Ampère measures

$$\theta_u^n := (\theta + i\partial\overline{\partial}u)^n \tag{1}$$

$$\theta_{u_1} \wedge \cdots \wedge \theta_{u_n} := (\theta + i\partial\overline{\partial}u_1) \wedge \cdots \wedge (\theta + i\partial\overline{\partial}u_n)$$
(2)

- If u, u_j smooth, (1) and (2) are defined in the classical sense
- ▶ If *u*, *u_j* bounded: **Bedford-Taylor theory** '82
- If u, u_j singular: Boucksom-Eyssidieux-Guedj-Zeriahi '10

If u, u_j are smooth or bounded

$$\int_X \theta_u^n = \int_X \theta_{u_1} \wedge \cdots \wedge \theta_{u_n} = \operatorname{vol}(\{\theta\}) := \int_X \theta_{V_\theta}^n > 0 \quad (\leftrightarrow \{\theta\} \text{ is big})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If u, u_j are smooth or bounded

$$\int_X \theta_u^n = \int_X \theta_{u_1} \wedge \cdots \wedge \theta_{u_n} = \operatorname{vol}(\{\theta\}) := \int_X \theta_{V_\theta}^n > 0 \quad (\leftrightarrow \{\theta\} \text{ is big})$$

If u, u_j are singular

$$0 \leq \int_{X} \theta_{u}^{n}, \ \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If u, u_j are smooth or bounded

$$\int_X \theta_u^n = \int_X \theta_{u_1} \wedge \cdots \wedge \theta_{u_n} = \operatorname{vol}(\{\theta\}) := \int_X \theta_{V_\theta}^n > 0 \quad (\leftrightarrow \{\theta\} \text{ is big})$$

If u, u_j are singular

$$0 \leq \int_{X} \theta_{u}^{n}, \ \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}$$

イロト 不得 トイヨト イヨト ヨー ろくで

During the construction procedure we can lose mass!

If u, u_j are smooth or bounded

$$\int_X \theta_u^n = \int_X \theta_{u_1} \wedge \cdots \wedge \theta_{u_n} = \operatorname{vol}(\{\theta\}) := \int_X \theta_{V_\theta}^n > 0 \quad (\leftrightarrow \{\theta\} \text{ is big})$$

If u, u_j are singular

$$0 \leq \int_{X} \theta_{u}^{n}, \ \int_{X} \theta_{u_{1}} \wedge \cdots \wedge \theta_{u_{n}} \leq \int_{X} \theta_{V_{\theta}}^{n}$$

イロト 不得 トイヨト イヨト ヨー ろくで

During the construction procedure we can lose mass!

Warning: The zero mass case is problematic.

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$u \leq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n}$$
$$u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n} = \int_{X} \theta_{v}^{n}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$u \leq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n}$$
$$u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n} = \int_{X} \theta_{v}^{n}$$

The reverse implication is not true: Consider $\theta = \omega = K$ ähler and $u \sim -(-\log ||z||)^{\alpha}$, $\alpha \in (0, 1)$, then

$$\int_X \omega_u^n = \int_X \omega^n$$

BUT clearly $u \leq 0$.

IMPORTANT FACT (Witt-Nyström '17): The mass is monotone, i.e.

$$u \leq v \Longrightarrow \int_{X} \theta_{u}^{n} \leq \int_{X} \theta_{v}^{n}$$
$$u \simeq v \Longrightarrow \int_{X} \theta_{u}^{n} = \int_{X} \theta_{v}^{n}$$

The reverse implication is not true: Consider $\theta = \omega = K$ ähler and $u \sim -(-\log ||z||)^{\alpha}$, $\alpha \in (0, 1)$, then

$$\int_X \omega_u^n = \int_X \omega'$$

BUT clearly $u \leq 0$.

→ Look for the *least singular* function with a given mass...

J

The ceiling operator $\ensuremath{\mathcal{C}}$

Let $u \in PSH(X, \theta)$ be s.t. $\int_X \theta_u^n > 0$ and consider

$$\mathcal{C}(u) := \sup \left\{ v \in PSH(X, \theta) : [u] \leq [v], \ v \leq 0, \ \int_X \theta_v^n = \int_X \theta_u^n \right\}.$$

The ceiling operator $\ensuremath{\mathcal{C}}$

Let $u \in PSH(X, \theta)$ be s.t. $\int_X \theta_u^n > 0$ and consider

$$\mathcal{C}(u) := \sup \left\{ v \in PSH(X, \theta) : [u] \leq [v], \ v \leq 0, \ \int_X \theta_v^n = \int_X \theta_u^n \right\}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

FACTS:

• C(u) is θ -psh

•
$$u \leq \mathcal{C}(u)$$
 and $\int_X \theta^n_{\mathcal{C}(u)} = \int_X \theta^n_u$

• $\mathcal{C}(\mathcal{C}(u)) = \mathcal{C}(u)$

The ceiling operator $\ensuremath{\mathcal{C}}$

Let $u \in PSH(X, \theta)$ be s.t. $\int_X \theta_u^n > 0$ and consider

$$\mathcal{C}(u) := \sup \left\{ v \in PSH(X, \theta) : [u] \leq [v], v \leq 0, \int_X \theta_v^n = \int_X \theta_u^n \right\}.$$

FACTS:

• $\mathcal{C}(u)$ is θ -psh

•
$$u \leq C(u)$$
 and $\int_X \theta_{C(u)}^n = \int_X \theta_u^n$
• $C(C(u)) = C(u)$

Example: Let $u \in PSH(X, \theta)$ be s.t. $\int_X \theta_u^n = vol(\{\theta\})$ then $\mathcal{C}(u) = V_{\theta}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

• If $[u], [v] \in \mathcal{S}(X, \theta)$ with $[u] \leq [v]$ then

$$d_{\mathcal{S}}([u],[v]) = \frac{1}{n+1} \sum_{k=0}^{n} \left(\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k} - \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k} \right) \geq \mathbf{0}$$

イロト 不得 トイヨト イヨト ヨー ろくで

Disclaimer: The precise definition uses the formalism of geodesic rays and we are not going to talk about that today...BUT

• If
$$[u], [v] \in \mathcal{S}(X, \theta)$$
 with $[u] \le [v]$ then

$$d_{\mathcal{S}}([u], [v]) = \frac{1}{n+1} \sum_{k=0}^{n} \left(\int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k} - \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k} \right) \ge 0$$

• In general, there exists an absolute constant C = C(n) > 1:

$$d_{\mathcal{S}}([u],[v]) \leq \sum_{k=0}^{n} \left(2 \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{\max(u,v)}^{n-k} - \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{v}^{n-k} - \int_{X} \theta_{V_{\theta}}^{k} \wedge \theta_{u}^{n-k} \right) \leq Cd_{\mathcal{S}}([u],[v]).$$

Theorem (DDL'19)

 $(\mathcal{S}(X, \theta), d_{\mathcal{S}})$ is a pseudo-metric space. Also,

$$d_{\mathcal{S}}([u],[v]) = 0 \Longleftrightarrow \mathcal{C}(u) = \mathcal{C}(v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (DDL'19)

 $(\mathcal{S}(X, \theta), d_{\mathcal{S}})$ is a pseudo-metric space. Also,

$$d_{\mathcal{S}}([u],[v]) = 0 \Longleftrightarrow \mathcal{C}(u) = \mathcal{C}(v).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note: $d_{\mathcal{S}}([u], [\mathcal{C}(u)]) = 0$

Theorem (DDL'19)

 $(\mathcal{S}(X, \theta), d_{\mathcal{S}})$ is a pseudo-metric space. Also,

$$d_{\mathcal{S}}([u],[v]) = 0 \Longleftrightarrow \mathcal{C}(u) = \mathcal{C}(v).$$

Note: $d_{\mathcal{S}}([u], [\mathcal{C}(u)]) = 0$

Theorem (DDL'19)

Fix $\delta > 0$ and set $S_{\delta}(X, \theta) := \{[u] \in S(X, \theta) : \int_{X} \theta_{u}^{n} \ge \delta\}$. Then $(S_{\delta}(X, \theta), d_{S})$ is complete.

・ロ・・西・・ヨ・・日・・日・ シック

Theorem (DDL'19)

 $(\mathcal{S}(X, \theta), d_{\mathcal{S}})$ is a pseudo-metric space. Also,

$$d_{\mathcal{S}}([u],[v]) = 0 \Longleftrightarrow \mathcal{C}(u) = \mathcal{C}(v).$$

Note: $d_{\mathcal{S}}([u], [\mathcal{C}(u)]) = 0$

Theorem (DDL'19)

Fix $\delta > 0$ and set $S_{\delta}(X, \theta) := \{[u] \in S(X, \theta) : \int_{X} \theta_{u}^{n} \ge \delta\}$. Then $(S_{\delta}(X, \theta), d_{S})$ is complete.

This is not the case in the zero mass case!

Three technical but crucial ingredients :

Three technical but crucial ingredients :

• If $[u_j] \leq [u]$ or $[u] \leq [u_j]$. Then, for any k

$$d_{\mathcal{S}}([u_j],[u]) \to 0 \iff \int_X \theta_{u_j}^k \wedge \theta_{V_{\theta}}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_{\theta}}^{n-k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Three technical but crucial ingredients :

• If $[u_j] \leq [u]$ or $[u] \leq [u_j]$. Then, for any k

$$d_{\mathcal{S}}([u_j],[u]) \to 0 \iff \int_X \theta_{u_j}^k \wedge \theta_{V_{\theta}}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_{\theta}}^{n-k}$$

Suppose {[u_j]}_j is a d_S-Cauchy sequence, u_j ≤ 0. Then there exists a decreasing sequence {[v_j]}_j ⊂ S(X, θ) equivalent to {[u_j]}_j (i.e. d_S([u_j], [v_j]) → 0)

Three technical but crucial ingredients :

• If $[u_j] \leq [u]$ or $[u] \leq [u_j]$. Then, for any k

$$d_{\mathcal{S}}([u_j],[u]) \to 0 \iff \int_X \theta_{u_j}^k \wedge \theta_{V_{\theta}}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_{\theta}}^{n-k}$$

- Suppose {[u_j]}_j is a d_S-Cauchy sequence, u_j ≤ 0. Then there exists a decreasing sequence {[v_j]}_j ⊂ S(X, θ) equivalent to {[u_j]}_j (i.e. d_S([u_j], [v_j]) → 0)
- Consider $u_j \searrow u$ with $\mathcal{C}(u_j) = u_j$. If $\int_X \theta_{u_j}^n \ge \delta$ then

$$\int_X \theta_{u_j}^k \wedge \theta_{V_\theta}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_\theta}^{n-k}$$

Three technical but crucial ingredients :

• If
$$[u_j] \leq [u]$$
 or $[u] \leq [u_j]$. Then, for any k

$$d_{\mathcal{S}}([u_j],[u]) \to 0 \iff \int_X \theta_{u_j}^k \wedge \theta_{V_{\theta}}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_{\theta}}^{n-k}$$

- Suppose {[u_j]}_j is a d_S-Cauchy sequence, u_j ≤ 0. Then there exists a decreasing sequence {[v_j]}_j ⊂ S(X, θ) equivalent to {[u_j]}_j (i.e. d_S([u_j], [v_j]) → 0)
- Consider $u_j \searrow u$ with $\mathcal{C}(u_j) = u_j$. If $\int_X \theta_{u_j}^n \ge \delta$ then

$$\int_X \theta_{u_j}^k \wedge \theta_{V_\theta}^{n-k} \to \int_X \theta_u^k \wedge \theta_{V_\theta}^{n-k}$$

Note: Convergence results for MA measures of singular functions are not trivial at all!

Let $\mathcal{J}[u] =$ multiplier ideal sheaf associated to the singularity type [u]= sheaf of germs of holomorphic funct f s.t. $|f|^2 e^{-u}$ is locally integrable

Let $\mathcal{J}[u] =$ multiplier ideal sheaf associated to the singularity type [u]= sheaf of germs of holomorphic funct f s.t. $|f|^2 e^{-u}$ is locally integrable

イロト 不得 トイヨト イヨト ヨー ろくで

Note: It depends only on the singularity type of u!

Let $\mathcal{J}[u] =$ multiplier ideal sheaf associated to the singularity type [u]= sheaf of germs of holomorphic funct f s.t. $|f|^2 e^{-u}$ is locally integrable

イロト 不得 トイヨト イヨト ヨー ろくで

Note: It depends only on the singularity type of u!

Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

Let $\mathcal{J}[u] =$ multiplier ideal sheaf associated to the singularity type [u]= sheaf of germs of holomorphic funct f s.t. $|f|^2 e^{-u}$ is locally integrable

Note: It depends only on the singularity type of u!

Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

Theorem

Let $[u], [u_j] \in S(X, \theta)$ be s.t. $d_S([u_j], [u]) \to 0$. Then, for j big enough, $\mathcal{J}[u] \subseteq \mathcal{J}[u_j]$.

Let $\mathcal{J}[u] =$ multiplier ideal sheaf associated to the singularity type [u]= sheaf of germs of holomorphic funct f s.t. $|f|^2 e^{-u}$ is locally integrable

Note: It depends only on the singularity type of u!

Rmk: It is a powerful tool to extract algebraic data from arbitrary singularities of (quasi)-psh functions.

Theorem

Let $[u], [u_j] \in S(X, \theta)$ be s.t. $d_S([u_j], [u]) \to 0$. Then, for j big enough, $\mathcal{J}[u] \subseteq \mathcal{J}[u_j]$.

"Version" of the strong openess theorem conjectured by Demailly '00 and proved by Guan-Zhou '15,'16.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Applications: MA equations with prescribed singularitites Jump into the past (DDL '17,'18): Applications: MA equations with prescribed singularitites Jump into the past (DDL '17,'18): One starts with a potential $\phi \in PSH(X, \theta)$,

Jump into the past (DDL '17,'18): One starts with a potential $\phi \in PSH(X, \theta)$, and a density $0 \le f \in L^p(X)$, p > 1,

Jump into the past (DDL '17,'18): One starts with a potential $\phi \in PSH(X, \theta)$, and a density $0 \le f \in L^p(X)$, p > 1, and is looking for a solution $\psi \in PSH(X, \theta)$ such that

$$\begin{cases} \theta_{\psi}^{n} = f \omega^{n} \\ [\psi] = [\phi] \end{cases}$$
(MA_{\phi})

イロト 不得 トイヨト イヨト ヨー ろくで

Jump into the past (DDL '17,'18): One starts with a potential $\phi \in PSH(X, \theta)$, and a density $0 \le f \in L^p(X)$, p > 1, and is looking for a solution $\psi \in PSH(X, \theta)$ such that

$$\begin{cases} \theta_{\psi}^{n} = f \omega^{n} \\ [\psi] = [\phi] \end{cases}$$
(MA_{\phi})

Theorem (DDL'18)

Let $\phi = \mathcal{C}(\phi)$ be s.t. $\int_X \theta_{\phi}^n > 0$. Assume

$$\int_X f\omega^n = \int_X \theta^n_\phi.$$

Then there exists a unique ψ (sup_X ψ = 0) solution of (MA_{ϕ})

"Historical" Note: it is a generalisation of the Calabi-Yau theorem

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

• $[\phi_j], [\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_j = \mathcal{C}(\phi_j), \phi = \mathcal{C}(\phi)$ and $d_{\mathcal{S}}([\phi_j], [\phi]) \to 0$

• $[\phi_j], [\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_j = \mathcal{C}(\phi_j), \phi = \mathcal{C}(\phi)$ and $d_{\mathcal{S}}([\phi_j], [\phi]) \to 0$

イロト 不得 トイヨト イヨト ヨー ろくで

• $||f||_{L^p}, ||f_j||_{L^p}$ are uniformly bounded and $f_j \rightarrow_{L^1} f$.

- $[\phi_j], [\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_j = \mathcal{C}(\phi_j), \phi = \mathcal{C}(\phi)$ and $d_{\mathcal{S}}([\phi_j], [\phi]) \to 0$
- $\|f\|_{L^p}, \|f_j\|_{L^p}$ are uniformly bounded and $f_j \rightarrow_{L^1} f$.
- ψ_j,ψ (normalized with $\sup_X\psi_j=0$, $\sup_X\psi=0$) solutions of

$$\begin{cases} \theta_{\psi_j}^n = f_j \,\omega^n \\ [\psi_j] = [\phi_j] \end{cases}, \quad \begin{cases} \theta_{\psi}^n = f \omega^n \\ [\psi] = [\phi] \end{cases}$$

イロト 不得 トイヨト イヨト ヨー ろくで

 $(\psi_j, \psi$ exist thanks to the previous theorem)

- $[\phi_j], [\phi] \in \mathcal{S}_{\delta}(X, \theta)$ with $\phi_j = \mathcal{C}(\phi_j), \phi = \mathcal{C}(\phi)$ and $d_{\mathcal{S}}([\phi_j], [\phi]) \to 0$
- $\|f\|_{L^p}, \|f_j\|_{L^p}$ are uniformly bounded and $f_j \rightarrow_{L^1} f$.
- ψ_j,ψ (normalized with $\sup_X\psi_j=0$, $\sup_X\psi=0$) solutions of

$$\begin{cases} \theta_{\psi_j}^n = f_j \,\omega^n \\ [\psi_j] = [\phi_j] \end{cases}, \quad \begin{cases} \theta_{\psi}^n = f \,\omega^n \\ [\psi] = [\phi] \end{cases}$$

 $(\psi_j, \psi$ exist thanks to the previous theorem)

Theorem (DDL'19)

Solutions to a family of Monge-Ampère equations with varying singularity type converge as governed by the d_S-topology. More precisely, $\|\psi - \psi_j\|_{L^1} \rightarrow 0$.