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Nematic Liquid Crystals

Figure: Logs in the Spirit Lake, Mt. St. Helens.
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Nematic Liquid Crystals

Figure: Logs in the Spirit Lake, Mt. St. Helens.
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Director-Based Theory

Suppose that a nematic occupies a domain Ω ⊂ R3 and n : Ω→ S2. The
director field n(x) represents local orientation of nematic molecules near
x ∈ Ω.

To formulate a continuum variational theory, need a functional space and
an energy functional that take into account

Elastic distortions of the director field n in Ω

Interactions of the nematic with the walls of the container, i.e. the
boundary or anchoring conditions satisfied by the director field n on
∂Ω.

Note: Additional effects (magnetic field, etc.) can be taken into
account—beyond the scope of this talk.
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Oseen-Frank Model

Oseen-Frank elastic energy density (Frank, 1958):

fOF (n,∇n) :=
K1

2
( divn)2 +

K2

2
( curln · n)2 +

K3

2
| curln× n|2

+
K2 + K4

2

(
tr (∇n)2 − ( divn)2

)

Splay

Twist

Bend

Saddle
Splay
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Anchoring Conditions

Controlled, e.g., by mechanical treatment or use of surfactants. Two
possible types of boundary conditions:

Strong anchoring:

Homeotropic
(Dirichlet)

Planar Tilted

Weak anchoring via a surface energy density term, e.g.:

f sOF (n, ν) = γ(n · ν)2 or f sOF (n, ν) = γ
(

(n · ν)2 − cos2 α
)2

where ν is an outward unit normal to ∂Ω. The first expression is a
Rapini-Papoular surface energy density.
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Variational problem (Strong anchoring):

Minimize

FOF [n] :=

∫

Ω

{
K1

2
( divn)2 +

K2

2
( curln · n)2 +

K3

2
| curln× n|2

+
K2 + K4

2

(
tr (∇n)2 − ( divn)2

)}

in H1
(
Ω, S2

)
subject to the appropriate boundary data, i.e., n|∂Ω = ν for

the homeotropic anchoring.

(Hardt, Kinderlehrer and Lin, 1986) For the positive K1, K2, K3 global
minimizers of FOF exist among all maps in H1

(
Ω, S2

)
subject to Lipschitz,

S2-valued Dirichlet boundary data. Any minimizer is smooth except for a
closed set of Hausdorff dimension strictly less than 1.

Dmitry Golovaty (UA) June 11, 2015 7 / 32



Facts:

When K1 = K2 = K3 = K and K4 = 0, the Oseen-Frank energy
reduces to the Dirichlet integral

FOF [n] = K

∫

Ω
|∇n|2.

The saddle-splay term is a null Lagrangian, i.e., its integral over Ω
depends only on the boundary data → this term reduces to a
constant for Dirichlet boundary conditions on n.

Any configuration with a line singularity (observed experimentally),
e.g.,

n(x) = (x/
√
x2 + y2, y/

√
x2 + y2, 0)

has an infinite energy.
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Inability to model line defects with a finite energy within OF theory can be
addressed by

Moving to higher-dimensional order parameters (Ericksen’s theory for
nematics with variable degree of orientations, Landau-de Gennes
theory)

Making suitable modifications to the energy functional and the class
of admissible maps (Ball and Bedford, 2014)—e.g., replacing |∇n|2
with |∇n|p, where 1 < p < 2 and/or allowing n to jump across
surfaces by assuming that n ∈ SBV

(
Ω,S2

)
. The second modification

addresses another shortcoming of director-based theories, the issue of
orientability.

Note: Any version of a continuum theory based on a single vector field
only works for uniaxial nematics and does not allow to model biaxiality.
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Nematics with variable degree of orientation

To allow for line defects, Ericksen (1991) proposed to supplement n with a
scalar field s : Ω→

(
−1

2 , 1
)

to describe the degree of local orientational
order.

Simplified version of the energy functional:

FE [s,n] :=

∫

Ω

{
Ks |∇s|2 + Kns

2|∇n|2 + W (s,T )
}

Here
min

s∈(− 1
2
,1)

W (s,T ) = W (s 0(T ),T ) = 0

and
lim

s→−1/2
W (s,T ) = lim

s→1
W (s,T ) =∞.
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The model allows for a phase transition between nematic and isotropic
states:

s(T0) =

{
s0 6= 0, T < Tc , (nematic state = order),

0, T > Tc , (isotropic state = disorder),

where Tc ∈ R is a critical temperature.

If Ks = Kn = K , set u = sn then

FE [u] =

∫

Ω
K |∇u|2 + W (|u|,T )

- Ginzburg-Landau model.

Note: As formulated, Ericksen’s model does not resolve orientability issue
and it cannot be used to model biaxiality.

Dmitry Golovaty (UA) June 11, 2015 11 / 32



Orientability

Experimental fact: Probability of finding the head of a molecule pointing
in a given directions is equal to the probability of finding the tail of a
molecule pointing in the same direction.

Consequence: n(x) = n0 and n(x) = −n0 for some n0 ∈ S2 correspond to
the same nematic state at x. The tensor field n⊗ n (possibly, translated
and/or dilated) is, however, invariant under inversion n→ −n.

Conclusion: Local orientation of nematic molecules is described by a line
field with values in RP2 and not a vector field with values in S2. The
classical OF theory will give incorrect predictions when a minimizing line
field is not orientable (Ball and Zarnescu, 2010).
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Figure 3: A situation in which the energy minimizer is non-orientable

Q̃(x) =





s
(
(0, 1, 0)⊗ (0, 1, 0)− 1

3Id
)
, x ∈M3

s
(
nδ(x) ⊗ nδ(x)− 1

3Id
)
, x ∈M1 \M4, x2 ≥ δ

s
(
mδ(x) ⊗mδ(x) − 1

3Id
)
, x ∈M2 \M5, x2 ≤ −δ

where

nδ(x)
def
=

(
x2 − δ

|(x1, x2 − δ)| ,−
x1

|(x1, x2 − δ)| , 0
)

mδ(x)
def
=

(
x2 + δ

|(x1, x2 + δ)| ,−
x1

|(x1, x2 + δ)| , 0
)
.

Then Q̃ ∈W 1,2 and satisfies the boundary conditions. Let us observe that Q̃ is exactly the line field shown
in Fig. 3b. It is also straightforward to see that in the case of vector-field boundary conditions there exist
vector fields nδ ∈W 1,2(Mδ; S1) on the whole Mδ that match the boundary conditions.

Let us observe that if nδ ∈ W 1,2(Mδ, S1) satisfies the boundary conditions then for almost all x2 ∈ [−δ, δ]
we have nδ(·, x2) ∈W 1,2([−1, 1]; S1) and nδ(−1, x2) = (0, 1, 0), nδ(1, x2) = (0,−1, 0), and it is an elementary

exercise to check that
∫
[−1,1]×{x2} |∂x1nδ(z, x2)|2 dz ≥ π2

2 . Then

∫

Mδ

|∇nδ(x)|2 dx ≥
∫

Mδ

|∂x1nδ(x)|2 dx ≥
∫

M3

|∂x1nδ(x)|2 dx ≥ δπ2. (55)

Thus we have that
∫
Mδ

|∇n̄δ(x)|2 dx ≥ δπ2 and, noting the way Q̃ is defined we have that
∫
Mδ

|∇Q̃(x)|2 dx
is independent of δ. Hence there exists δ0 > 0 so that for any δ > δ0 we have

2s2
∫

Mδ

|∇n̄δ(x)|2 dx ≥ δπ2 ≥
∫

Mδ

|∇Q̃(x)|2 dx ≥
∫

Mδ

|∇Q̄δ(x)|2 dx

which proves the claim. �
The previous theorem shows that for δ large enough the Oseen-Frank theory fails to capture the global

energy minimizer and detects just a local energy minimizer, the energy minimizer in the class of oriented line
fields. In the following we completely characterize the instances in which the Oseen-Frank theory fails in this
way.

21

”Stadium” configuration (Ball and
Zarnescu, 2010) Nematic disclination
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Q-tensor theory

Let Ω ⊂ R3 and ρ(n, x) be a pdf of molecular orientations at x ∈ Ω, where
n ∈ S2.

Since head and tail are equiprobable =⇒ ρ(−n, x) = ρ(n, x) and the first
moment of ρ vanishes.

Nontrivial information about LC configuration at x is given by the second
moment

M(x) =

∫

S2

(n⊗ n)ρ(n, x)dn

Note: MT (x) = M(x) and trM(x) = 1 for all x ∈ Ω.

LC is isotropic at x if ρ(n, x) ≡ 1
4π =⇒ M(x) = Miso = 1

3 I.

Q−tensor: Q(x) = M(x)−Miso so that Q vanishes in the isotropic state.
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Nematic Q-tensor

Q ∈ M3×3
sym is a traceless tensor ⇒ eigenvalues satisfy λ1 + λ2 + λ3 = 0

with a mutually orthonormal eigenframe {e1, e2, e3}.

Uniaxial nematic: repeated nonzero eigenvalues λ1 = λ2 ⇒
Q = S

(
n⊗ n− 1

3 I
)
, where S := 3λ3

2 is the uniaxial nematic order
parameter and n ∈ S2 is the nematic director.

Biaxial nematic: no repeated eigenvalues ⇒
Q = S1

(
e1 ⊗ e1 − 1

3 I
)

+ S3

(
e3 ⊗ e3 − 1

3 I
)
, where S1 := 2λ1 + λ3 and

S3 = λ1 + 2λ3 are biaxial order parameters.

Isotropic: all eigenvalues are equal zero ⇒ Q = 0.

By construction, λi ∈
[
−1

3 ,
2
3

]
, where i = 1, 2, 3.
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Landau-de Gennes Model

Bulk elastic energy density:

fe(Q,∇Q) :=
L1

2
|∇Q|2 +

L2

2
Qik,jQij ,k +

L3

2
Qij ,jQik,k +

L4

2
QlkQij ,kQij ,l

Bulk Landau-de Gennes energy density:

fLdG (Q) := a tr
(
Q2
)

+
2b

3
tr
(
Q3
)

+
c

2

(
tr
(
Q2
))2

Here a(T ) is temperature-dependent, c > 0, and fLdG ≥ 0 by adding an
appropriate constant. Function of eigenvalues of Q only. Depending on T ,
minimum is either isotropic or nematic w/specific s.

Surface energy density (Either strong or weak anchoring):

fs(Q) := f (Q, ν)

on the boundary of the container and ν ∈ S2 is a normal to the surface of
the liquid crystal.
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Remarks:

When L4 6= 0, the energy

FLdG [Q] =

∫

Ω
fe(Q,∇Q) + fLdG (Q)

is unbounded from below. The existence of the global minimizer can
be established, subject to constraints on Li , i = 1, . . . , 4 if the
potential term is modified according to the Ericksen’s idea (Ball and
Majumdar (2009)).

When L4 = 0, the functional is coercive subject to constraints on
Li , i = 1, 2, 3 (Gartland and Davis (1998), Longa et al (1987)).
However, in this case, two of the three elastic constants in a
Oseen-Frank reduction (when Q = s

(
n⊗ n− 1

3 I
)

with a constant s
and |n| = 1) must be equal.
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Nematic Film

Z

ν

h

z

X

Y

^

Ω

Figure: Geometry of the problem.

Here Ω ⊂ R2 and h > 0 is small.
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Nematic energy functional:

E [Q] :=

∫

Ω×[0,h]
{fe(Q,∇Q) + fLdG (Q)} dV +

∫

Ω×{0,h}
fs(Q, ẑ) dA

Uniaxial data on the lateral boundary of the film:

Q|∂Ω×[0,h] = g ∈ H1/2(∂Ω;A).

Admissible class:

Cgh :=
{
Q ∈ H1 (Ω× [0, h];A) : Q|∂Ω×[0,h] = g

}
,

where A is the set of three-by-three symmetric traceless matrices.
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Osipov-Hess surface energy

”Bare” surface energy (Osipov-Hess):

fs(Q, ν) := c1(Qν · ν) + c2Q · Q + c3(Qν · ν)2 + c4|Qν|2

where ci , i = 1, . . . , 4 are constants.

Observe that:

Q · Q = 2|Qν|2 − (Qν · ν)2 + Q2 · Q2,

where Q2 ∈ M2×2
sym is a nonzero square block of (I− ν ⊗ ν)Q (I− ν ⊗ ν) .

The traceless condition for Q:

trQ2 + x · ν = 0

where x := Qν ∈ R3.
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In terms of x and Q2:

fs(Q, ν) = c1(x · ν) + c2Q2 · Q2 + (c3 − c2) (x · ν)2 + (2c2 + c4) |x |2

This expression has a family of surface-energy-minimizing tensors that is

1 parameterized by at least one free eigenvalue

2 normal to the surface of the liquid crystal is an eigenvector

as long as c2 = 0, α = c3 + c4 > 0, and γ = c4 > 0. Then the surface
energy has the form

fs(Q, ν) = α [(Qν · ν)− β]2 + γ|(I− ν ⊗ ν)Qν|2

where β = − c1
2(c3+c4) .
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Nondimensionalization

Let L4 = 0 and

x̃ =
x

D
, ỹ =

y

D
, z̃ =

z

h
, Fε =

2

L1h
E ,

where D := diam(Ω). Set

ξ =
L1

2D2
, ε =

h

D
, δ =

√
2ξ

c

K2 =
L2

L1
, K3 =

L3

L1

A =
a

c
, B =

b

c

α̃ =
α

ξ
, γ̃ =

γ

ξ
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Nondimensional energy

Fε[Q] =

∫

Ω×[0,1]

(
fe(∇Q) +

1

δ2
fLdG (Q)

)
dV +

1

ε

∫

Ω×{0,1}
fs(Q, ẑ) dA,

where

fe(∇Q) :=
[
|∇xyQ|2 + K2Qik,jQij ,k + K3Qij ,jQik,k

]

+
2

ε
[K2Qi3,jQij ,3 + K3Qij ,jQi3,3]

+
1

ε2

[
|Qz |2 + (K2 + K3)Q2

i3,3

]
,

fLdG (Q) = 2A tr
(
Q2
)

+
4

3
B tr

(
Q3
)

+
(
tr
(
Q2
))2

,

fs(Q, ẑ) = α [(Qν · ν)− β]2 + γ|(I− ν ⊗ ν)Qν|2.
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Assumptions

Suppose for simplicity that K2 = K3 = 0 then for every Q ∈ Cg1

Fε[Q] =

∫

Ω×[0,1]

{
|Qx |2 + |Qy |2 +

1

ε2
|Qz |2

+
1

δ2

(
2A tr

(
Q2
)

+
4

3
B tr

(
Q3
)

+
(
tr
(
Q2
))2
)}

dV

+
1

ε

∫

Ω×{0,1}

(
α [(Qẑ · ẑ)− β]2 + γ|(I− ẑ ⊗ ẑ)Qẑ |2

)
dA,

and set
fs(Q, ẑ) =: f

(0)
s (Q, ẑ) + εf

(1)
s (Q, ẑ)

—this allows for different asymptotic regimes for α and γ.
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Limiting problem

Let

F0[Q] :=

{
2
∫

Ω

{
|∇xyQ|2 + 1

δ2 fLdG (Q) + f
(1)
s (Q, ẑ)

}
dA if Q ∈ H1

g ,

+∞ otherwise.

Here
H1
g :=

{
Q ∈ H1(Ω;D) : Q|∂Ω = g

}

and
D :=

{
Q ∈ A : Q ∈ argminQ∈Af

(0)
s (Q)

}
,

for some boundary data g : ∂Ω→ D.
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Theorem (G, Montero, Sternberg (2015))

Fix g : ∂Ω→ D such that H1
g is nonempty. Then Γ-limε Fε = F0 weakly in

Cg1 . Furthermore, if a sequence {Qε}ε>0 ⊂ C
g
1 satisfies a uniform energy

bound Fε[Qε] < C0 then there is a subsequence weakly convergent in Cg1 to
a map in H1

g .

Proof.

Idea: can use a trivial recovery sequence. Indeed, if Qε ≡ Q ∈ Cg1 \H1
g then

limε→0 Fε[Qε] = +∞ = F0[Q] and when Qε ≡ Q ∈ H1
g then

Fε[Qε] = F0[Qε] = F0[Q] for all ε.
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Asymtotic regimes - Regime I

Let

f
(0)
s = α [(Qẑ · ẑ)− β]2 + γ|(I− ẑ ⊗ ẑ)Qẑ |2 and f

(1)
s ≡ 0

⇒ two types of D-valued uniaxial Dirichlet data on ∂Ω:

Q = −3β
(
n⊗ n− 1

3 I
)
, where n ⊥ ẑ is any S1-valued field on ∂Ω.

Q = 3β
2

(
ẑ ⊗ ẑ − 1

3 I
)
.

Note: In the first case the boundary data can have any degree, while in the
second case the Dirichlet condition is completely rigid as Q is equal to a
constant.
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Can represent Q ∈ H1
g as

Q =




p1 − β
2 p2 0

p2 −p1 − β
2 0

0 0 β


 .

Then

F0[Q] = F̃0[p] :=

∫

Ω

{
2|∇p|2 +

1

δ2
W (|p|)

}
dV ,

where p = (p1, p2) and

W (t) = 4t4 + C̃ t2 + D̃,

with C̃ = 6β2 − 4Bβ + 4A and D̃ ∈ R.
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If

Q|∂Ω×[0,1] =
3

2
β

(
ẑ ⊗ ẑ − 1

3
I

)
,

admissible functions satisfy the boundary condition

p|∂Ω = 0.

The minimizer of

F̃0[p] =

∫

Ω

{
2|∇p|2 +

1

δ2
W (|p|)

}
dV

then has a constant angular component ⇒ scalar minimization problem for
p := |p| and

1 If C̃ ≥ 0 then the minimizer p ≡ 0.
2 If C̃ < 0 then the minimizer p solves the problem

−∆p +
1

δ2
W ′(p) = 0 in Ω, p = 0 on ∂Ω.
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Now suppose

Q|∂Ω×[0,1] = −3β

(
n⊗ n− 1

3
I

)
,

where n : ∂Ω→ S1.

We have

p = −3β

(
n2

1 −
1

2
, n1n2

)
,

on ∂Ω where |p| = 3β
2 . If p is smooth and nonvanishing, it has a

well-defined winding number d ∈ Z. We set the degree of g to be equal to
d/2. Then p0 must vanish somewhere within a vortex core structure of a
characteristic size of δ in Ω.
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.P( , r)

Figure: Geometry of
the target space.

Topologically nontrivial boundary
data will cause the director to ”escape” from
the xy -plane to the z-direction. The requirement
that Q0 takes values in D forces the escape
to happen through biaxial states that are heavily
penalized by the Landau-de Gennes energy.

Degree of biaxiality:

ξ(Q)2 := 1− 6

(
trQ3

)2

(trQ2)3
= 1− 27

β2
(
4p2 − β2

)2

(4p2 + 3β2)3

where ξ(Q) = 0 implies that Q is uniaxial.
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Asymtotic regimes - Regime II

Let α = εa for some a > 0 and γ = O(1). Then

f
(0)
s (Q, ẑ) = γ|(I− ẑ ⊗ ẑ)Qẑ |2

and
f

(1)
s (Qẑ) = a [(Qẑ · ẑ)− β]2

and the target set D consists of traceless symmetric tensors having ẑ as
one of its eigenvectors. The limiting functional for Q ∈ H1

g is

F0[Q] = 2

∫

Ω

{
|∇Q|2 +

1

δ2
fLdG (Q) + a [(Qẑ · ẑ)− β]2

}
dA

(cf. Bauman-Park-Phillips when δ → 0 and a = 0).
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