STATIC CONTINUUM THEORY OF NEMATIC LIQUID CRYSTALS.

Dmitry Golovaty

The University of Akron

June 11, 2015

¹Some images are from Google Earth and http://www.personal.kent.edu/ bisenyuk/liquidcrystals

NEMATIC LIQUID CRYSTALS

FIGURE: Logs in the Spirit Lake, Mt. St. Helens.

NEMATIC LIQUID CRYSTALS

FIGURE: Logs in the Spirit Lake, Mt. St. Helens.

DIRECTOR-BASED THEORY

Suppose that a nematic occupies a domain $\Omega \subset \mathbb{R}^3$ and $\mathbf{n}: \Omega \to \mathbb{S}^2$. The *director* field $\mathbf{n}(\mathbf{x})$ represents local orientation of nematic molecules near $\mathbf{x} \in \Omega$.

To formulate a continuum variational theory, need a functional space and an energy functional that take into account

- Elastic distortions of the director field \mathbf{n} in Ω
- Interactions of the nematic with the walls of the container, i.e. the boundary or *anchoring* conditions satisfied by the director field $\bf n$ on $\partial\Omega$.

<u>Note:</u> Additional effects (magnetic field, etc.) can be taken into account—beyond the scope of this talk.

OSEEN-FRANK MODEL

Oseen-Frank elastic energy density (Frank, 1958):

$$f_{OF}(\mathbf{n}, \nabla \mathbf{n}) := \frac{K_1}{2} (\operatorname{div} \mathbf{n})^2 + \frac{K_2}{2} (\operatorname{curl} \mathbf{n} \cdot \mathbf{n})^2 + \frac{K_3}{2} |\operatorname{curl} \mathbf{n} \times \mathbf{n}|^2 + \frac{K_2 + K_4}{2} \left(\operatorname{tr} (\nabla \mathbf{n})^2 - (\operatorname{div} \mathbf{n})^2 \right)$$

Anchoring Conditions

Controlled, e.g., by mechanical treatment or use of surfactants. Two possible types of boundary conditions:

Strong anchoring:

• Weak anchoring via a surface energy density term, e.g.:

$$f_{OF}^{s}(\mathbf{n}, \nu) = \gamma(\mathbf{n} \cdot \nu)^{2} \text{ or } f_{OF}^{s}(\mathbf{n}, \nu) = \gamma((\mathbf{n} \cdot \nu)^{2} - \cos^{2} \alpha)^{2}$$

where ν is an outward unit normal to $\partial\Omega$. The first expression is a Rapini-Papoular surface energy density.

VARIATIONAL PROBLEM (STRONG ANCHORING):

Minimize

$$F_{OF}[\mathbf{n}] := \int_{\Omega} \left\{ \frac{K_1}{2} (\operatorname{div} \mathbf{n})^2 + \frac{K_2}{2} (\operatorname{curl} \mathbf{n} \cdot \mathbf{n})^2 + \frac{K_3}{2} |\operatorname{curl} \mathbf{n} \times \mathbf{n}|^2 + \frac{K_2 + K_4}{2} \left(\operatorname{tr} \left(\nabla \mathbf{n} \right)^2 - (\operatorname{div} \mathbf{n})^2 \right) \right\}$$

in $H^1\left(\Omega,\mathbb{S}^2\right)$ subject to the appropriate boundary data, i.e., $\mathbf{n}|_{\partial\Omega}=\nu$ for the homeotropic anchoring.

(Hardt, Kinderlehrer and Lin, 1986) For the positive K_1 , K_2 , K_3 global minimizers of F_{OF} exist among all maps in $H^1\left(\Omega,\mathbb{S}^2\right)$ subject to Lipschitz, \mathbb{S}^2 -valued Dirichlet boundary data. Any minimizer is smooth except for a closed set of Hausdorff dimension strictly less than 1.

Facts:

• When $K_1 = K_2 = K_3 = K$ and $K_4 = 0$, the Oseen-Frank energy reduces to the Dirichlet integral

$$F_{OF}[\mathbf{n}] = K \int_{\Omega} |\nabla \mathbf{n}|^2.$$

- The saddle-splay term is a null Lagrangian, i.e., its integral over Ω depends only on the boundary data \to this term reduces to a constant for Dirichlet boundary conditions on \mathbf{n} .
- Any configuration with a line singularity (observed experimentally), e.g.,

$$\mathbf{n}(\mathbf{x}) = (x/\sqrt{x^2 + y^2}, y/\sqrt{x^2 + y^2}, 0)$$

has an infinite energy.

Inability to model line defects with a finite energy within OF theory can be addressed by

- Moving to higher-dimensional order parameters (Ericksen's theory for nematics with variable degree of orientations, Landau-de Gennes theory)
- Making suitable modifications to the energy functional and the class of admissible maps (Ball and Bedford, 2014)—e.g., replacing $|\nabla \mathbf{n}|^2$ with $|\nabla \mathbf{n}|^p$, where $1 and/or allowing <math>\mathbf{n}$ to jump across surfaces by assuming that $\mathbf{n} \in SBV\left(\Omega,\mathbb{S}^2\right)$. The second modification addresses another shortcoming of director-based theories, the issue of orientability.

<u>Note:</u> Any version of a continuum theory based on a single vector field only works for <u>uniaxial</u> nematics and does not allow to model <u>biaxiality</u>.

NEMATICS WITH VARIABLE DEGREE OF ORIENTATION

To allow for line defects, Ericksen (1991) proposed to supplement \mathbf{n} with a scalar field $s:\Omega\to\left(-\frac{1}{2},1\right)$ to describe the degree of local orientational order.

Simplified version of the energy functional:

$$F_{E}[s,\mathbf{n}] := \int_{\Omega} \left\{ K_{s} |\nabla s|^{2} + K_{n} s^{2} |\nabla \mathbf{n}|^{2} + W(s,T) \right\}$$

Here

$$\min_{s \in \left(-\frac{1}{2}, 1\right)} W(s, T) = W(s_0(T), T) = 0$$

and

$$\lim_{s\to -1/2}W(s,T)=\lim_{s\to 1}W(s,T)=\infty.$$

The model allows for a phase transition between nematic and isotropic states:

where $T_c \in \mathbb{R}$ is a critical temperature.

If $K_s = K_n = K$, set $\mathbf{u} = s\mathbf{n}$ then

$$F_{E}[\mathbf{u}] = \int_{\Omega} K |\nabla \mathbf{u}|^2 + W(|\mathbf{u}|, T)$$

- Ginzburg-Landau model.

<u>Note:</u> As formulated, Ericksen's model does not resolve orientability issue and it cannot be used to model biaxiality.

ORIENTABILITY

Experimental fact: Probability of finding the head of a molecule pointing in a given directions is equal to the probability of finding the tail of a molecule pointing in the same direction.

Consequence: $\mathbf{n}(\mathbf{x}) = \mathbf{n}_0$ and $\mathbf{n}(\mathbf{x}) = -\mathbf{n}_0$ for some $\mathbf{n}_0 \in \mathbb{S}^2$ correspond to the same nematic state at \mathbf{x} . The tensor field $\mathbf{n} \otimes \mathbf{n}$ (possibly, translated and/or dilated) is, however, invariant under inversion $\mathbf{n} \to -\mathbf{n}$.

<u>Conclusion</u>: Local orientation of nematic molecules is described by a line field with values in \mathbb{RP}^2 and not a vector field with values in \mathbb{S}^2 . The classical OF theory will give incorrect predictions when a minimizing line field is not orientable (Ball and Zarnescu, 2010).

"Stadium" configuration (Ball and Zarnescu, 2010)

Nematic disclination

Q-TENSOR THEORY

Let $\Omega \subset \mathbb{R}^3$ and $\rho(\mathbf{n}, x)$ be a pdf of molecular orientations at $x \in \Omega$, where $\mathbf{n} \in \mathbb{S}^2$.

Since head and tail are equiprobable $\Longrightarrow \rho(-\mathbf{n},x) = \rho(\mathbf{n},x)$ and the first moment of ρ vanishes.

Nontrivial information about LC configuration at \boldsymbol{x} is given by the second moment

$$M(x) = \int_{\mathbb{S}^2} (\mathbf{n} \otimes \mathbf{n}) \rho(\mathbf{n}, x) d\mathbf{n}$$

Note: $M^T(x) = M(x)$ and $\operatorname{tr} M(x) = 1$ for all $x \in \Omega$.

LC is isotropic at x if $\rho(\mathbf{n},x) \equiv \frac{1}{4\pi} \Longrightarrow M(x) = M_{iso} = \frac{1}{3}I$.

Q-tensor: $Q(x) = M(x) - M_{iso}$ so that Q vanishes in the isotropic state.

Nematic Q-tensor

 $Q \in M_{sym}^{3 \times 3}$ is a traceless tensor \Rightarrow eigenvalues satisfy $\lambda_1 + \lambda_2 + \lambda_3 = 0$ with a mutually orthonormal eigenframe $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.

Uniaxial nematic: repeated nonzero eigenvalues $\lambda_1 = \lambda_2 \Rightarrow Q = S\left(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}\right)$, where $S := \frac{3\lambda_3}{2}$ is the uniaxial nematic order parameter and $\mathbf{n} \in \mathbf{S}^2$ is the nematic director.

Biaxial nematic: no repeated eigenvalues \Rightarrow $Q = S_1 \left(\mathbf{e}_1 \otimes \mathbf{e}_1 - \frac{1}{3} \mathbf{I} \right) + S_3 \left(\mathbf{e}_3 \otimes \mathbf{e}_3 - \frac{1}{3} \mathbf{I} \right)$, where $S_1 := 2\lambda_1 + \lambda_3$ and $S_3 = \lambda_1 + 2\lambda_3$ are biaxial order parameters.

Isotropic: all eigenvalues are equal zero $\Rightarrow Q = 0$.

By construction, $\lambda_i \in \left[-\frac{1}{3}, \frac{2}{3}\right]$, where i = 1, 2, 3.

Landau-de Gennes Model

Bulk elastic energy density:

$$f_{e}(Q,\nabla Q):=\frac{L_{1}}{2}|\nabla Q|^{2}+\frac{L_{2}}{2}Q_{ik,j}Q_{ij,k}+\frac{L_{3}}{2}Q_{ij,j}Q_{ik,k}+\frac{L_{4}}{2}Q_{lk}Q_{ij,k}Q_{ij,l}$$

Bulk Landau-de Gennes energy density:

$$f_{LdG}(Q) := a \operatorname{tr}\left(Q^2\right) + \frac{2b}{3} \operatorname{tr}\left(Q^3\right) + \frac{c}{2} \left(\operatorname{tr}\left(Q^2\right)\right)^2$$

Here a(T) is temperature-dependent, c>0, and $f_{LdG}\geq 0$ by adding an appropriate constant. Function of eigenvalues of Q only. Depending on T, minimum is either isotropic or nematic w/specific s.

Surface energy density (Either strong or weak anchoring):

$$f_s(Q) := f(Q, \nu)$$

on the boundary of the container and $\nu \in \mathbb{S}^2$ is a normal to the surface of the liquid crystal.

Remarks:

• When $L_4 \neq 0$, the energy

$$F_{LdG}[Q] = \int_{\Omega} f_{e}(Q, \nabla Q) + f_{LdG}(Q)$$

is unbounded from below. The existence of the global minimizer can be established, subject to constraints on L_i , $i=1,\ldots,4$ if the potential term is modified according to the Ericksen's idea (Ball and Majumdar (2009)).

• When $L_4=0$, the functional is coercive subject to constraints on $L_i,\ i=1,2,3$ (Gartland and Davis (1998), Longa et al (1987)). However, in this case, two of the three elastic constants in a Oseen-Frank reduction (when $Q=s\left(\mathbf{n}\otimes\mathbf{n}-\frac{1}{3}I\right)$ with a constant s and $|\mathbf{n}|=1$) must be equal.

NEMATIC FILM

 ${\bf Figure:}$ Geometry of the problem.

Here $\Omega \subset \mathbf{R}^2$ and h > 0 is small.

Nematic energy functional:

$$E[Q] := \int_{\Omega \times [0,h]} \left\{ f_{\mathsf{e}}(Q, \nabla Q) + f_{\mathsf{LdG}}(Q) \right\} \, dV + \int_{\Omega \times \{0,h\}} f_{\mathsf{s}}(Q, \hat{z}) \, dA$$

Uniaxial data on the lateral boundary of the film:

$$Q|_{\partial\Omega\times[0,h]}=g\in H^{1/2}(\partial\Omega;\mathcal{A}).$$

Admissible class:

$$\mathcal{C}_{h}^{g}:=\left\{Q\in H^{1}\left(\Omega\times\left[0,h\right];\mathcal{A}\right):Q|_{\partial\Omega\times\left[0,h\right]}=g\right\},$$

where A is the set of three-by-three symmetric traceless matrices.

OSIPOV-HESS SURFACE ENERGY

"Bare" surface energy (Osipov-Hess):

$$f_s(Q, \nu) := c_1(Q\nu \cdot \nu) + c_2Q \cdot Q + c_3(Q\nu \cdot \nu)^2 + c_4|Q\nu|^2$$

where c_i , i = 1, ..., 4 are constants.

Observe that:

$$Q \cdot Q = 2|Q\nu|^2 - (Q\nu \cdot \nu)^2 + Q_2 \cdot Q_2,$$

where $Q_{2}\in M_{sym}^{2 imes2}$ is a nonzero square block of $\left(\mathbf{I}u\otimes
u\right)Q\left(\mathbf{I}u\otimes
u\right)$.

The traceless condition for Q:

$$tr Q_2 + x \cdot \nu = 0$$

where $x := Q\nu \in \mathbf{R}^3$.

In terms of x and Q_2 :

$$f_s(Q, \nu) = c_1(x \cdot \nu) + c_2Q_2 \cdot Q_2 + (c_3 - c_2)(x \cdot \nu)^2 + (2c_2 + c_4)|x|^2$$

This expression has a family of surface-energy-minimizing tensors that is

- parameterized by at least one free eigenvalue
- onormal to the surface of the liquid crystal is an eigenvector

as long as $c_2=0, \ \alpha=c_3+c_4>0, \ \text{and} \ \gamma=c_4>0.$ Then the surface energy has the form

$$f_s(Q, \nu) = \alpha \left[(Q\nu \cdot \nu) - \beta \right]^2 + \gamma |(\mathbf{I} - \nu \otimes \nu) Q\nu|^2$$

where
$$\beta = -\frac{c_1}{2(c_3 + c_4)}$$
.

NONDIMENSIONALIZATION

Let $L_4 = 0$ and

$$\tilde{x} = \frac{x}{D}, \ \tilde{y} = \frac{y}{D}, \ \tilde{z} = \frac{z}{h}, \ F_{\epsilon} = \frac{2}{L_1 h} E,$$

where $D := \operatorname{diam}(\Omega)$. Set

$$\xi = \frac{L_1}{2D^2}, \ \epsilon = \frac{h}{D}, \ \delta = \sqrt{\frac{2\xi}{c}}$$

$$K_2 = \frac{L_2}{L_1}, \ K_3 = \frac{L_3}{L_1}$$

$$A = \frac{a}{c}, \ B = \frac{b}{c}$$

$$\tilde{\alpha} = \frac{\alpha}{\xi}, \ \tilde{\gamma} = \frac{\gamma}{\xi}$$

NONDIMENSIONAL ENERGY

$$F_{\epsilon}[Q] = \int_{\Omega \times [0,1]} \left(f_{\epsilon}(\nabla Q) + \frac{1}{\delta^2} f_{LdG}(Q) \right) dV + \frac{1}{\epsilon} \int_{\Omega \times \{0,1\}} f_{\epsilon}(Q,\hat{z}) dA,$$

where

$$\begin{split} f_{e}(\nabla Q) := \left[|\nabla_{xy} Q|^{2} + K_{2} Q_{ik,j} Q_{ij,k} + K_{3} Q_{ij,j} Q_{ik,k} \right] \\ + \frac{2}{\epsilon} \left[K_{2} Q_{i3,j} Q_{ij,3} + K_{3} Q_{ij,j} Q_{i3,3} \right] \\ + \frac{1}{\epsilon^{2}} \left[|Q_{z}|^{2} + (K_{2} + K_{3}) Q_{i3,3}^{2} \right], \\ f_{LdG}(Q) = 2A \operatorname{tr} \left(Q^{2} \right) + \frac{4}{3} B \operatorname{tr} \left(Q^{3} \right) + \left(\operatorname{tr} \left(Q^{2} \right) \right)^{2}, \\ f_{s}(Q, \hat{z}) = \alpha \left[(Q \nu \cdot \nu) - \beta \right]^{2} + \gamma |(\mathbf{I} - \nu \otimes \nu) Q \nu|^{2}. \end{split}$$

ASSUMPTIONS

Suppose for simplicity that $\mathcal{K}_2=\mathcal{K}_3=0$ then for every $Q\in\mathcal{C}_1^{\mathcal{g}}$

$$\begin{split} F_{\epsilon}[Q] &= \int_{\Omega \times [0,1]} \left\{ |Q_{\mathsf{x}}|^2 + |Q_{\mathsf{y}}|^2 + \frac{1}{\epsilon^2} |Q_{\mathsf{z}}|^2 \right. \\ &\left. + \frac{1}{\delta^2} \left(2A \operatorname{tr} \left(Q^2 \right) + \frac{4}{3} B \operatorname{tr} \left(Q^3 \right) + \left(\operatorname{tr} \left(Q^2 \right) \right)^2 \right) \right\} \, dV \\ &\left. + \frac{1}{\epsilon} \int_{\Omega \times \{0,1\}} \left(\alpha \left[\left(Q \hat{z} \cdot \hat{z} \right) - \beta \right]^2 + \gamma |(\mathbf{I} - \hat{z} \otimes \hat{z}) \, Q \hat{z}|^2 \right) \, dA, \end{split}$$

and set

$$f_s(Q,\hat{z}) =: f_s^{(0)}(Q,\hat{z}) + \epsilon f_s^{(1)}(Q,\hat{z})$$

—this allows for different asymptotic regimes for α and γ .

LIMITING PROBLEM

Let

$$F_0[Q] := \left\{ \begin{array}{ll} 2\int_{\Omega} \left\{ |\nabla_{xy}Q|^2 + \frac{1}{\delta^2} f_{LdG}(Q) + f_s^{(1)}(Q,\hat{z}) \right\} \, dA & \text{ if } \, Q \in H_g^1, \\ +\infty & \text{ otherwise.} \end{array} \right.$$

Here

$$H^1_g:=\left\{Q\in H^1(\Omega;\mathcal{D}):Q|_{\partial\Omega}=g\right\}$$

and

$$\mathcal{D}:=\left\{Q\in\mathcal{A}:Q\in\operatorname{argmin}_{Q\in\mathcal{A}}f_s^{(0)}(Q)\right\},$$

for some boundary data $g: \partial \Omega \to \mathcal{D}$.

THEOREM (G, MONTERO, STERNBERG (2015))

Fix $g:\partial\Omega\to\mathcal{D}$ such that H_g^1 is nonempty. Then $\Gamma\text{-lim}_\epsilon\,F_\epsilon=F_0$ weakly in \mathcal{C}_1^g . Furthermore, if a sequence $\{Q_\epsilon\}_{\epsilon>0}\subset\mathcal{C}_1^g$ satisfies a uniform energy bound $F_\epsilon[Q_\epsilon]<\mathcal{C}_0$ then there is a subsequence weakly convergent in \mathcal{C}_1^g to a map in H_g^1 .

PROOF.

Idea: can use a trivial recovery sequence. Indeed, if $Q_{\epsilon} \equiv Q \in \mathcal{C}_1^g \setminus H_g^1$ then $\lim_{\epsilon \to 0} F_{\epsilon}[Q_{\epsilon}] = +\infty = F_0[Q]$ and when $Q_{\epsilon} \equiv Q \in H_g^1$ then $F_{\epsilon}[Q_{\epsilon}] = F_0[Q_{\epsilon}] = F_0[Q]$ for all ϵ .

Asymtotic regimes - Regime I

Let

$$f_s^{(0)} = \alpha \left[(Q\hat{z} \cdot \hat{z}) - \beta \right]^2 + \gamma |(\mathbf{I} - \hat{z} \otimes \hat{z}) Q\hat{z}|^2 \text{ and } f_s^{(1)} \equiv 0$$

 \Rightarrow two types of \mathcal{D} -valued uniaxial Dirichlet data on $\partial\Omega$:

- $Q = -3\beta \left(\mathbf{n} \otimes \mathbf{n} \frac{1}{3}\mathbf{I}\right)$, where $\mathbf{n} \perp \hat{z}$ is any \mathbb{S}^1 -valued field on $\partial\Omega$.

<u>Note:</u> In the first case the boundary data can have any degree, while in the second case the Dirichlet condition is completely rigid as Q is equal to a constant.

Can represent $Q \in H_g^1$ as

$$Q = \left(\begin{array}{ccc} p_1 - \frac{\beta}{2} & p_2 & 0 \\ p_2 & -p_1 - \frac{\beta}{2} & 0 \\ 0 & 0 & \beta \end{array} \right).$$

Then

$$F_0[Q] = ilde{F}_0[\mathbf{p}] := \int_{\Omega} \left\{ 2|
abla \mathbf{p}|^2 + rac{1}{\delta^2}W(|\mathbf{p}|)
ight\} dV,$$

where $\mathbf{p} = (p_1, p_2)$ and

$$W(t) = 4t^4 + \tilde{C}t^2 + \tilde{D},$$

with $\tilde{C}=6\beta^2-4B\beta+4A$ and $\tilde{D}\in\mathbb{R}.$

lf

$$Q|_{\partial\Omega imes [0,1]} = rac{3}{2}eta\left(\hat{z}\otimes\hat{z} - rac{1}{3}\mathbf{I}
ight),$$

admissible functions satisfy the boundary condition

$$\mathbf{p}|_{\partial\Omega}=\mathbf{0}.$$

The minimizer of

$$ilde{\mathcal{F}}_0[\mathbf{p}] = \int_{\Omega} \left\{ 2|\nabla \mathbf{p}|^2 + \frac{1}{\delta^2}W(|\mathbf{p}|) \right\} dV$$

then has a constant angular component \Rightarrow scalar minimization problem for $p:=|\mathbf{p}|$ and

- If $\tilde{C} \geq 0$ then the minimizer $p \equiv 0$.
- ② If $\tilde{C} < 0$ then the minimizer p solves the problem

$$-\Delta p + rac{1}{\delta^2} W'(p) = 0 ext{ in } \Omega, \quad p = 0 ext{ on } \partial \Omega.$$

Now suppose

$$Q|_{\partial\Omega\times[0,1]} = -3\beta\left(\mathbf{n}\otimes\mathbf{n} - \frac{1}{3}\mathbf{I}\right),$$

where $\mathbf{n}:\partial\Omega\to\mathbb{S}^1$.

We have

$$\mathbf{p} = -3\beta \left(n_1^2 - \frac{1}{2}, n_1 n_2 \right),$$

on $\partial\Omega$ where $|\mathbf{p}|=\frac{3\beta}{2}$. If \mathbf{p} is smooth and nonvanishing, it has a well-defined winding number $d\in\mathbb{Z}$. We set the degree of g to be equal to d/2. Then \mathbf{p}_0 must vanish somewhere within a vortex core structure of a characteristic size of δ in Ω .

FIGURE: Geometry of the target space.

Topologically nontrivial boundary data will cause the director to "escape" from the xy-plane to the z-direction. The requirement that Q_0 takes values in $\mathcal D$ forces the escape to happen through biaxial states that are heavily penalized by the Landau-de Gennes energy.

Degree of biaxiality:

$$\xi(Q)^2 := 1 - 6 \frac{\left(\text{tr}Q^3\right)^2}{\left(\text{tr}Q^2\right)^3} = 1 - 27 \frac{\beta^2 \left(4p^2 - \beta^2\right)^2}{\left(4p^2 + 3\beta^2\right)^3}$$

where $\xi(Q) = 0$ implies that Q is uniaxial.

Asymtotic regimes - Regime II

Let $\alpha = \epsilon a$ for some a > 0 and $\gamma = O(1)$. Then

$$f_s^{(0)}(Q,\hat{z}) = \gamma | (\mathbf{I} - \hat{z} \otimes \hat{z}) Q \hat{z} |^2$$

and

$$f_s^{(1)}(Q\hat{z}) = a\left[\left(Q\hat{z}\cdot\hat{z}\right) - \beta\right]^2$$

and the target set $\mathcal D$ consists of traceless symmetric tensors having $\hat z$ as one of its eigenvectors. The limiting functional for $Q\in H^1_g$ is

$$F_0[Q] = 2\int_\Omega \left\{ |
abla Q|^2 + rac{1}{\delta^2} f_{LdG}(Q) + a \left[(Q\hat{z}\cdot\hat{z}) - eta
ight]^2
ight\} dA$$

(cf. Bauman-Park-Phillips when $\delta \to 0$ and a = 0).