Oscillation theory of plurisubharmonic functions and Bergman kernel estimates

Joint work with Bo-Yong Chen

Xu Wang

November 1-2, 2019; Oslo

Background

A nice application of the Chebyshev polynomial is the following

Theorem (Remez inequality)

Let p be a degree d polynomial on \mathbb{R} . Then

$$\sup_{I}|p|\leq c_d\cdot\sup_{E}|p|,$$

1: interval, $E \subset I$: measurable. The sharp constant

$$c_d = T_d \left(2 \cdot \frac{|I|}{|E|} - 1 \right) \le \left(4 \cdot \frac{|I|}{|E|} \right)^d$$

where T_d is the Chebyshev polynomial

$$T_d = \begin{cases} \cos(d\cos^{-1}x) & |x| \le 1, \\ \frac{1}{2}\left((x+\sqrt{x^2-1})^d + (x-\sqrt{x^2-1})^d\right) & |x| > 1. \end{cases}$$

Associated upper oscillation estimate

Let us assume that $\sup_{I} |p| = 1$. Take

$$E_t = \{|p| \le e^{-t}\}, \quad t \ge 0.$$

Apply the Remez inequality to E_t :

$$1 \le \left(\frac{4|I|}{|E_t|}\right)^d e^{-t} \Leftrightarrow |E_t| \le 4e^{-t/d}|I|,$$

which gives

$$-\int_{I} \log |p| = \int_{0}^{\infty} |E_{t}| dt \le \int_{0}^{\infty} 4e^{-t/d} |I| = 4d|I|.$$

Associated upper oscillation estimate

Let us assume that $\sup_{I} |p| = 1$. Take

$$E_t = \{|p| \le e^{-t}\}, \quad t \ge 0.$$

Apply the Remez inequality to E_t :

$$1 \le \left(\frac{4|I|}{|E_t|}\right)^d e^{-t} \Leftrightarrow |E_t| \le 4e^{-t/d}|I|,$$

which gives

$$-\int_{I} \log |p| = \int_{0}^{\infty} |E_{t}| dt \le \int_{0}^{\infty} 4e^{-t/d} |I| = 4d|I|.$$

Observation (upper oscillation estimate)

$$\sup_{I} \log |p| - (\log |p|)_{I} \le 4 \deg p, \quad (\log |p|)_{I} := \frac{1}{|I|} \int_{I} \log |p|.$$

Different kinds of oscillations

A-Oscillation of *u*:

$$AO_Iu:=\frac{1}{|I|}\int_I|u-A|.$$

When A is the average, we get the well known mean oscillation

$$MO_Iu := \frac{1}{|I|}\int_I |u-u_I|.$$

When A is the supremum, we call it *upper oscillation*

$$UO_I u := \sup_I u - u_I.$$

Different kinds of oscillations

A-Oscillation of *u*:

$$AO_Iu:=\frac{1}{|I|}\int_I|u-A|.$$

When A is the average, we get the well known mean oscillation

$$MO_Iu := \frac{1}{|I|}\int_I |u-u_I|.$$

When A is the supremum, we call it *upper oscillation*

$$UO_I u := \sup_I u - u_I.$$

Observation (A simple observation)

$$MO \leq 2UO$$
.

First main result

Remez inequality gives

$$UO_I \log |p| \le 4 \cdot \deg p, \quad \forall \ p \in \mathbb{R}[x].$$

First main result

Remez inequality gives

$$UO_I \log |p| \le 4 \cdot \deg p, \quad \forall \ p \in \mathbb{R}[x].$$

Theorem (Upper oscillation for polynomials)

For all non-empty compact convex set $A \subset \mathbb{C}^n$, we have

$$UO_A \log |p| \le \gamma \cdot \deg p, \ \ \forall \ p \in \mathbb{C}[x_1, \cdots, x_n].$$

Here the sharp constant 1.278 $<\gamma<1.279$ is determined by

$$\gamma + \log(\gamma - 1) = 0.$$

It comes from the line segment type UO bound for $\log |z|$, i.e.

$$\gamma := \sup_{\mathbf{a}, \mathbf{b} \in \mathbb{C}} UO_{[\mathbf{a}, \mathbf{b}]} \log |\mathbf{z}|, \quad [\mathbf{a}, \mathbf{b}] : \ \textit{line segment between a, b.}$$

About the proof

First, assume that $p \in \mathbb{C}[z]$, then

$$p = a_0(z - a_1)^{n_1} \cdots (z - a_k)^{n_k},$$

thus

$$\sup_{[a,b]} \log |p| \le \log |a_0| + \sum_{j=1}^k n_j \sup_{[a,b]} \log |z - a_j|$$

and

$$(\log |p|)_{[a,b]} = \log |a_0| + \sum_{j=1}^{\kappa} n_j (\log |z-a_j|)_{[a,b]}.$$

Thus

$$UO_{[a,b]}(\log |p|) \leq \sum_{i=1}^k n_j \gamma = \gamma \cdot \deg p.$$

About the proof

For general $p \in \mathbb{C}[z_1, \dots, z_n]$, since A is compact, we may choose $z_0 \in A$ such that

$$|p(z_0)| = \sup_{z \in A} |p(z)|.$$

For every ray (half line), say L, starting from z_0 , we see that $A \cap L$ is a line segment in view of *convexity* of A. Let $L_{\mathbb{C}}$ be the complex line containing L. Apply our theorem to $p|_{L_{\mathbb{C}}}$, we have

$$UO_{A\cap L}(\log |p|) = UO_{A\cap L}(\log |p|_{L_{\mathbb{C}}}|) \le \gamma \deg p|_{L_{\mathbb{C}}} \le \gamma \deg p,$$

which gives

$$UO_A(\log|p|) \le \gamma \deg p$$

since $UO_A(\log |p|)$ is a certain average of $UO_{A\cap L}(\log |p|)$ for all L starting from z_0 by the choice of z_0 .

Corollary: weak Remez type inequality

Together with the Remez inequality for $\log |z|$, the above BUO estimate implies

Corollary: weak Remez type inequality

Together with the Remez inequality for $\log |z|$, the above BUO estimate implies

Corollary (weak Remez type inequality)

For every non-empty compact convex set A in \mathbb{C}^n we have

$$\sup_{A} |P| \leq \sup_{E} |P| \cdot \left(e^{2\gamma} \frac{4n|A|}{|E|} \right)^{\deg P}, \quad e^{2\gamma} \leq e^{3},$$

for every $P \in \mathbb{C}[z_1, \cdots, z_n]$ and measurable $E \subset A$.

Corollary: weak Remez type inequality

Together with the Remez inequality for $\log |z|$, the above BUO estimate implies

Corollary (weak Remez type inequality)

For every non-empty compact convex set A in \mathbb{C}^n we have

$$\sup_{A} |P| \leq \sup_{E} |P| \cdot \left(e^{2\gamma} \frac{4n|A|}{|E|} \right)^{\deg P}, \quad e^{2\gamma} \leq e^3,$$

for every $P \in \mathbb{C}[z_1, \cdots, z_n]$ and measurable $E \subset A$.

Remark (Sharp version)

A relatively sharp version of the above estimate was obtained by Yu. Brudnyi and Ganzburg in 1973.

BUO property of psh functions

A result of Siciak (can be proved using Hörmander L^2 estimate) is:

— PSH functions in the Lelong class ($\leq \log(|z|+1)$) can be approximated by $(\log |p|)/d$, $d \geq \deg p$.

Thus our BUO estimate for log |P| gives

BUO property of psh functions

A result of Siciak (can be proved using Hörmander L^2 estimate) is:

— PSH functions in the Lelong class ($\leq \log(|z|+1)$) can be approximated by $(\log |p|)/d$, $d \geq \deg p$.

Thus our BUO estimate for log |P| gives

Corollary (Lelong class is BUO)

 $UO_A u \leq \gamma < 1.5$ for all $u \in \mathcal{L}(\mathbb{C}^n)$ and convex body $A \subset \mathbb{C}^n$.

BUO property of psh functions

A result of Siciak (can be proved using Hörmander L^2 estimate) is:

— PSH functions in the Lelong class ($\leq \log(|z|+1)$) can be approximated by $(\log |p|)/d$, $d \geq \deg p$.

Thus our BUO estimate for log |P| gives

Corollary (Lelong class is BUO)

 $UO_A u \leq \gamma < 1.5$ for all $u \in \mathcal{L}(\mathbb{C}^n)$ and convex body $A \subset \mathbb{C}^n$.

Theorem (Second main theorem)

 $PSH \subset BUO(polydisc_N) \subset BUO(ball), \ PSH \nsubseteq BMO(polydisc).$ $P \in polydisc_N \Leftrightarrow \max\{r_j\} \leq \min\{r_j^{1/N}\}.$

Corollary of our main theorem

Together with the John-Nirenberg inequality, our second main theorem gives the following:

Corollary

Assume that $\phi \in \operatorname{psh}(\Omega)$. Fix $\Omega_0 \subseteq \Omega$. Then for every N > 0, there exists $\varepsilon > 0$ such that

$$\frac{1}{|P|} \int_{P} e^{-\varepsilon(\phi - \sup_{P} \phi)} \leq C(N, \varepsilon),$$

for all type-N polydiscs P in Ω_0 .

Corollary of our main theorem

Together with the John-Nirenberg inequality, our second main theorem gives the following:

Corollary

Assume that $\phi \in \operatorname{psh}(\Omega)$. Fix $\Omega_0 \subseteq \Omega$. Then for every N > 0, there exists $\varepsilon > 0$ such that

$$\frac{1}{|P|} \int_P e^{-\varepsilon(\phi - \sup_P \phi)} \le C(N, \varepsilon),$$

for all type-N polydiscs P in Ω_0 .

Remark (Sharp ε ?)

We do not know how to find the sharp ε .

Associated Bergman kernel estimate

Recall that the Bergmen kernel is defined by

$$K_{\phi,P}(z) := \sup_{f \in \mathcal{O}(P)} \frac{|f(z)|^2}{\int_P |f|^2 e^{-\phi}},$$

Take $f \equiv 1$, we get

$$K_{\phi,P}(z) \geq rac{1}{\int_P e^{-\phi}}.$$

On the other hand, mean value identity for $f \in \mathcal{O}(P)$ gives

$$|f(0)|^2 = \left|\frac{1}{|P|}\int_P f\right|^2 \le \frac{1}{|P|}\int_P |f|^2 e^{-\phi} \cdot \frac{1}{|P|}\int_P e^{\phi},$$

where 0 denotes the center of P. Thus

$$\left(\frac{1}{|P|}\int_P \mathrm{e}^{-(\phi-\sup_P \phi)}\right)^{-1} \leq K_{\phi,P}(0)\cdot |P|\cdot \mathrm{e}^{-\sup_P \phi} \leq 1$$

John Nirenberg inequality implies: $K_{\varepsilon\phi,P}(0)\cdot |P|\sim e^{\sup_P\varepsilon\phi}$ for small ε . Take $P = P_{r^a} := \mathbb{D}_{r^{a_1}} \times \cdots \mathbb{D}_{r^{a_n}}$.

Directional Lelong number

We get

$$\lim_{r\to 0+}\frac{\log\left(K_{\varepsilon\phi,P_{r^a}}(0)\cdot|P_{r^a}|\right)}{\varepsilon\log r}=\lim_{r\to 0+}\frac{\sup_{P_{r^a}}\phi}{\log r}.$$

The right hand is precisely the *Lelong number* along direction $a = (a_1, \dots, a_n)$.

The left hand side is also interesting since

Directional Lelong number

We get

$$\lim_{r\to 0+}\frac{\log\left(K_{\varepsilon\phi,P_{r^a}}(0)\cdot|P_{r^a}|\right)}{\varepsilon\log r}=\lim_{r\to 0+}\frac{\sup_{P_{r^a}}\phi}{\log r}.$$

The right hand is precisely the *Lelong number* along direction $a = (a_1, \dots, a_n)$.

The left hand side is also interesting since

Theorem (Berndtsson's theorem)

 $\log K_{\phi,P_{r^a}}(0)$ is a convex function of $\log r$.

Example $(\phi(0) > -\infty)$

 $r^2K_{\phi,\mathbb{D}_r}(0)$ is log-convex increasing wrt log r. Thus

$$\mathcal{K}_{\phi,\mathbb{D}}(0) \geq \lim_{r o 0} r^2 \mathcal{K}_{\phi,\mathbb{D}_r}(0) = rac{\mathrm{e}^{\phi(0)}}{\pi}.$$

Example $(\lim_{|z|\to 0} \phi(z) - \varepsilon \log |z| = A, \ \ 0 \le \varepsilon < 2)$

 $r^{2-\varepsilon}K_{\phi,\mathbb{D}_r}(0)$ is log-convex increasing wrt log r. Thus

$$\mathcal{K}_{\phi,\mathbb{D}}(0) \geq \lim_{r o 0} r^{2-arepsilon} \mathcal{K}_{\phi,\mathbb{D}_r}(0) = rac{e^A}{2\pi(2-arepsilon)}.$$

Example $(\lim_{|z|\to 0} \phi(z) - 2\log|z| - 2\log(-\log|z|) = B)$

 $K_{\phi,\mathbb{D}_r}(0)/|\log r|$ is log-convex increasing wrt $\log r$.

We have

$$\lim_{r\to 0} K_{\phi,\mathbb{D}_r}(0)/|\log r| = \frac{\mathrm{e}^B}{2\pi}.$$

We have

$$\lim_{r\to 0} K_{\phi,\mathbb{D}_r}(0)/|\log r| = \frac{e^B}{2\pi}.$$

Remark

One also gets the equivalent Ohsawa-Takegoshi extension type theorems wrt

$$\int |f|^2 e^{-\phi}, \quad \int \frac{|f|^2}{|z|^{\varepsilon}} e^{-\phi}, \quad \int \frac{|f|^2}{|z|^2 (\log |z|)^2} e^{-\phi}$$

We have

$$\lim_{r\to 0} K_{\phi,\mathbb{D}_r}(0)/|\log r| = \frac{e^B}{2\pi}.$$

Remark

One also gets the equivalent Ohsawa—Takegoshi extension type theorems wrt

$$\int |f|^2 e^{-\phi}, \quad \int \frac{|f|^2}{|z|^{\varepsilon}} e^{-\phi}, \quad \int \frac{|f|^2}{|z|^2 (\log |z|)^2} e^{-\phi}$$

Remark (When ϕ is smooth and sh)

$$\lim_{r\to 0}\frac{1}{r}\frac{d\log r^2K_{\phi,\mathbb{D}_r}(0)}{dr}=\phi_{z\bar{z}}(0).$$

A question when ϕ is smooth

Assume that ϕ is smooth and

$$\omega := i\partial \overline{\partial} \phi > 0$$

on \mathbb{D} . It is known that

$$\lim_{m\to\infty}\frac{K_{m\phi,\mathbb{D}}(0)e^{-m\phi(0)}}{m}=\frac{\phi_{z\bar{z}}(0)}{\pi}$$

A question when ϕ is smooth

Assume that ϕ is smooth and

$$\omega := i\partial \overline{\partial} \phi > 0$$

on \mathbb{D} . It is known that

$$\lim_{m \to \infty} \frac{K_{m\phi,\mathbb{D}}(0)e^{-m\phi(0)}}{m} = \frac{\phi_{z\bar{z}}(0)}{\pi}$$

Question (May not be correct!)

Assume that $|Ric(\omega)| < 1$ and $\int_{\mathbb{D}} \omega < 1$. Then there exist absolute constants ε and N such that

$$\frac{K_{m\phi,\mathbb{D}}(0)e^{-m\phi(0)}}{m} \ge \varepsilon \cdot \frac{\phi_{z\bar{z}}(0)}{\pi}$$

for all $m \geq N$.

