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User’s Guide to the Workshop

Physics umbrella: Soft -Matter*

I Elasticity

I Liquid Crystals

I Biologically inspired systems

Materials classifications:

I Anisotropic fluids

I Gel membranes and biomembranes

I Poroelasticity

Mathematics:

I Finite Elements

I Calculus of Variations

I Γ-convergence

I Homogenization and dynamic metamaterials

I Peridynamics
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Liquid crystals: Static configurations in domain Ω ⊂ R3

Nematic molecules, with head-tail symmetry are represented by
line direction, pair ±l unit vectors, or by the tensor l⊗ l

Distribution of orientations of molecules in Bx(δ):
probability measure µx in RP2, probability measure on the unit
sphere S2 such that

µ(E ) = µ(−E ), E ⊂ S2

I First order moment
∫
S2 ldµ(l) = 0

I Second order moment is a symmetric non-negative second
order tensor

M =

∫
S2

l⊗ ldµ(l) trM = 1

If molecules are equally distributed in all directions, distribution µ0

is isotropic, where

dµ0(l) =
1

4π
d l, with f (l) =

1

4π
.
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The de Gennes Q-tensor

Q = M −M0 =

∫ 2

S
(l⊗ l− 1

3
I) dµ(l)

measures the deviation of M from the isotropic value M0.
It satisfies

Q = QT , trQ = 0, Q ≥ −1

3
.

Spectral representation

Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3,

ni orthonormal basis of eigenvectors, λi eigenvalues satisfying

λ1 + λ2 + λ3 = 0, and
2

3
≥ λi ≥ −

1

3
.
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Liquid crystal symmetries

Liquid crystal symmetries according to eigenvalues of Q:

I Isotropic with all eigenvalues equal to 0.

I Biaxial, in the case that λ1 6= λ2 6= λ3,

I Uniaxial, if two eigenvalues are equal and distinct from the
third one. In this case, we write

λ1 = λ2 = − s

3
, λ3 =

2s

3
, n3 := n.

In this case,

Q = s(n ⊗ n − 1

3
I),

where −1
2 ≤ s ≤ 1.
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Energy

Suppose that at every x ∈ Ω liquid crystal is described by free
energy density W (Q(x),∇Q(x)) such that

E (Q) =

∫
Ω
W (Q(x),∇Q(x)) dx :=

∫
Ω
WB(Q) + WE (Q,∇Q)

WB(Q) = a trQ2 − b trQ3 + c trQ4, WE (Q,∇Q) =
5∑

i=1

Li Ii ,

I1 = Qij ,jQir ,r , I2 = Qik.jQij ,k , I3 = Qij ,kQij .k ,

I4 = QlkQij ,lQij ,k , I5 = εijkQijQjl ,k

Coherence length ξ =
√

L
|a| = 10−8.5 m Stiff problem
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Defects

Defects are points, lines or surfaces with Q = 0

Figure: O.Lavrentovich. Liquid crystal under crossed polarizers. Point
defects and surrounding brushes

For a typical liquid crystal (5CB):1

Li = 4.0× 10−11 N, a = −.172× 106 N
m2

Coherence length ξ =
√

L
|a| = 10−8.5 m Stiff problem

1I. Bajc, F.Hecht, S.Zumer, arXiv-sbumit/1263139, May 26-2015
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Frank-Oseen theory

E (n, s) =

∫
Ω

[K1(∇ · n)2 + K2(n · ∇ × n)2 + K3|n × (∇× n)|2

+ (K2 + K4)(tr(∇n)2 − (∇ · n)2] dx

K1 = 2L1s
2 + L2s

2 + L3s
2 − 2

3
L4s

3, K2 = ...

s Is constant in Frank-Oseen model.
For Q = s(n ⊗ n − 1

3 I (and equal K ′s) yields Ericksen model:

E (n, s) =

∫
Ω

[K (|∇s|2 + s2∇n|2) + f (s)] dx

I Are Frank-Oseen and Landau (uniaxial case, s constant)
equivalent ? (D.Golovaty, J. Robbins, P.Dassbach)

I Defects in each theory; non-orientability issue
I Computation with Ericksen’s model: S. Walker
I Surface anchoring energy
I Flow theories
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Ericksen-Leslie Equations of Liquid Crystal Flow

Postulate generalized velocities and generalized forces 2

fields vel. stress vec. stress tensor body force

mechanic ϕ v t T F

optic n ṅ s S G

Dependent fields v = v(y, t), n = n(y, t), t = t(y, t) . . . .
y ∈ Ωt := ϕ(Ω), l.c. domain at time t; y = ϕ(x), x ∈ Ω, def. map

I t contact force (per unit area); s contact torque (per u.area)

I F body force (per u. vol); G body torque (per u. vol)

I T Cauchy stress tensor (T 6= TT ); S generalized stress tensor

t = Tν, s = Sν, ν unit normal vector to the contact surface

2Theory of Flow Phenomena in Liquid Crystals, F.M. Leslie, Advances in
Liquid Crystals, Vol 4, 1979, 1-88
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Balance of energy

Postulate equation of balance of energy:

d

dt

∫
Ωt

(
1

2
ρv · v +

1

2
σṅ · ṅ+ W (n,∇n)) dx =

∫
Ωt

(F · v + G · ṅ) dx

+

∫
∂Ωt

(t · v + s · ṅ) da.

Let (v ,n) satisfy balance of energy. Assume

I Balance of energy holds for v s = v + c and ṅs = ṅ, c arb.

I Balance of energy holds for second motion

v s = v + ξ × y, ṅs = ṅ + ξ × n, and
Fs − ρv̇ s = F− ρv̇ , G s − σṄs

= G − σṄ , N := ṅ

ξ is an arbitrary, constant, angular velocity., then eqns of balance
of linear momentum and angular momentum follow
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Leslie-Ericksen equations

ρv̇ = ∇ · T + F

0 = ∇ · S + G + g
n · ṅ = 0, ∇ · v = 0

T =
∂W

∂(∇n)
(∇n)T + T̃

S =
∂W

∂(∇n)
+ n ⊗ β,

g = −∂W
∂n
−∇ · (n ⊗ β) + γn + (ε× T̃ )× n

T̃ = α1(An · n)n ⊗ n + α2(Ñ⊗ n) + α3(n ⊗ Ñ) + α4A

+α5An ⊗ n + α6n ⊗ An

A :=
1

2
(∇v +∇vT ), Ñ = ṅ − 1

2
(∇v −∇vT )n.
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Numerical Schemes for Materials with Fine Scale
Structure: Noel J. Walkington

Many material models consist of the momentum equation coupled
to an equation modelling the structure of the material. Examples
include liquid crystals, polymers, and crystalline solids undergoing
plastic deformation. These systems posses a Hamiltonian structure
which reveals the subtle structure of the terms coupling of the
equations, and a delicate balance between inertia, transport, and
dissipation. This talk will focus on the development and analysis of
numerical schemes which inherit the Hamiltonian structure, and
hence stability, of the continuous problem. Examples of schemes to
approximate the Ericksen Leslie equations, Oldroyd-B fluids, and
problems in plasticity, will be presented it illustrate the
mathematical and numerical properties of this class of materials.
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Balance Laws: biphasic mixtures

Gel incompressible mixture of solid (polymer network) and fluid,

interacting with its environment (e.g. air, fluid or another gel)

• In Ωt (gel domain):

∂ρi
∂t

+ div(ρiv i ) = 0, ρi = φiγi , γi = constant,

ρi v̇ i = ∇ · Ti − φi∇p + f i , i= 1, polymer; i=2, fluid

φ1 + φ2 = 1

• In Rt (surrounding fluid)

ρf

(
∂vf
∂t

+ vf · ∇vf

)
= ∇ · Tf −∇p + ff ,

∇ · vf = 0

φ = φ(x, t), v = v(x, t), T = T (x, t), p = p(x, t)...

Alternate derivation in the viscosity dominating regime by Onsager’s principle of

minimum dissipation. 13 / 25



Deformation and Stress

I polymer deformation map: y = y(x, t), x ∈ Ω.

I Ωt = y(Ω): current configuration of gel.

I ∂Ωt := ∂Ωt : interface gel-surrounding fluid.

I F = ∇xy: Deformation gradient tensor

I polymer volume fraction φ1 ≡ φ; fluid φ2 = 1− φ1.

I Ψ(F , φ): free energy density.

I Cauchy stress tensors:
T1: polymer; T2: solvent; Tf : environmental fluid.

I p: hydrostatic pressure associated with constraint:

∇ · (φ1v1 + φ2v2) = 0.
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Mechanical model: energy

Mechanical equilibrium 3

E =

∫
Ωt

Ψ(F , φ) :=

∫
Ωt

φ1W(F ) + (detF )WFH(φ1, 1− φ1).

I W(F ): elastic energy density.

I WFH: Flory-Huggins energy of mixing

WFH =
kBT

vs

(
vs
vp
φ1 lnφ1 + φ2 lnφ2 + χφ1φ2

)
,

vs : volume occupied by a single molecule of solvent.

T1 = φ1
∂W
∂F

FT +
(
WFH(φ1)− φ1

d

dφ1
WFH(φ1)

)
I + T d

1 (∇v1, φ)

T2 = T d
2 (∇v2, φ)

3M. Rognes, M.C. Calderer and C. Micek. Mixed finite element methods for
gels with biomedical applications, SIAM J. Appl.Math, Vol 70, 1305-1329, 2009
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Boundary conditions at the gel-fluid interface, ∂Ωt

Interface ∂Ωt moves with polymer: v1 · n ≡ vΓ

• Balance of mass of fluid phase across ∂Ωt :

(vf − v1) · ν = φ2(v2 − v1) · ν

• Continuity of tangential velocity across ∂Ωt :

(vf − v1)‖ = (v2 − v1)‖ ≡ q

• Balance of forces across the interface

(Tf − T1 − T2)ν + [p]ν = 0

• Balance of lin moment. of fluid crossing ∂Ωt :

−[p]− ν · (T2

φ2
)ν = η⊥q, (T1ν)‖ = η‖q.

η⊥, η‖ interface viscosity: fully permeable gel at 0-limit; impermeable gel

at ∞-limit
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Stable finite volume methods for coupled Darcy flow and
deformation in geological media: Jan Nordbotten

The rise of advanced geoengineering applications such as enhanced
geothermal systems together with energy and CO2 storage, leads
to settings where coupled poro-mechanical systems need to be
considered. The geological complexity requires numerical methods
adapting to complex grids, discontinuous material coefficients, and
possibly also fractures. Herein, we explore the possibilities of using
finite volume methods as a unifying framework for solving both
flow and mechanical deformation. We illustrate the applicability
using both synthetic examples as well as a preliminary comparison
to field data.
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Poroelastic Modelling of the Central Nervous System:
Kent-Andre Mardal

In this talk we will discuss simulations of the central nervous
system using poroelastic modelling. We will consider the
remodelling that occurs in the spinal cord under abnormal flow and
pressure. Furthermore, we will discuss sensitivity with respect to
modelling choices and aspects related to simulations. Finally, we
will give a short overview of the processes that governs fluid flow
within the brain and the challenges faced.
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Polyelectrolyte gels and applications

In polyelectrolyte gels, 4. the polymer network contains fixed
charge groups that dissociate and deliver counterions into the
solvent, that itself may contain several spices of ions. Swelling
problems are free boundary problems for the swelling front 5. If
mass inertia is included–in mimetic applications– free boundary
problems are hyperbolic. 6

Polyelectrolyte gels form an important class of gels studied
experimentally and used in applications. For device purposes, gels
can be controlled by temperature and pH-gradient. 7

Applications to living systems often involve slender bodies.
Additional analysis tools of dimensional reduction, from classic
asymptotics to Γ-convergence.

4A Dynamic Model of Polyelectrolyte Gels, SIAM J. Appl. Math., 2013, Vol
73, no. 7, pp. 104–123, H.Chen, C.Micek, Y. Mori, MCC

5Analysis and simulation of a model of polyelectrolyte gel in one spatial
dimension, Nonlinearity, MCC, H. Chen and Y. Mori, vol 27, 2014, 1-45, 2014

6Long-Time Existence of Classical Solutions to a one-dimensional Swelling
Gel, Math. Models and Meth. in Appl. Sciences, M.R. Chen and MCC, vol 25,
165-194, 2015.

7Rhythmomimetic drug delivery, MCC, L. Yao, Y. Mori and R.E. Siegel, in
review, (2015).
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A Membrane Theory for Swelling Polymer Gels: Alessandro
Lucantonio

Stimuli-responsive materials deform in response to non-mechanical

stimuli, such as temperature, pH, or humidity changes. These materials

are employed, for instance, in shape-morphing applications, where the

material is programmed to achieve a target shape upon activation by an

external trigger, and as coating layers to alter surface properties of bulk

materials, such as the characteristics of spreading and absorption of

liquids. In these applications, stimuli-responsive materials are often in the

form of membranes. In particular, polymer gel membranes experience

swelling or shrinking when their solvent content changes and the

non-homogeneous swelling field may be exploited to control their shape.

Here, we develop a theory of swelling material surfaces to model polymer

gel membranes and demonstrate its features by studying numerically

applications in the contexts of biomedicine and micro-motility. We also

specialize the theory to thermo-responsive gels, which are made of

polymers that change their affinity with solvent as a function of

temperature.
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Bilayer Plates: Model Reduction, Discrete Gradient Flow
and Gamma-Convergent Finite Element Approximation.
Ricardo H. Nochetto

The bending of bilayer plates is a mechanism which allows for
large deformations via small externally induced lattice mismatches
of the underlying materials. We discuss its mathematical
modelling, which consists of a nonlinear fourth order problem with
a pointwise isometry constraint. We devise a finite element
discretization based on Kirchhoff quadrilaterals and prove its
Gamma-convergence. We propose an iterative method that
decreases the energy and study its convergence to stationary
configurations. We explore its performance, as well as reduced
model capabilities, via several insightful numerical experiments
involving large (geometrically nonlinear) deformations. This work is
in joint with S. Bartels (Freiburg) and A. Bonito (Texas A&M).
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Active Matter Models and Their Applications in Life
Science: Qi Wang

Active matter is a type of materials that energy is converted at the
molecular level from chemical form to mechanical form providing
energy input to the molecular motion. Active matter is abundant in
nature and man-made materials. Faithfully modelling active matter
is cutting-edge research. I will present a modelling framework for
developing mathematical models for multiphase complex fluids that
involve active matter. Then, I will discuss some basic properties of
fluid flows of active matter and numerical schemes that can be
used to simulate the complex fluid flows. Numerical simulations of
several biological systems will be presented including cell motion,
mitosis, and vesicles filled with the active matter.
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Peridynamics
Peridynamics

8 9 is a formulation of continuum mechanics to study deformations
with discontinuities, especially fractures.

I u : R ⊂ R3 −→ R3, displacement field

I : particle-particle interaction force

I Lu(bx , t) : force per unit ref vol at x due to interaction with
other particles,

Lu(x, t) =

∫
R

f(u(x′, t)− u(x, t), x′ − x) dVx, ∀x ∈ R, t ≥ 0.

peridynamic equation of motion

ρ
d2u

dt2
= Lu + b in R, t ≥ 0

8Qiang Du and Robert Lipton, Peridynamics, Fracture and Nonlocal
Continuum Models. From SIAM News, 47 (2014)

9S.A. Silling, Journal of the Mechanics and Physics of Solids, 48(2000)
175-209
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Composites and Metamaterials

By combining a compliant isotropic material that has low bulk and
shear moduli with a stiff isotropic material that has high bulk and
shear moduli, one can ... produce and elastically isotropic
composite that effectively has the bulk modulus of the compliant
phase and the shear modulus of the stiff phase. 10 Materials with
negative Poisson ratio.
Metamaterials have dynamic properties that vary in space and time
and so may be controlled to respond to (time and space dep.)
environmental inputs. Have properties not found in standard
materials: screening extended spatial domains from the intrusion of
dynamic disturbances, storing energy in pulses of high power,
compressing signals, ... Likewise, cloaking material from optical
disturbance. 11

10The Theory of Composites, Graeme W. Milton, Camb. Univ. Press. 2002,
online 2009.

11Active Exterior Cloaking for the 2D Laplace and Helmholtz Equations,
F.Guevara Vasquez, G.W. Milton and D.Onofrei, PRL 103, 073901, 2009.
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Conclusions

I We presented an outlook of some of the important problems
in complex materials.

I We emphasize scientific connections with other areas,
especially biology.

I A common feature among many of this problems is the
challenge in analyzing and computing defects.

I Continuum theories may fail at the defect length scale,
requiring perhaps the use of microscopic models.

I Continuumm theories need to be informed by molecular (or
atomic, in some cases) theories.

I In transporting these ’ideal’ theories to materials design, many
other issues enter into play: polydomain structures and
defects. In particular, the effect of grain boundaries has a huge
effect in material properties. Statistical methods are required
to evaluate these properties: Uncertainty Quantification.
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