Modeling Colloidal Particles in a Liquid Crystal Matrix

Paula Dassbach, Carme Calderer, and Douglas Arnold

School of Mathematics University of Minnesota

June 12, 2015

Motivation:

- Liquid crystal colloids have applications in new display technologies as well as nanofluidic devices. For this reason, they are an advancing area of research in material science and biological systems.
- In order for further advancement, we must improve our understanding of simple fluid colloids and the defect structures seen in the liquid crystal matrix.

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- 6 Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Order of Defects

- A defect is a localized loss of nematic order.
- If the director field at the boundary has topological degree zero, the order of the defects in the bulk must sum to zero.
- The topological order is found by taking a 2π rotation around the defect and measuring the corresponding change in angle of the director. In other words, k defines the $2\pi k$ change of the angle in the director
- Consider the following graphic¹

¹Stan Alama, Lia Bronsard, and Bernardo Galvao-Sousa. "Weak Anchoring for a Two-Dimensional Liquid Grystal". In:

Order of Defects

- A defect is a localized loss of nematic order.
- If the director field at the boundary has topological degree zero, the order of the defects in the bulk must sum to zero.
- The topological order is found by taking a 2π rotation around the defect and measuring the corresponding change in angle of the director. In other words, k defines the $2\pi k$ change of the angle in the director
- Consider the following graphic¹

Order: (a)1,

 $(b)\frac{1}{2},$ (c)-1, $(d)\frac{-1}{2}$

¹Stan Alama, Lia Bronsard, and Bernardo Galvao-Sousa. "Weak Anchoring for a Two-Dimensional Liquid Grystal" 🞅 In: 🕢 🔾 🔿

Types of Defects when One Particle is Present

 When a particle is introduced, two defects commonly develop: hedgehog and Saturn ring. Which develops depends on a variety of factors including the size of the particle and the boundary conditions imposed².

- Larger particles tend to be accompanied by a point defect, while smaller particles favor Saturn rings.
- Boundary conditions on the particle and the container also affect the type of defects seen experimentally.

Defects Around Multiple Particles

 When more than one particle is present defects can cause the particles to link together in an ordered fashion as shown below^{3,4}.

³Miha Ravnik and Slobodan Žumer. "Nematic colloids entangled by topological defects". In: *Soft Matter* 5.2 (2009), pp. 269–274.

o. 269—274.

4 Uroš Tkalec et al. "Reconfigurable knots and links in chiral nematic colloids". In□ Scienc® 333.6038 (2011). pp. 62–65.0 ≥ 0

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Surface Alignment

- We can treat the surfaces with a surfactant or by rubbing it in a set direction in order to align particles.
- There are two possible types of molecular alignments of liquid crystal particles that can we enforced of the surface of the particles and the wall of the domain:
 - Strong anchoring: Corresponds to Dirichlet boundary conditions and will be reflected in the definition of the admissible set.
 - Weak anchoring: Reflected by a term which penalizes the energy
- For weak anchoring, the Rapini-Papoular surface energy is often used⁵

$$E_s = \tau \int_{\Gamma} 1 - \alpha (\mathbf{n} \cdot \mathbf{v})^2 dS$$

where $\tau > 0$, ${\bf v}$ is the unit normal to the boundary, Γ is the surface of the particle, and $-1 < \alpha < 1$.

⁵Epifanio G Virga. Variational theories for liquid crystals. Vol. 8. CRC Press, 1995: * 4 🗗 * 4 🛢 * 4 🛢 * * 🐧 * 4 💆 * 9 9 0

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- Point defects according to the Oseen-Frank model
- Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Oseen-Frank Model

- Let **n** be a unit vector which describes average molecular alignment of the molecules in the liquid crystal
- Equilibrium states of liquid crystal are minimizers of^a

$$E_{OF}(\mathbf{n}) = \int_{\Omega} W(\nabla \mathbf{n}, \mathbf{n}) d\mathbf{n}, \ |\mathbf{n}| = 1$$

where

$$W(\nabla \mathbf{n}, \mathbf{n}) = k_1(\nabla \cdot \mathbf{n})^2 + k_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + k_3|\mathbf{n} \times \nabla \times \mathbf{n}|^2 + (k_2 + k_4)(tr(\nabla \mathbf{n})^2 - (\nabla \cdot \mathbf{n})^2),$$

and the Frank's constants k_i are experimentally measured.

- We assume $k_1, k_2, k_3 > 0, k_2 > |k_4|, 2k_1 > k_2 + k_4^b$.
- For our energy to be finite we assume $\mathbf{n} \in W^{1,2}(\Omega)$.

^aEpifanio G Virga, Variational theories for liquid crystals, Vol. 8, CRC Press, 1995,

^bRobert Hardt, David Kinderlehrer, and Fang-Hua Lin, "Existence and partial regularity of static liquid crystal

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- 5 Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Point defects according to the Oseen-Frank model

Consider the one-constant approximation of the Oseen-Frank model

$$E_{OF}(\mathbf{n}) = K \int_{\Omega} |\nabla \mathbf{n}|^2 d\mathbf{x}, \quad |\mathbf{n}| = 1$$

- Let Ω be a ball of radius 1 in \mathbb{R}^n , n=2,3, composed of a liquid crystal with radial alignment. The director will necessarily have the form $\frac{\mathbf{x}}{|\mathbf{x}|}$.
- Computing the energy we have

Point defects according to the Oseen-Frank model

• Consider the one-constant approximation of the Oseen-Frank model

$$E_{OF}(\mathbf{n}) = K \int_{\Omega} |
abla \mathbf{n}|^2 d\mathbf{x}, \quad |\mathbf{n}| = 1$$

- Let Ω be a ball of radius 1 in \mathbb{R}^n , n=2,3, composed of a liquid crystal with radial alignment. The director will necessarily have the form $\frac{\mathbf{x}}{|\mathbf{x}|}$.
- Computing the energy we have

In 3D:
$$E_{OF} = K \int_{\Omega} \frac{3}{|\mathbf{x}|^2} d\mathbf{x} = K \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} 3\sin(\theta) d\theta d\phi dr = 12\pi K$$

Point defects according to the Oseen-Frank model

• Consider the one-constant approximation of the Oseen-Frank model

$$E_{OF}(\mathbf{n}) = K \int_{\Omega} |
abla \mathbf{n}|^2 d\mathbf{x}, \quad |\mathbf{n}| = 1$$

- Let Ω be a ball of radius 1 in \mathbb{R}^n , n=2,3, composed of a liquid crystal with radial alignment. The director will necessarily have the form $\frac{\mathbf{x}}{|\mathbf{x}|}$.
- Computing the energy we have

In 3D:
$$E_{OF} = K \int_{\Omega} \frac{3}{|\mathbf{x}|^2} d\mathbf{x} = K \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} 3\sin(\theta) d\theta d\phi dr = 12\pi K$$

In 2D:
$$E_{OF} = K \int_{\Omega} \frac{2}{|\mathbf{x}|^2} d\mathbf{x} = K \int_{0}^{2\pi} \int_{0}^{1} \frac{2}{r} dr d\theta = \infty$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank mode
- 5 Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Landau-de Gennes

- *Q* is a symmetric, traceless, second order tensor which describes the liquid crystal alignment.
- The energy expression is given by⁶

$$E_{LDG}(Q) = \int_{\Omega} (f_E(\partial Q) + f_B(Q)) d\Omega + \int_{\Gamma} f_S(Q) dS.$$

where

$$f_{E}(\partial Q) = \frac{1}{2}L_{1}Q_{\alpha\beta,\gamma}Q_{\alpha\beta,\gamma} + \frac{1}{2}L_{2}Q_{\alpha\beta,\beta}Q_{\alpha\gamma,\gamma} + \frac{1}{2}L_{3}Q_{\alpha\beta,\gamma}Q_{\alpha\gamma,\beta},$$

$$f_{B}(Q) = \frac{A}{2}tr(Q^{2}) + \frac{B}{3}tr(Q^{3}) + \frac{C}{4}tr(Q^{2})^{2},$$

$$f_{S}(Q) = \frac{W}{2}|Q|_{\Gamma} - Q_{0}|^{2}.$$

The Tensor Q

• Most general form of Q is given by:

$$Q = s(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I) + r(\mathbf{m} \otimes \mathbf{m} - \frac{1}{3}I)$$

and describes biaxial alignment.

- Phase transitions are now described by eigenvalue behavior. If $\lambda_1=\lambda_2=\lambda_3=0$, the liquid crystal is isotropic, if two eigenvalues are equal the tensor corresponds to the uniaxial phase, and if all are different, we have the biaxial phase.
- Since Q is invariant under $n \to -n$, Q will describe line fields as opposed to vector fields.

When is Landau-de Gennes equal to Oseen-Frank

First we must assume that the liquid crystal is uniaxial which implies $Q = s(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I)$. Consider the one-constant approximation of the Landau-de Gennes model

$$E_{LDG}^*(Q) = \int_{\Omega} |\nabla Q|^2 = \int_{\Omega} \frac{\partial Q_{ij}}{\partial x_k} \frac{\partial Q_{ij}}{\partial x_k}$$

• Plugging in the Q and expanding, we find

$$= \int_{\Omega} \frac{2}{3} |\nabla s|^2 + 2s^2 |\nabla n|^2$$

• If we let s be a nonzero constant, our expression will give the one-constant approximation of the Oseen-Frank model with $K=2s^2$

When is Landau-de Gennes equal to Oseen-Frank

First we must assume that the liquid crystal is uniaxial which implies $Q = s(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}I)$. Consider the one-constant approximation of the Landau-de Gennes model

$$E_{LDG}^*(Q) = \int_{\Omega} |\nabla Q|^2 = \int_{\Omega} \frac{\partial Q_{ij}}{\partial x_k} \frac{\partial Q_{ij}}{\partial x_k}$$

ullet Plugging in the Q and expanding, we find

$$= \int_{\Omega} \frac{2}{3} |\nabla s|^2 + 2s^2 |\nabla n|^2$$

- If we let s be a nonzero constant, our expression will give the one-constant approximation of the Oseen-Frank model with $K=2s^2$
- While we have algebraic equivalence there is the subtle matter that the Oseen-Frank model does not respect the head to tail symmetry of the nematic molecules.

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- 5 Landau-de Gennes
- Orientability
- Complications in Numerical Computing with Landau-de Gennes

Orientability

Theorem: A line field $Q \in W^{1,p}(\Omega)$ is orientable if and only if there exists a vector field in the same functional space^a.

Lemma: For simply connected domains, line fields belonging to $W^{1,p}$ for some $p \ge 2$ are orientable^b.

^aJohn M Ball and Arghir Zarnescu. "Orientability and energy minimization in liquid crystal models". In: *Archive for rational mechanics and analysis* 202.2 (2011), pp. 493–535.

Orientability

Theorem: A line field $Q \in W^{1,p}(\Omega)$ is orientable if and only if there exists a vector field in the same functional space^a.

Lemma: For simply connected domains, line fields belonging to $W^{1,p}$ for some $p \geq 2$ are orientable^b.

Let us consider the following example c:

The configuration in (a) is not claimed to be the minimizer, but it will always have lower energy than the oriented configuration (b).

^aJohn M Ball and Arghir Zarnescu. "Orientability and energy minimization in liquid crystal models". In: *Archive for rational mechanics and analysis* 202.2 (2011), pp. 493–535.

- Defects
- 2 Liquid Crystal Alignment
- Oseen-Frank Theory
- 4 Point defects according to the Oseen-Frank model
- 6 Landau-de Gennes
- 6 Orientability
- Complications in Numerical Computing with Landau-de Gennes

Complications with the Landau-de Gennes Model

Landau-de Gennes accomodates the biaxial state, issues with orientability and gives finite energy for line defects, but contains complications.

- \bullet The constants for the elastic and bulk energies differ by 10^{16} .
 - As an example, 5CB has the following constants: $L = 4.0 \times 10^{-11} \, \text{N}, A = -0.172 \times 10^6 \, \text{N/m}^2, B = -2.12 \times 10^6 \, \text{N/m}^2, C = 1.73 \times 10^6 \, \text{N/m}^2$
 - ▶ Notice that the very small size of the constant *L* implies that the elastic contribution is nearly non-existent.
- The length scales over which the defects are occurring are on the order of 10-100nm. Since we want to capture this behavior, we need a very fine mesh.

Using Fenics to Find an Energy Minimizer

• We consider the one-constant approximation of Landau-de Gennes:

$$E_{LDG}^*(Q) = \int_{\Omega} 2L|\nabla Q|^2 + f_B(Q) \ d\Omega$$

• It is straightforward to find the first variation of this expression:

$$\delta E_{LDG}^*(Q) = \int_{\Omega} 4L \nabla \mathbf{q} \cdot \nabla \mathbf{v} + (2A + 4C(q_0^2 + q_1^2))\mathbf{q} \cdot \mathbf{v} \ d\Omega$$

where $\mathbf{v} \in H_0^1$ and

$$Q = \left[egin{array}{cc} q_0 & q_1 \ q_1 & -q_0 \end{array}
ight].$$

• For 2D, using C to nondimensionalize the bulk and letting L_0 be the characteristic length scale, the above expression becomes:

$$\delta E_{LDG}^{\overline{ullet}}(Q) = \int_{\Omega/L_0^2} rac{4L}{L_0^2C} ar{
abla} \mathbf{q} \cdot ar{
abla} \mathbf{v} + rac{1}{C} (2A + 4C(q_0^2 + q_1^2)) \mathbf{q} \cdot \mathbf{v} \ d\Omega$$

Mesh:

The original particle radius is 5 nanometers and the box has sidelengths of 40 nanometers. We scale with $L_0=$ particle radius.

Using the Measured Bulk and Elastic Constants for 5CB:

On the left we have the line field from minimizing the Landau-de Gennes energy and on the right we plot s.

Future Direction

- Re-evaluate the relationship between the elastic and bulk constants.
- Run simulations with large particle radii.
- Include different L_i 's in the energy expression.
- Extend to 3 dimensions.

Thank you!