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Abstract

Drug delivery systems research is focused on supplying drug in the
right place in the body at the right time.

Certain hormonal systems fluctuate over time. Hormone therapies
are known to be more effective if timed according to the natural
body frequency.

We present a model of a chemomechanical oscillator, made of a
polyelectrolyte gel membrane, that releases hormones in rhythmic
pulses. The rhythmic delivery is fueled by exposure to a constant
level of glucose.

Mixed oscillatory, singularly perturbed 3-dimensional system, two
slow and one fast time scales and monotonically competitive.
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Polyelectrolyte gels

Polyelectrolyte gels consist of crosslinked elastic network holding
fluid.

I The fluid holds ions of different types

I Negative charge is attached to the network.

I Competing elastic, mixing, Van-der-Waals and electrostatic
forces cause the gel to undergo volume phase transitions.
This, in turn, causes sharp changes in the membrane
permeability.

Constant supply of glucose keeps the membrane oscillating
between collapsed and swollen states, closing and opening.
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Outline

I Experimental device

I Chemo-mechanical model

I Hysteresis and Hopf bifurcation

I Monotone dynamical systems (Smale and Hirsh)

I Oscillations and limit cycles

I Conclusions

This is joint work with R. Siegel, Y. Mori, L. Yao, MCC.
NSF DMS-1211896
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Model components

I Mechanics of gels (elatic polymer network +fluid) system in
an external fluid environment

I Chemical reactions in environment that produce ions

I Transport and diffusion of these ions across the gel membrane

I Chemical reaction of one ion spices with the polymer.

6 / 31



Balance Laws: biphasic mixtures

Gel is an incompressible mixture of solid ( polymer network) and fluid,

interacting with its environment (e.g. air, fluid or another gel)

• In Ωt (current configuration of the gel):

∂ρi
∂t

+ div(ρiv i ) = 0, ρi = φiγi , γi = constant,

ρi v̇ i = ∇ · Ti − φi∇p + f i , i= 1, polymer; i=2, fluid

φ1 + φ2 = 1

• In Rt (domain of surrounding fluid)

ρf

(
∂vf
∂t

+ vf · ∇vf
)

= ∇ · Tf −∇p + ff ,

∇ · vf = 0

φ = φ(x, t), v = v(x, t), T = T (x, t), p = p(x, t)...

Alternate derivation in the viscosity dominating regime by Onsager’s

principle of maximum dissipation.
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Deformation and Stress

I polymer deformation map: y = y(x, t), x ∈ Ω.

I Ωt = y(Ω): current configuration of gel.

I Γt := ∂Ωt : interface gel-surrounding fluid.

I F = ∇xy: Deformation gradient tensor.

I polymer volume fraction φ1 ≡ φ; fluid φ2 = 1− φ1.

I Ψ(F , φ): free energy density.

I Cauchy stress tensors:
T1: polymer; T2: solvent; Tf : environmental fluid.

I p: hydrostatic pressure associated with constraint:

∇ · (φ1v1 + φ2v2) = 0.
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Boundary conditions at the gel-fluid interface, Γt

• Interface Γt moves with polymer: v1 · n ≡ vΓ on Γt .

• Balance of mass of fluid phase across Γt :

(vf − v1) · n = φ2(v2 − v1) · n ≡ w

• Continuity of tangential velocity across Γt :

(vf − v1)‖ = (v2 − v1)‖ ≡ q

• Balance of linear momentum of fluid across Γt :

Tf n− T1n− T2n + [p]n = 0

• Fluid that crosses the interface experiences viscous forces.
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Mechanical model: energy

E =

∫
Ωt

Ψ(F , φ) :=

∫
Ωt

φ1W(F ) +WFH(φ1, 1− φ1).

I W(F ): elastic energy density.

I WFH: Flory-Huggins energy of mixing

WFH =
kBT

vs

(
vs
vp
φ1 lnφ1 + φ2 lnφ2 + χφ1φ2

)
,

vs : volume occupied by a single molecule of solvent.

T1 = φ1
∂W
∂F

FT +
(
WFH(φ1)− φ1

d

dφ1
WFH(φ1)

)
I + T d

1 (∇v1, φ)

T2 = T d
2 (∇v2, φ)
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Energy Law: Mechanics

d

dt
Etotal = −Ivisc − Jvisc,

Jvisc =

∫
Γt

(
η⊥w

2 + η‖ |q|2
)

Ivisc =

∫
Ωt

(
2∑

i=1

2ηi
∣∣∣∣∇vi ∣∣∣∣2 + κ |v1 − v2|2

)
dx +

∫
Rt

2ηf
∣∣∣∣∇vf ∣∣∣∣2

w : normal component of fluid velocity at interface
q: tangential fluid velocity at interface
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Ions and network charge

In-fluid electric charge:

I 0 ≤ ck = ck(x , t), k = 1, ..N: in-fluid ion concentration variables

I z1, . . . zN valence

Network charge:
cp: concentration of network charge; zp < 0.

I Φ: electrostatic potential

I ε: dielectric coefficient
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Ionic and Coulombic energies

E =

∫
Ωt

φ1W(F , c0) +WFH(φ) +WC(Φ, c , φ) +Wion(c , φ)

+

∫
Rt

W f
C(Φ, c) +W f

ion(c).

WFH =
kBT

vs

(
vs
vp
φ1 lnφ1 + φ2 lnφ2 + χφ1φ2

)
.

WC =
1

2
ε|∇Φ|2, W f

C =
1

2
εf|∇Φ|2.

Wion = kBT
∑
k

ck log ck .

Chemical potential:

µk :=
∂Wion

∂ck
+ qzkΦ = kBT ln ck + qzkΦ + kBT
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Electrodiffusion of ions

Poisson-Nernst-Planck system with advection: 1.

∂(φ2ck)

∂t
+∇ · (φ2v2ck) = Pe−1∇ · (Dk (∇ck + ckzk∇Φ)) in Ωt ,

∂ck
∂t

+∇ · (vfck) = Pe−1∇ · (Dk (∇ck + ckzk∇Φ)) in Rt ,

−β2∇ · (ε∇Φ) =

{
φ1ρp +

∑N
k=1 zkφ2ck in Ωt∑N

k=1 zkck in Rt

,

RHS := ∇ · (ck∇µk) : dimensionless form.

The dimensionless parameters are given by:
I Pe = V0

D0/L
: Péclet number

I β = rd
L , rd =

√
εkBT/q

qc0
: Debye length.

rd ≈ 1 nm motivates electroneutral limit: β → 0.

Φ Lagrange multiplier to maintain electroneutrality.
1Well posedness of P-N-P system coupled with Navier-Stokes equations,

studied by Ralph Ryham, PhD thesis, Penn State, 2007
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Lorentz and Helmholtz forces

The ions and the electrostatic potential they generate exert a
Lorentz force on the fluid. There are friction, electrostatic and
Helmholtz forces:

f1 = ffric + felec
1 + fhel,

felec
1 = −ρpφ1∇Φ

fhel =
1

2
φ1∇(

∂ε

∂φ1
|∇Φ|2)

f2 = −ffric + felec
2 ,

felec
2 = −qφ2 (z · c)∇Φ

ff = felec
f = −q (z · c)∇Φ
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Energy Law

Etotal =

∫
Ωt

W(F , c0) +WFH(φ) +WC(Φ, c , φ) +Wion(c , φ)

+

∫
Rt

W f
C(Φ, c) +W f

ion(c)

Assume constitutive equations and boundary conditions hold. Then:

d

dt
Etotal = −Ivisc − Idiff − Jvisc,

Idiff =

∫
Ωt∪Rt

Daca
kBT

|∇µa|2 ,

Ivisc =

∫
Ωt

(
2∑

i=1

2ηi
∣∣∣∣∇vi ∣∣∣∣2 + κ |v1 − v2|2

)
dx +

∫
Rt

2ηf
∣∣∣∣∇vf ∣∣∣∣2,

Jvisc =

∫
Γt

(
η⊥w

2 + η‖ |q|2
)
.

Alternate derivation of governing system by Onsager’s principle of
maximum dissipation
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First order volume phase transition

Gels experience phase transitions between collapsed and swollen phases

driven by changes of temperature and pH

F.Horkay, I.Tasaki &P.Basser Biomacromolecules 2000, 1, 84-90
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Siegel’s cyclic hormone delivery experiment

Glucose +O2 −→ H+ + Glucomate− + 1
2O2

COOH + NaCl +H2O ←→ COO− +Na+ +H3O
++ Cl−

2H+ +CaCO3 −→ Ca2+ + CO2+ H2O

Ref.: Dhanarajan, Siegel, Firestone, Epstein, Pojman, Misra 1995-2010
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Swelling forces

Swelling tendency of the hydrogel due to three thermodynamic
driving forces:

I Mixing force results from the following competing effects:

I Water to mix with hydrogel to increase entropy
I Hydrophobic or hydrophilic polymer-water interactions
I Polymer-polymer Van der Waals, short range, interaction

I Elastic force opposes swelling or shrinking of the hydrogel
away from an equilibrium state.

I Ionic force of acidic pendant groups, leading to an excess of
mobile counterions and salt inside the hydrogel compared to
the external medium, promoting osmotic water flow into the
hydrogel and hence swelling.

R.A. Siegel & X. Zou, J. Chem Phys 110(1999), 2267; R.A. Siegel & G.P. Misra, J.

Controlled Release 81(2002), 1; R.A. Siegel &J-C. Leroux, Chaos(1999), 9, 267. ,
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Model

Membrane Cross-sectional area A

I Reference configuration [0, L0], φ0 (polymer volume fraction); σ0

concentration of negative groups bound to network

I [0, L0] −→ [0, L(t)]; L(t)φ(t) = L0φ0

I C M
H (t): hydrogen ion concentration

I CAH(t): concentration of network-bound protons

Reaction Chamber (Region II) Volume V

I C II
H : Concentration of hydrogen ions

I CG: Glucose concentration

I CNa, CCl

Environment (Region I)

I C I
H : Concentration of hydrogen ions

I CG, CNa, CCl

λ: Donnan ratio, α = φ0

φ : swelling ratio
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Governing system

Membrane motion:
dL

dt
= −(H(φ)− R(λ, φ))

Balance of H+ in membrane:

d

dt

(
L(CAH + C M

H )
)

= 2Kh(1− φ)(λ
(C II

H + C I
H )

2
− C M

H )

Balance of H+-ions in chamber (II):

d

dt
C II

H =
AK 0

G

V
e−βφCG −

AKh

V
(1− φ)(λC II

H − C M
H )− KMarC

II
H

Langmuir relation:

CAH =
φ

φ0
(
σ0C

M
H

KA + C M
H

)

Electroneutrality condition:

(1− φ)(λ− 1

λ
)CNaCl − (

φ

φ0
)f σ0 = 0, f = (1 +

CH

KA

)−1.

Notation: x := C M
H , z := C II

H .
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Time scales and parameter groups

ε
dφ

dt
= R1(φ, x , z)

dx

dt
= R2(φ, x , z)

dz

dt
= R3(φ, x , z)

I polymer volume fraction, φ

I hydrogen ion concentration in membrane, x

I hydrogen ion concentration in chamber, z

D = {(φ, x , z) : 0 < φ < 1, x > 0, z > 0}.
ε ≈ 1 ∗ 10−5
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Volume phase transitions

1

2

3

α
=

φ
0 φ

−2 −1 0 1 2 3
pH − pKA

50mM

155mM

250mM

Figure: Swelling Ratio α versus pH −pKA at different salt concentrations.

KA dissociation constant of the network-bound acidic groups CAAH

pKA = − logKA
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Hopf bifurcation diagrams
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I Unique hyperbolic equilibrium point
I Eigenvalues: λ1 < 0, λ2 = a + bi , λ3 = a− bi , a > 0.

Unstable between the two curves
I Periodic orbits for parameter values within the two curves
I Stable equilibrium solution outside the parameter region
I φ0 ∈ [0.1, 0.3), CG = 50mM, σ0 = 280mM,

50 < CNaCl < 155mM.
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Theorem: properties of solutions of the 3-dim system

1. Solutions corresponding to initial data in D are bounded:

0 < a < φ(t) < b < 1, 0 < A < x , z < B, for all t > 0.

2. Existence of a two-dimensional, slow, inertial manifold, M, of
the system.

3. Solutions of the 3-dim system restricted to M form non-
smooth, closed trajectories

I volume fraction, φ, is discontinuous in two locations of the
trajectory: volume phase transitions

I concentration variables, x and z , are continuous with
discontinuous time derivative at the transition points

4. Existence of a stable limit cycle, C, of the two-dimensional
system.

5. C is the ω-limit set of positive semi-orbits of the 3-dim system.

6. C is also limit cycle of orbits of 3-dim system.
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Limit cycles
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Figure: Plots of orbits of 3-dim system approaching a plane closed curve.

Poincaré-Bendixon theorem extends to 3-dim monotone syst.
Refs. M.W. Hirsh (1982, 1985) & H. Smith (1995).
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Monotone dynamical systems

ẋ = f (x),

D = {x = (φ, x , z) ∈ R3 : 0 < φ < 1; x , z > 0}

1. A dynamical system ϕt is monotone in Rn provided ϕt(y) ≤ ϕt(x)
whenever y ≤ x.

2. The system is competitive in the non-negative cone Rn
+ provided

∂fi
∂xj

(x) ≤ 0, i 6= j , x ∈ Rn
+

It is related to a certain monotonicity property on f (Kamke
condition)

Alternate cones are defined by intersections of general hyperplanes, and

are equipped with the analogous order relations.
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Monotonicity and Limit Cycle of 3-dim system

Proposition

There exists an alternate cone K uniquely determined by the phase
space D and such that the 3-dim system is competitive in K.

The proof follows from the sign symmetry and sign stability of the
Jacobian of f in D: ∗ + 0

+ ∗ +
− + ∗


This, together with the existence of a unique hyperbolic
equilibrium point away from the ω-limit set, implies the existence
of a limit cycle of the 3-dim system.
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Oscillations
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Conclusions

I Systems is qualitatively analogous to that of the evolution of
HIV in the virus persistence regime.

I We have found that sustainable oscillations may vary from
hour to months, according to parameters.

I Examine other parameter regimes

I Negative glucomate groups should also be taken into account.

I Recent work extends resutls to 5-dim system, to include
relevant chemistry.

I Will the device work in-vivo ?

30 / 31



THANK YOU VERY MUCH !

31 / 31


