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Motivation:

Liquid crystal colloids have applications in new display technologies as
well as nanofluidic devices. For this reason, they are an advancing
area of research in material science and biological systems.

In order for further advancement, we must improve our understanding
of simple fluid colloids and the defect structures seen in the liquid
crystal matrix.
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Order of Defects
A defect is a localized loss of nematic order.
If the director field at the boundary has topological degree zero, the
order of the defects in the bulk must sum to zero.
The topological order is found by taking a 2π rotation around the
defect and measuring the corresponding change in angle of the
director. In other words, k defines the 2πk change of the angle in the
director
Consider the following graphic1

Order : (a)1, (b)
1

2
, (c)− 1, (d)
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1Stan Alama, Lia Bronsard, and Bernardo Galvao-Sousa. “Weak Anchoring for a Two-Dimensional Liquid Crystal”. In:
arXiv preprint arXiv:1405.3024 (2014).
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Types of Defects when One Particle is Present

When a particle is introduced, two defects commonly develop:
hedgehog and Saturn ring. Which develops depends on a variety of
factors including the size of the particle and the boundary conditions
imposed2.

Larger particles tend to be accompanied by a point defect, while
smaller particles favor Saturn rings.

Boundary conditions on the particle and the container also affect the
type of defects seen experimentally.

2RW Ruhwandl and EM Terentjev. “Monte Carlo simulation of topological defects in the nematic liquid crystal matrix
around a spherical colloid particle”. In: Physical Review E 56.5 (1997), p. 5561.
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Defects Around Multiple Particles

When more than one particle is present defects can cause the
particles to link together in an ordered fashion as shown below3,4.

3Miha Ravnik and Slobodan Žumer. “Nematic colloids entangled by topological defects”. In: Soft Matter 5.2 (2009),
pp. 269–274.

4Uroš Tkalec et al. “Reconfigurable knots and links in chiral nematic colloids”. In: Science 333.6038 (2011), pp. 62–65.
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Surface Alignment

We can treat the surfaces with a surfactant or by rubbing it in a set
direction in order to align particles.

There are two possible types of molecular alignments of liquid crystal
particles that can we enforced of the surface of the particles and the
wall of the domain:

I Strong anchoring: Corresponds to Dirichlet boundary conditions and
will be reflected in the definition of the admissible set.

I Weak anchoring: Reflected by a term which penalizes the energy

For weak anchoring, the Rapini-Papoular surface energy is often used5

Es = τ

∫
Γ

1− α(n · v)2 dS

where τ > 0, v is the unit normal to the boundary, Γ is the surface of
the particle, and −1 < α < 1.

5Epifanio G Virga. Variational theories for liquid crystals. Vol. 8. CRC Press, 1995.
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Oseen-Frank Model

Let n be a unit vector which describes average molecular

alignment of the molecules in the liquid crystal

Equilibrium states of liquid crystal are minimizers ofa

EOF (n) =

∫
Ω
W (∇n,n)dn, |n| = 1

where

W (∇n,n) = k1(∇ · n)2 + k2(n · ∇ × n)2 + k3|n×∇× n|2

+ (k2 + k4)(tr(∇n)2 − (∇ · n)2),

and the Frank’s constants ki are experimentally measured.

We assume k1, k2, k3 > 0, k2 ≥ |k4|, 2k1 ≥ k2 + k4
b.

For our energy to be finite we assume n ∈W 1,2(Ω). 1

aEpifanio G Virga. Variational theories for liquid crystals. Vol. 8. CRC Press, 1995.
bRobert Hardt, David Kinderlehrer, and Fang-Hua Lin. “Existence and partial regularity of static liquid crystal
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Point defects according to the Oseen-Frank model

Consider the one-constant approximation of the Oseen-Frank model

EOF (n) = K

∫
Ω
|∇n|2 dx, |n| = 1

Let Ω be a ball of radius 1 in Rn, n = 2, 3, composed of a liquid
crystal with radial alignment. The director will necessarily have the
form x

|x| .

Computing the energy we have

In 3D: EOF = K

∫
Ω

3

|x|2
dx = K

∫ 1

0

∫ 2π

0

∫ π

0
3 sin(θ)dθdφdr = 12πK

In 2D: EOF = K

∫
Ω

2

|x|2
dx = K

∫ 2π

0

∫ 1

0

2

r
drdθ =∞
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Landau-de Gennes

Q is a symmetric, traceless, second order tensor which describes the
liquid crystal alignment.

The energy expression is given by6

ELDG (Q) =

∫
Ω

(fE (∂Q) + fB(Q))dΩ +

∫
Γ
fS(Q)dS .

where

fE (∂Q) =
1

2
L1Qαβ,γQαβ,γ +

1

2
L2Qαβ,βQαγ,γ +

1

2
L3Qαβ,γQαγ,β,

fB(Q) =
A

2
tr(Q2) +

B

3
tr(Q3) +

C

4
tr(Q2)2,

fS(Q) =
W

2

∣∣∣∣Q∣∣Γ − Q0

∣∣∣∣2.
1

6Apala Majumdar and Arghir Zarnescu. “Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and
beyond”. In: Archive for rational mechanics and analysis 196.1 (2010), pp. 227–280.

Paula Dassbach, Carme Calderer, and Douglas Arnold (UMN)Modeling Colloids in LC Matrix June 12, 2015 15 / 26



The Tensor Q

Most general form of Q is given by:

Q = s(n⊗ n− 1

3
I ) + r(m⊗m− 1

3
I )

and describes biaxial alignment.

Phase transitions are now described by eigenvalue behavior. If
λ1 = λ2 = λ3 = 0, the liquid crystal is isotropic, if two eigenvalues
are equal the tensor corresponds to the uniaxial phase, and if all are
different, we have the biaxial phase.

Since Q is invariant under n→ −n, Q will describe line fields as
opposed to vector fields.
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When is Landau-de Gennes equal to Oseen-Frank

First we must assume that the liquid crystal is uniaxial which implies
Q = s(n⊗ n− 1

3 I ). Consider the one-constant approximation of the
Landau-de Gennes model

E ∗LDG (Q) =

∫
Ω
|∇Q|2 =

∫
Ω

∂Qij

∂xk

∂Qij

∂xk

Plugging in the Q and expanding, we find

=

∫
Ω

2

3
|∇s|2 + 2s2|∇n|2

If we let s be a nonzero constant, our expression will give the
one-constant approximation of the Oseen-Frank model with K = 2s2

While we have algebraic equivalence there is the subtle matter that
the Oseen-Frank model does not respect the head to tail symmetry of
the nematic molecules.
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Orientability

Theorem: A line field Q ∈W 1,p(Ω) is orientable if and only if there exists
a vector field in the same functional spacea.

Lemma: For simply connected domains, line fields belonging to W 1,p for
some p ≥ 2 are orientableb.

Let us consider the following examplec:

The configuration in (a) is not claimed to
be the minimizer, but it will always have
lower energy than the oriented configuration
(b).

aJohn M Ball and Arghir Zarnescu. “Orientability and energy minimization in liquid crystal models”. In:
Archive for rational mechanics and analysis 202.2 (2011), pp. 493–535.

b2.
c2.

Paula Dassbach, Carme Calderer, and Douglas Arnold (UMN)Modeling Colloids in LC Matrix June 12, 2015 19 / 26



Orientability

Theorem: A line field Q ∈W 1,p(Ω) is orientable if and only if there exists
a vector field in the same functional spacea.

Lemma: For simply connected domains, line fields belonging to W 1,p for
some p ≥ 2 are orientableb.

Let us consider the following examplec:

The configuration in (a) is not claimed to
be the minimizer, but it will always have
lower energy than the oriented configuration
(b).

aJohn M Ball and Arghir Zarnescu. “Orientability and energy minimization in liquid crystal models”. In:
Archive for rational mechanics and analysis 202.2 (2011), pp. 493–535.

b2.
c2.

Paula Dassbach, Carme Calderer, and Douglas Arnold (UMN)Modeling Colloids in LC Matrix June 12, 2015 19 / 26



Outline

1 Defects

2 Liquid Crystal Alignment

3 Oseen-Frank Theory

4 Point defects according to the Oseen-Frank model

5 Landau-de Gennes

6 Orientability

7 Complications in Numerical Computing with Landau-de Gennes

Paula Dassbach, Carme Calderer, and Douglas Arnold (UMN)Modeling Colloids in LC Matrix June 12, 2015 20 / 26



Complications with the Landau-de Gennes Model

Landau-de Gennes accomodates the biaxial state, issues with orientability
and gives finite energy for line defects, but contains complications.

The constants for the elastic and bulk energies differ by 1016.
I As an example, 5CB has the following constants:

L = 4.0× 10−11N,A = −0.172× 106N/m2,B =
−2.12× 106N/m2,C = 1.73× 106N/m2

I Notice that the very small size of the constant L implies that the
elastic contribution is nearly non-existent.

The length scales over which the defects are occurring are on the
order of 10-100nm. Since we want to capture this behavior, we need
a very fine mesh.
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Using Fenics to Find an Energy Minimizer

We consider the one-constant approximation of Landau-de Gennes:

E ∗LDG (Q) =

∫
Ω

2L|∇Q|2 + fB(Q) dΩ

It is straightforward to find the first variation of this expression:

δE ∗LDG (Q) =

∫
Ω

4L∇q · ∇v + (2A + 4C (q2
0 + q2

1))q · v dΩ

where v ∈ H1
0 and

Q =

[
q0 q1

q1 −q0

]
.

For 2D, using C to nondimensionalize the bulk and letting L0 be the
characteristic length scale, the above expression becomes:

¯δE ∗LDG (Q) =

∫
Ω/L2

0

4L

L2
0C
∇̄q · ∇̄v +

1

C
(2A + 4C (q2

0 + q2
1))q · v dΩ

2
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Mesh:
The original particle radius is 5 nanometers and the box has sidelengths of
40 nanometers. We scale with L0 = particle radius.
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Using the Measured Bulk and Elastic Constants for 5CB:

On the left we have the line field from minimizing the Landau-de Gennes
energy and on the right we plot s.

Paula Dassbach, Carme Calderer, and Douglas Arnold (UMN)Modeling Colloids in LC Matrix June 12, 2015 24 / 26



Future Direction

Re-evaluate the relationship between the elastic and bulk constants.

Run simulations with large particle radii.

Include different Li ’s in the energy expression.

Extend to 3 dimensions.
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Thank you!
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