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NEMATIC LiQUID CRYSTALS

FIGURE: Logs in the Spirit Lake, Mt. St. Helens.
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.
DIRECTOR-BASED THEORY

Suppose that a nematic occupies a domain Q@ C R3 and n: Q — S%. The
director field n(x) represents local orientation of nematic molecules near
x € Q.

To formulate a continuum variational theory, need a functional space and
an energy functional that take into account
o Elastic distortions of the director field n in

@ Interactions of the nematic with the walls of the container, i.e. the
boundary or anchoring conditions satisfied by the director field n on
01).

Note: Additional effects (magnetic field, etc.) can be taken into
account—beyond the scope of this talk.
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.
OSEEN-FRANK MODEL

Oseen-Frank elastic energy density (Frank, 1958):
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.
ANCHORING CONDITIONS

Controlled, e.g., by mechanical treatment or use of surfactants. Two
possible types of boundary conditions:

e Strong anchoring:

Iy |HWIH| I

|H”H“|H it = sl
g 100000
=SmS=== Wity 10yl 1y
Homeotropic Planar Tilted
(Dirichlet)

@ Weak anchoring via a surface energy density term, e.g.:
s 2 s 2 2 \?
for(n,v) =~(n-v)° or f3e(n,v) = ’y((n -v)® — cos a)

where v is an outward unit normal to 9€2. The first expression is a
Rapini-Papoular surface energy density.
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|
VARIATIONAL PROBLEM (STRONG ANCHORING):

Minimize
K K: K:
For[n] ::/ {1(divn)2 + —2(curln -n)? + —3\curln x n|?
a2 2 2

B ; Ks (tr (Vn)? — (divn)2) }

in H! (Q,S?) subject to the appropriate boundary data, i.e., n|gg = v for
the homeotropic anchoring.

(Hardt, Kinderlehrer and Lin, 1986) For the positive K1, Ka, K3 global
minimizers of For exist among all maps in H! (Q, 82) subject to Lipschitz,
S?-valued Dirichlet boundary data. Any minimizer is smooth except for a
closed set of Hausdorff dimension strictly less than 1.

Dmitry Golovat; UA June 11, 2015 7 / 32
Yy Yy



Facts:

o When K; = K, = K3 = K and Ky = 0, the Oseen-Frank energy
reduces to the Dirichlet integral

Forln] = K [ Val®.

@ The saddle-splay term is a null Lagrangian, i.e., its integral over Q
depends only on the boundary data — this term reduces to a
constant for Dirichlet boundary conditions on n.

e Any configuration with a line singularity (observed experimentally),
e.g.,

n(x) = (x/vV/x2+ y2,y/\V/x2 + y2,0)

has an infinite energy.
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Inability to model line defects with a finite energy within OF theory can be
addressed by

e Moving to higher-dimensional order parameters (Ericksen's theory for
nematics with variable degree of orientations, Landau-de Gennes
theory)

e Making suitable modifications to the energy functional and the class
of admissible maps (Ball and Bedford, 2014)—e.g., replacing |Vn|?
with [Vn|P, where 1 < p < 2 and/or allowing n to jump across
surfaces by assuming that n € SBV (Q, 82). The second modification
addresses another shortcoming of director-based theories, the issue of
orientability.

Note: Any version of a continuum theory based on a single vector field
only works for uniaxial nematics and does not allow to model biaxiality.
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|
NEMATICS WITH VARIABLE DEGREE OF ORIENTATION

To allow for line defects, Ericksen (1991) proposed to supplement n with a
scalar field s : Q — (—%, 1) to describe the degree of local orientational
order.

Simplified version of the energy functional:
Felsnl = [ {KIVsf + Kot T2+ W(s, 7))
Q

Here
min W(s, T) = W(so(T), T)=0

and
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The model allows for a phase transition between nematic and isotropic
states:

S(To) = so #0, T < T., (nematic state = order),
0/ = 0, T > T., (isotropic state = disorder),

where T. € R is a critical temperature.

If Ks = K, = K, set u = sn then
Felu] = / KIVul? + W(ul, T)
Q

- Ginzburg-Landau model.

Note: As formulated, Ericksen’s model does not resolve orientability issue
and it cannot be used to model biaxiality.
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ORIENTABILITY

Experimental fact: Probability of finding the head of a molecule pointing
in a given directions is equal to the probability of finding the tail of a
molecule pointing in the same direction.

Consequence: n(x) = ng and n(x) = —ng for some ng € S? correspond to
the same nematic state at x. The tensor field n ® n (possibly, translated
and/or dilated) is, however, invariant under inversion n — —n.

Conclusion: Local orientation of nematic molecules is described by a line
field with values in RPP? and not a vector field with values in S2. The
classical OF theory will give incorrect predictions when a minimizing line
field is not orientable (Ball and Zarnescu, 2010).
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-
Q-TENSOR THEORY

Let Q C R3 and p(n, x) be a pdf of molecular orientations at x € Q, where
nes?

Since head and tail are equiprobable = p(—n, x) = p(n, x) and the first
moment of p vanishes.

Nontrivial information about LC configuration at x is given by the second
moment

Mx) = [ (n s m)p(n,x)dn
S2
Note: M7 (x) = M(x) and tr M(x) = 1 for all x € Q.
LC is isotropic at x if p(n, x) = £ = M(x) = M5, = 11.

Q—tensor: Q(x) = M(x) — Miso, so that Q vanishes in the isotropic state.
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.
NEMATIC Q-TENSOR

(ONS ngﬁf is a traceless tensor = eigenvalues satisfy A1 + Ao + A3 =0

with a mutually orthonormal eigenframe {e;, e, e3}.

Uniaxial nematic: repeated nonzero eigenvalues \; = Ay =

R=S (n Xn— %I) , where S := % is the uniaxial nematic order
parameter and n € S? is the nematic director.

Biaxial nematic: no repeated eigenvalues =

R=5 (e1 QKep — %l) + 53 (63 X e3 — %l) , where $1 := 2X1 + A3 and
S3 = A1 + 2)\3 are biaxial order parameters.

Isotropic: all eigenvalues are equal zero = Q = 0.

By construction, \; € [—3, 3], where i = 1,2,3.
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LANDAU-DE GENNES MODEL

Bulk elastic energy density:

L L L L
£(Q.VQ) = VI + =2 Quy Qi + = Qi Qi + = Qu Qs Qi

Bulk Landau-de Gennes energy density:
2b
flac(Q) = atr (Q2) 4 ?tr (Q3) + % (tr (Qz))2

Here a(T) is temperature-dependent, ¢ > 0, and f 4 > 0 by adding an
appropriate constant. Function of eigenvalues of Q only. Depending on T,
minimum is either isotropic or nematic w/specific s.

Surface energy density (Either strong or weak anchoring):
f(Q) = f(Q,v)

on the boundary of the container and v € S? is a normal to the surface of
the liquid crystal.
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Remarks:
@ When Ly # 0, the energy

FLdG[Q]Z/Qfe(Q,VQ)JrdeG(Q)

is unbounded from below. The existence of the global minimizer can
be established, subject to constraints on L;, i =1,...,4 if the
potential term is modified according to the Ericksen's idea (Ball and
Majumdar (2009)).

@ When L4 = 0, the functional is coercive subject to constraints on
Li, i=1,2,3 (Gartland and Davis (1998), Longa et al (1987)).
However, in this case, two of the three elastic constants in a
Oseen-Frank reduction (when Q =s (n®n — /) with a constant s
and |n| = 1) must be equal.

Dmitry Golovaty (UA) June 11, 2015 17 / 32



.
NEMATIC FILM

N>

FIGURE: Geometry of the problem.

Here Q ¢ R2 and h > 0 is small.
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Nematic energy functional:

E[Q] = / (£(Q.VQ) + fiac(Q)} dV + / £(Q.5) dA
Qx[0,h] Q

x{0,h}

Uniaxial data on the lateral boundary of the film:

Qloax(on = & € H?(0%; A).

Admissible class:
Ch={Q e H (2 x[0,h]; A) : Qlaaxpn =&}

where A is the set of three-by-three symmetric traceless matrices.
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.
OSsIPOV-HESS SURFACE ENERGY

"Bare" surface energy (Osipov-Hess):
Q) =a(Qu-v)+aQ- - Q+a(Quv 1)+ alQuf
where ¢;, i =1,...,4 are constants.
Observe that:
Q-Q=2/Qu> = (Qv-v)*+ @ @,
where Q. € Mﬁyﬁf is a nonzero square block of (I —v @ v)Q (I —v®v).
The traceless condition for Q:
tr@Q +x-v=20
where x := Qv € R3.
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In terms of x and @Q»:
Q) =alx-v)+ Q- Q+(a—c)(x-v)+ (2c+a)|x
This expression has a family of surface-energy-minimizing tensors that is

@ parameterized by at least one free eigenvalue

© normal to the surface of the liquid crystal is an eigenvector

aslongas =0, a=c3+ ¢4 >0, and v = ¢4 > 0. Then the surface
energy has the form

fi(Qv) = al(Qu-v) = B +1(1 - v © v) Quf?

1
2(c3+ca)”

where = —
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NONDIMENSIONALIZATION

Let L4 =0 and
- x .y . z 2
= — = — = — F€:7E,
oV DT w Lih

where D := diam(2). Set

g_i _h 2€
o2 T p Ve
Lo L3
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|
NONDIMENSIONAL ENERGY

1 1
Alal= [ (V) + (@) vl [ r(@2)0n
Qx[0,1] Qx{0,1}

€

where
f(VQ) 1= [|V2y QP + KoQuey Qik + K3 Qi Qi
2
+ [K2Qi3j Qi3 + K3Qi i Qiz 3]

1
+ 5 1@ + (Ko + Ka) QB3

flac(Q) = 2Atr (Q2) + gBtr (Q3> 4 (tr (02))2,

fi(@2) = al(Qv-v) = B +7l(1 v @ v) Qu*.
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.
ASSUMPTIONS

Suppose for simplicity that K» = K3 = 0 then for every Q € C§

Fe[o]z/ﬂ[ {|ox| FIQR+ 510

512 <2Atr(Q2) - 3Btr(Q3) (tr(Qz))2>} dv

1 A 2 5 o 2\ 52
+/§2X{01}(a[(oz-z)—m 11— 2 2) Q22) dA,

and set
£(Q,2) = 2(Q,2) + £M(Q, 2)

—this allows for different asymptotic regimes for « and ~.
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LIMITING PROBLEM

Let
foi@) = | 202 {1V QP + Efiac(Q) + £7(Q.2)} dA it Qe H,
+00 otherwise.
Here
Hél, = {Q € Hl(Q;D) : Qlaa = g}
and

D= {Q cA: Qe argminQeAfs(O)(Q)} ,
for some boundary data g : 9Q2 — D.
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THEOREM (G, MONTERO, STERNBERG (2015))

Fix g : 9Q — D such that Hg1 is nonempty. Then T-lim¢ F. = Fo weakly in
C{. Furthermore, if a sequence {Qc},.o C C§ satisfies a uniform energy
bound F.[Qc] < Cy then there is a subsequence weakly convergent in C$ to
a map in Hé}.

4

PRrOOF.

Idea: can use a trivial recovery sequence. Indeed, if Q. = Q € Cig\H; then
lime—0 Fe[Q] = +00 = Fp[Q] and when Q. = Q € Hg1 then

F Q] = Fo[Qc] = Fo[Q] for all €. O

v

Dmitry Golovaty (UA) June 11, 2015 26 / 32



ASYMTOTIC REGIMES - REGIME [

Let

0 = a[(Q2-2)~ AP +1(1 - 22 2) Q2 and £V =0

= two types of D-valued uniaxial Dirichlet data on 0€2:
e Q=-30 (n ®n— %I) , where n L % is any S'-valued field on 0.
o Q=¥ (t22-1I).

Note: In the first case the boundary data can have any degree, while in the
second case the Dirichlet condition is completely rigid as Q is equal to a
constant.
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Can represent @ € Hgl, as

Then
Fal] = Flol = [ {2707 + L w(loD} av.

where p = (p1, p2) and
W(t) = 4t* + Ct* + D,

with € =682 — 4B+ 4A and D € R.
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If
3 o1
Qlaax[,1 = 55 <Z®z — 3I> ,
admissible functions satisfy the boundary condition

ploa = 0.

The minimizer of
. 1
Folol = [ {2VpP + 5 wlp } av

then has a constant angular component = scalar minimization problem for
p:=|p| and

o Ifc > 0 then the minimizer p = 0.

© If C < 0 then the minimizer p solves the problem
1
52
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Now suppose
1
Qlaax[o,y = =38 (n ®n— 3I> 7

where n: 9Q — St.
We have

1
pP= _3[3 (n% - 57 n1n2> ’

on 0 where |p| = % If p is smooth and nonvanishing, it has a
well-defined winding number d € Z. We set the degree of g to be equal to
d/2. Then pg must vanish somewhere within a vortex core structure of a
characteristic size of § in €.
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Topologically nontrivial boundary

data will cause the director to "escape” from
the xy-plane to the z-direction. The requirement
that Qp takes values in D forces the escape

to happen through biaxial states that are heavily
penalized by the Landau-de Gennes energy.

Degree of biaxiality:

(rQ*)" _ . B4~ 5’
(trQ2)* (4p% + 342)3

F1GURE: Geometry of
the target space.

where £(Q) = 0 implies that Q is uniaxial.
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ASYMTOTIC REGIMES - REGIME 11

Let o« = €a for some a > 0 and v = O(1). Then
Y(Q.2) =11~ 20 2) Q2f

and

H(Q2) = a[(Qz-2) - o

and the target set D consists of traceless symmetric tensors having Z as
one of its eigenvectors. The limiting functional for Q € Hé is

Fo[Q]=2/{|VQ\ L fue(Q)+ al(Q2-2) - B]}

(cf. Bauman-Park-Phillips when § — 0 and a = 0).
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