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» A research direction in the Jukka Corander’s group at UiO.

» My background is a PhD in stats: PAC-Bayesian analysis for
low-rank matrices.



Given
@ a phenotype (binary/cont.) y,x1 response of n samples,
e a genetic data X,,xp (biomakers, e.g SNPs), with n < D.

Goal: detect which genetic variants X ; are importantly relevant to y.

Ynx1

The most popular approach is using marginal single test for each X ;.



Challenging with bacterial data

» the design matrix is with linkage disequilibrium (LD): highly
correlated, cluster structures in X.
» X is a binary matrix (single allele).

Bacterial cells (B) () Human cells (H)
dominated by O dominated by
colon bacteria red blood cells

= 40 trillion i ~ 30 trillion

Figure: https://www.weizmann-usa.org/news-media/news-releases/germs-humans-and-numbers
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Bacterial GWAS is done by testing
Hy:B8;=0
in the univariate marginal regression
y=f(Bo+X;B; +7C +¢5), j=1,...,D

where C' is the “population structure correction”.

LEES, J. A., ET AL. ”Sequence element enrichment analysis to determine the genetic
basis of bacterial phenotypes.” Nature communications 7 (2016): 12797.




Multivariate approach using Elastic Net

Jointly selection approach does not need population correction and
can improve the power when the sample size increase.

mﬁin{ — log.likelihood(y, X B) + A [0.5(1 — @)||B]13 + «[|8]/1] }

Elastic Net inherits both interesting features of #; and ¢ norm:
e /; generates a sparse model (||5|lo :=s < n),

@ /9 removes the limitation on the number of selected variables,
encourages grouping effect (correlation) and stabilizes the ¢;
regularization path.

Problem: can not run if D is too large !!!
glmnet R package

@ FRIEDMAN, HASTIE,& TIBSHIRANI (2010). Regularization paths for generalized linear
models via coordinate descent”. Journal of statistical software, 33(1), 1.
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Ynx1

Remove all X; whose the sample correlation with y are smaller than a
threshold.

Ynx1

FAN & Lv (2008). ”Sure independence screening for ultrahigh dimensional feature
space. 7 Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(5), 849-911.
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Elastic Net with screening

Procedure. Enet with pre-selection screening

@ Calculate the sample correlation between y and X ;, as j varies
across all predictors.

@ Retain the set B of predictors whose the sample correlation are
bigger than the first quantile of all of the sample correlations.

@ Run the elastic net to select the relevant predictors from the set
B.

@ LEES, JOHN A., ET AL. ”pyseer: a comprehensive tool for microbial pangenome-wide
association studies.” Bioinformatics 34.24 (2018): 4310-4312.
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Maela data: 3000 samples, 121014 SNPs (after cleaning), simulated

phenotypes using GCTA.
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Figure: Higher in power (left) is better,
is better.

lower in False Positive Rate (right)




In linear model
yi=XixpB+eini=1,...,n
where X;. %Y A'(0,%) and are independent of &; ~ A/(0, 02).
Var(y;) = Var(X;.8) + 02 = 3T 88+ o2

We are interested in estimating heritability for y defined as

h2 o /BTZ/B _ /BTE/B/UE? —1— O'?
- BTYB+o2| BTEBJo2+1 Var(y)




500 random SNPs from 3 genes, ci =1, h2-=0.8
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@ THE TIEN MAI AND JUKKA CORANDER (2019) ”Boosting heritability: estimating the
genetic component of phenotypic variation with multiple sample splitting.” arXiv
1910.11748
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Thank you!



