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Dynamic fracture of Brittle Solids 

Dynamic fracture of brittle solids is an example of collective interaction 
across disparate length and time scales. 
 
Apply sufficient force to a sample of brittle material,  
atomistic-scale bonds will eventually snap, leading to 
fracture of the macroscopic specimen. 



Outline of presentation 

•  Brief overview of continuum fracture models. 
 
•  Nonlocal cohesive model in peridynamic formulation 

•  Definition of process zone in terms of cohesive 
dynamics. 

•  Explicit estimates for size of process zone from 
cohesive dynamics. 

•  Vanishing nonlocal interaction and the localization of 
the process zone and the brittle fracture limit. 

•  Observations on the dynamics in the small horizon 
limit 



Classic theory of Dynamic Fracture Mechanics 
The theory of dynamic fracture is based on the notion  
of a deformable continuum containing a crack.  
 
The crack is mathematically modeled as a branch cut  
that begins to move when an infinitesimal extension  
of the crack releases more energy than needed to create  
a fracture surface.   

Fracture mechanics, together with experiment,  
has been enormously successful in characterizing and 
measuring the resistance of materials to crack growth 
and thereby enabling engineering design. 
 



Challenges – quantitative modeling of the state of a solid 
body containing multiple freely propagating cracks. 

Given a damaged  
Shear panel:  
how much  
more load can  
it sustain before 
failure ? 



Continuum fracture modeling: top down approach 

 
Classic top down approach. Find the state of deformation in 
the cracking body by: 
 
Starting with a PDE model away from the crack 
                                              + 
Provide a description of the physics in the process zone in 
the vicinity of the crack 
                                              + 
Provide an equation for the time evolution of the crack 



On modeling multiple cracks: top down approach 
Application of cohesive zone elements: 
Xu and A. Needleman, Numerical simulations of fast crack growth 
in brittle solids,  J. Mech. Phys. Solids, 42 (1994), 1397– 1434. 
A. Hillerborg, M. Modeer, and P.E. Petersson, Analysis of crack 
formation and growth by means of fracture mechanics and finite 
elements, Cem. Concr. Res., 6 (1976), 731–781. 

    Extended finite element XFEM, Generalized finite element methods GFEM, as 
Partition of unity methods to eliminate effects of mesh dependence on cohesive 
zone modeling of freely propagating cracks.  
 
T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal 
remeshing, Int. J. Numer. Meth. Eng., 45 (1999), 601–620. 
C.A. Duarte and J.T. Oden. An hp adaptive method using clouds. Computer 
Methods in Applied Mechanics and Engineering, 139(1-4):237–262, 1996. 
J.M. Melenk and I. Babuska. The partition of unity finite element method: Basic 
theory and applications. Computer Methods in Applied Mechanics and 
Engineering, 39:289–314, 1996. 

 



Phase field methods   

 
Coupling porous media flow and fracture evolution in Geomechanics: 
 
M.F. Wheeler, T. Wick and W. Wollner. An augmented-Lagrangian method for the phase-field approach 
for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271, 69–85 (2014). 
 
Mikelic, M.F. Wheeler, T. Wick. A quasistatic phase field approach to pressurized fractures. Nonlinearity 
28(5), 1371-1399 (2015) 
 
Quasistatic: 
 
Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an 
 energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998) 
 
B. Bourdin, G. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. 
Solids 48 (2000) 797–826. 
 
Dynamic: 
 
Bourdin, B., Larsen, C., Richardson, C.: A time-discrete model for dynamic fracture based on crack 
regularization. Int. J. Fract. 168, 133–143 (2011) 
 
Borden, M., Verhoosel, C., Scott, M., Hughes, T., Landis, C.: A phase-field description of dynamic brittle 
fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012) 
 



Lattice models: bottom up approaches 

Insight into crack tip instabilities and branching by modeling discreteness 
of fracture at the smallest length scales (breaking of atomic bonds). 
 
 
M. Marder and S. Gross,  
Origin of crack tip instabilities, J. Mech. Phys. Solids, 43 (1995), 
 
M. Marder,  
Supersonic rupture of rubber,  
J. Mech. Phys. Solids, 54 (2006), 491–532. 
 
M.J. Buehler, F.F. Abraham, and H. Gao  
Hyperelasticity governs dynamic fracture at a critical length scale,  
Nature, 426 (2003), 141–146. 
 



Nonlocal models: bottom up approaches 

Analysis of size effects in quasi-brittle materials 
 
Fracture and Size effect in Concrete and Other Quasibrittle materials 
Z. Bazant and J. Planas. CRC Prsss, Boca Raton 1998. 
 
Modeling discreteness of fracture at atomistic length scales  
through nonlocal models & upscaling to classic fracture mechanics.  
 
Nonlocal Energies for Quasi-static models: 
 
A.Braides & M.S. Gelli, Limits of Discrete Systems with Long-Range 
Interactions, Journal of Convex Analysis, 2002 9:363–399. 
 
Alicandro Focardi and Gelli, Finite-difference Approximtion 
of Energies in Fracture Mechanics, Annali della Scuola  
Normale Superiore di Pisa, 2000 29:671-709. 
 
L. Truskinovsky, Fracture as a phase transition, In: ``Contemporary  
research in mechanics and mathematics of materials.’’ R. Batra,  
M. Beatty(eds.), CIMNE, Barcelona, 1996, 322-332. 
 



The Challenge – quantitative modeling of multiple 
freely propagating cracks: residual strength 

Given a damaged  
Shear panel:  
how much  
more load can  
it sustain before 
failure ? 
Bottom up meso-approach: 
Can we get quantitative  
predictions from a self  
consistent – well posed 
dynamic, mesoscopic 
continuum theory, 
informed by atomistic 
Simulations – AND, at the 
same time, be consistent 
with Macroscopic parameters, 
such as Shear modulus,  
& Energy release rate? 
. 



 
Cohesive dynamics constitutive modeling  

 
 

Nonlocal  Cohesive Evolution  
with Dynamic Instability for 

Quasi-brittle fracture 
 
 

 
    Cohesive dynamics as an  

Up-scaling of atomistic  
simulations 

 

   
 
 

Robert Lipton 

Convergence to a PDE  
Based Model  

for Dynamic Brittle 
Fracture 

Characterized by 
µ and G 

For nonlocal linear spring and  
Lennard-Jones MD models: 

P. Seleson, M. Parks,  
M. Gunzburger, R. Lehoucq 

SIAM, MMS (2009)  

Unstable meso-scopic dynamics 
Quasi brittle to brittle fracture  
As non-locality goes to zero 



 
Cohesive-dynamics in the Peridynamic Formulation: 

Background: 
 
 

x 'x

u
u '

H! (x)

D

Robert Lipton LSU 

!!!u = k! (S, x '! x)
H! (x )
" dx '+ b

ε 

We adopt general nonlinear-nonlocal formulation: 
S.A. Silling, Reformulation of elasticity theory  
for discontinuities and long-range forces,  
J. Mech. Phys. Solids, 48 (2000), 175–209. 
``Peridynamic Formulation.’’ 

Force depends on shear strain S 

Small displacement theory ``u’’ is 
displacement, x denotes position. 
Shear strain ``S’’ 

x 

 ε is length of nonlocal interaction in units 
taken relative to sample size. Limit of 
vanishing nonlocality corresponds to εà0  
 

S = ((u(x ')!u(x))/ | x '! x | )"e
e = (x '! x)/ | x '! x |



Choice of Potential Energy with Unstable Bonds 

Robert Lipton LSU 

Peridynamic potential is a function of the strain along the direction ``  x’-x ’’ 

S = ((u(x ')!u(x))/ | x '! x | )"e e = (x '! x)/ | x '! x |

Peridynamics and the Small Horizon Limit 2

and energy release rate have explicit formulas given in terms of the moments of the peridynamic

influence function and the peridynamic potential energy. These explicit formulas provide a rigorous

means to calibrate the nonlinear potentials of peridynamics with experimentally measured values of

elastic constant, wave speed and critical energy release rate.

To present the ideas we focus on antiplane shear problems posed over a bounded convex domain

D ⊂ R2
. The antiplane displacement transverse to D is written u(t, x). In the peridynamic formu-

lation one considers pairs of points x, x�
in R2

and the stretch η(t, x) = u(t, x�
)−u(t, x). The family

of points x�
that interact with x is confined to a neighborhood H�(x) of x of diameter 2�. Here �

is the horizon for the peridynamic interaction and H�(x) is a disk of radius � centered at x. The

peridynamic influence function is defined inside H�(x) and is written J( |x
�−x|
� ), with M > J(r) ≥ 0

for 0 ≤ r ≤ 1 and zero outside. For points x residing outside D but within a fixed distance α > �
from D we set the displacement u(t, x) = 0 for all 0 ≤ t ≤ T ; this gives nonlocal boundary condi-

tions of Dirichlet type for this problem [11]. The domain containing the set of points x for which

dist(x,D) < α is denoted by Dα.

η

W ε

η̄

Figure 1: Convex-concave potential.

In this paper we are interested in the small horizon limit � → 0 and we make the change of

variable x�
= x+ �ξ, where ξ belongs to the unit disk H1(0) centered at the origin. The peridynamic

potential energy density is a function of x� − x = �ξ and η(x) and we consider the family of regular

peridynamic potentials parameterized by � given by

W �
(η(x), �ξ) =

1

�3
J (|ξ|) f

�
|η(x)|2

�|ξ|

�
. (1.1)

The potential functions f : [0,∞) → R considered here are positive, smooth and concave with the

properties

lim
r→0+

f(r)

r
= f �

(0) > 0, lim
r→∞

f(r) = f∞ < ∞. (1.2)

The potentials W �
can be thought of as smoothed out versions of potentials used to describe the

peridynamic bond stretch models introduced in [26], [27]. This class of potential energies is convex

- concave in the stretch η → W �
(η, �ξ) with infection point η see, Figure 1. This delivers the

constitutive relation

force = ∂ηW
�
(η(x), �ξ) (1.3)

see, Figure 2. Here the magnitude of the force increases with the magnitude of the stretch up to the

critical value η after which it decreases.
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The potentials W �
can be thought of as smoothed out versions of potentials used to describe the

peridynamic bond stretch models introduced in [26], [27]. This class of potential energies is convex

- concave in the stretch η → W �
(η, �ξ) with infection point η see, Figure 1. This delivers the

constitutive relation
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�
(η(x), �ξ) (1.3)

see, Figure 2. Here the magnitude of the force increases with the magnitude of the stretch up to the

critical value η after which it decreases.

W ! (S, x '! x) = 1
!
f | x '! x |" | S |2( )

force = k! (S, x '! x) = "SW
! (S, x '! x)

ε x 

x’ 

Non local law: Force between x and x’ depends on the strain 
 



Introduce a cohesive dynamics via an unstable ``force 
vs. displacement’’ law (L., J. Elast. 2014, ArXiv 2014) 

Robert Lipton LSU 

η

force

η̄−η̄

force = !SW
! (S, x '" x)

! = r / | x '! x | Is strain concentration r

S 

Softening Softening 

Softening corresponding to square root concentration of strain 



Convex – concave potential 

Robert Lipton LSU 

η

W ε

W∞

η̄

| S |!W ! (S, x '" x)

W!
!

|S| 



Cohesive Energy, Kinetic, Energy,  
Action Integral and Dynamics 

 
Formulation of Cohesive potential energy: 

Energy density 

Potential Energy  

W ! (S, x) = 1
Vol(H! )

W ! (S, x '! x)
H! (x )
" dx '

PD! (u) = W ! (S, x)dx
D
!

Kinetic Energy K(!tu) =
1
2

! |!tu |
2 dx

D
"

U(u(t)) = b(t, x)u(t, x)dx
D
!Externally applied energy 

Initial conditions 
Initial data doesn’t depend on ε 
 

u(0, x) = u0 (x) !tu(0, x) = v0 (x)



Cohesive Energy, Kinetic, Energy,  
Action Integral and Dynamics at Mesoscale 

 

Action integral 

Lagrangian 

Least action principle delivers the Euler Lagrange  
equation for the dynamics described by  

I(u) = L! (u(t),!tu(t), t)dt
0

T

"

L! (u(t),!tu(t), t) = K(!tu)"PD
! (u)+U(u(t))

!!!u" (t, x) = !2 ("S
H" (x )
# W " (S", x '! x)dx '+ b(x, t)



Formulation 

Robert Lipton LSU 

For initial data u(0,x)=u0 (x) and ut(0,x)=v0(x) belonging to L2(D). 

This problem is well posed and has a solution uε(t,x) 
That belongs to C2([0,T];L2(D)) 

The force is a function of strain  
 
 
``a generalized directional derivative’’ 
so both continuous and  discontinuous deformation  
uε(t,x) can participate in the dynamics. 

Lipton. J. Elasticity 2014 

!!!u" (t, x) = !2 ("S
H" (x )
# W " (S", x '! x)dx '+ b(x, t)

S = ((u(x ')!u(x))/ | x '! x | )"e



Process zone: 
 
 Collection of neighborhoods containing softening behavior 

Robert Lipton LSU 

Lipton 2013 

η

force

η̄−η̄

S 

Softening 

Softening 

However for the cohesive bond model the dynamics selects which  
points lie in process zone 

Classic Barenblatt & Dugdale Cohesive zone models feature a process zone 
 collapsed onto a prescribed crack surface 

Process zone 

P({y ! H! (x) :| S
! |>"})>#

Process zone defined to be the collection of centroids ``x’’ for which  
the proportion of bonds P with strain greater than critical value 
is greater than    ,                , i.e.,  0 <! <1

ε 
x 

! = r / | x '! x |

!
!



Fracture nucleation condition from instability  
 inside the process zone: 

 
 

! !
!

H! (x)
x

!" = 0
!" = !(t)

Linear stability of jump perturbation across the neighborhood at x 

Calculation gives the condition for linear stability 

!"tt = A#" A! =
1
2

(!"S
2W " (S, x '! x)

H" (x )
# )dx '

!"S
2W ! (S)> 0

!"S
2W ! (S)< 0 | S |< r / | x '! x |

| S |> r / | x '! x |A! > 0
A! < 0

Unstable 

Neutrally stable 

Given a smooth equilibrium  
solution u(x) is it stable  
under a jump perturbation δν ? 

     perturbation  
grows 

perturbation  
stable 

Robert Lipton LSU 

 ε 

Lipton 2013, 2014 



Dependence of the process zone with length scale  of 
nonlocal interaction ε 

Dependence of the process zone with length scale of nonlocal interaction 
 
 

L. 2014 

At each time ``t’’ consider the process zone          given by the 
union of centroids of neighborhoods for which 
 
    
 
Then the volume of the process zone is bounded above by. 
 
 

C!,t
"

!
"r( f '(0))

!C(t)
where 

C(t) = et (PD! (u0 )+
"
2 v0 + 2

" b(# )
0

t
! d# )

P({y ! H! (x) :| S
! |>"})>#

This is obtained directly from dynamics using  
energy estimates & no assumptions 

!!!u" (t, x) = !2 ("S
H" (x )
# W " (S", x '! x)dx '+ b(x, t)



Now examine collapse of the process zone with 
vanishing nonlocality ``ε’’ & convergence to evolution 

with energy associated with brittle fracture  

Robert Lipton LSU 

!!!u! = !2 ("S
H! (x )
# W ! (S!, x '! x)dx '+ b

For initial data u(0,x)=u0 (x) and ut(0,x)=v0(x) belonging to L2(D) 

We start with nonlocal dynamics associated with horizon length scale ε. 
Then pass to the limit of vanishing nonlocality  ε à 0 and follow the dynamics  
to recover dynamics associated an evolution with uniformly bounded  
Griffith energy associated with brittle fracture.  (L. 2014) 
 
Here ε is the ratio of non local interaction length 
to sample size.  



Motivation: Relation between Peridynamic Potential and  
Potentials from Linear Elastic Fracture Mechanics 

Robert Lipton LSU 

An illustrative calculation for motivation: 
Consider the displacement inside a body with a flat crack 
of length L. 
Calculate Peridynamic energy and send ε to zero to 
see what the limit energy is. 

PD! (u) = W ! (S, x '! x)dx 'dx
H! (x )
"

D
" # ??

Crack u  Let u denote the 
 displacement. 

 
Jump in u along 

normal to crack = δ  



Relation between Peridynamic Potential and  
Potentials from Linear Elastic Fracture Mechanics 

Robert Lipton LSU 

Peridynamic energy for displacement    

PD! (u) = W ! (S, x '! x)dx 'dx
H! (x )
"

D
"

= 1
!|" | f (! |" | S

2 ) |" | d" dx
\PZ!H1(0)
!

D
! + 1

!|" | f (! |" | S
2 ) |" | d" dx

H1(0)
!

PZ!
!

! =
x '! x
"

Change of variables H1(0) = |! |!1( )

Crack u 

PZε 



Relation between Peridynamic Potential and  
Potentials from Linear Elastic Fracture Mechanics 
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Send  ε  to zero: For x outside PZε   

1
!|" | f (! |" | S

2 )! f '(0)(Eij (u(x))eiej )
2

S2 = [((u(x +! )!u(x))/ |! | )"e]2 # Eij (u(x))eiej( )
2

Eij (u(x)) = (!iuj (x)+! jui (x))

1
!|" |

H1(0)
! f (! |" | S2 ) |" | d" " (Eij (u(x))eiej )

2 |" | d"
H1(0)
!

(Eij (u(x))eiej )
2 |! | d!

H1(0)
! =CijklEij (u(x))Ekl (u(x))

1
!|" | f (! |" | S

2 ) |" | d" dx
\PZ!H1(0)
!

D
! " CijklEij (u(x))

D\PZ!
! Ekl (u(x))dx



Relation between Peridynamic Potential and  
Potentials from Linear Elastic Fracture Mechanics 

Robert Lipton LSU 

Send  ε  to zero: Calculate energy inside PZε   

1
!|" | f (! |" | S

2 ) |" | d" dx
H1(0)
!

PZ!
! = 1

!|" |
PZ!
!

H1(0)
! f (! |" | S2 ) |" | d"

1
!|" |

PZ!
!

H1(0)
! f (! |" | S2 ) |" | d" = 4 f"

#2

r2 dr
0

1

! N(e, y)dyd$
#
e$

!
0

%

! +O(!)

Crofton’s formula: L = 1
2

N(e, y)dyd!
!
e"

#
0

"

#
!

e"e

y

L



Relation between Peridynamic Potential and  
Potentials from Linear Elastic Fracture Mechanics 
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For this displacement we recover  
 
Griffith’s fracture energy as ε à 0. 

PD! (u) = W ! (S, x '! x)dx 'dx
H! (x )
"

D
" # CE(u(x))E(u(x))dx +Gc

D
" L

Elastic Energy Surface Energy 



Cohesive evolution with bounded initial data 
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u0 (x) v0 (x)Initial displacement Initial velocity 

x!D
sup | u0 |<"

x!D
sup | v0 |<"

Initial data with bounded peridynamic enegry  

PD! (u0 ) = W ! (S0, x '! x)dx 'dx
H! (x )
"

D
" #$



    Energy inequality: In anticipation of small horizon limit  

! = µ = (1 / 4) f '(0) r2
0

1

! J(r)dr G = (4 /! ) f! r2
0

1

" J(r)dr

The constants in the description of LEFM are related to 
nonlocal potential and influence function by: 

Lipton. J. ELAS 2014 

Note that only  f’(0) and f∞ determine the elastic moduli parameters µ, λ  
and G       

W ! (S, x '! x) = 1
!
f | x '! x |" | S |2( )

LEFM (u0 ) = 2µ | E(u0 ) |
2 +! | div(u0 ) |

2

D
! dx +G(H1(Ju0 )) "

Fundamental inequality: 

! PD! (u0 ) = W ! (S0, x '" x)dx 'dx
H! (x )
#

D
#



    Brittle fracture limit of cohesive evolutions  

Compactness Theorem: (for small horizon limit of dynamics).   
Let uε(t,x) be a family of nonlocal cohesive evolutions associated with 
the same initial data. Then up to subsequences they converge to  
a limit evolution u0(t,x) that has bounded LEFM energy for [0,T] 
 
and  

!!0
lim{

0<t<T
sup | u! (t, x)"u0 (t, x) |2 dx

D
# } = 0

Lipton. J. ELAS 2014 

t ! [0,T ]

u0 (t,�) in SBD(D) 

2µ | E(u0 ) |2 +! | div(u0 ) |2
D
! dx +G(H1(J

u0
)) "C



Energy Inequality  
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J. ELAS Lipton. 2014 

EPD! (t,u! ) = "
2
|| ut

! (t) ||
L2 (D)
2 +PD! (u! (t))! b(t)u! (t)dx

D
"

EPD! (0,u0 ) =
"
2
|| v0 ||L2 (D)

2 +PD! (u0 )! b(0)u0 dx
D
"

EPD! (t,u! ) = EPD! (0,u0 )! b" (" )u
! (" )dxd"

D
"0

t
"

Energy Equality 

Kinetic energy  Potential energy Work done on the 
body 

Total energy 
at time=t 



Energy inequality for the limit evolution 
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Kinetic energy 

J. ELAS Lipton. 2014 

GF(t,u0 (t)) = !
2
|| ut

0 (t) ||
L2 (D)
2 +LEFM (u0 (t))! b(t)u0 (t)dx

D
"

GF(0,u0 ) =
!
2
|| v0 ||L2 (D)

2 +LEFM (u0 )! b(0)u0 dx
D
"

GF(t,u0 (t)) !GF(0,u0 )" b! (! )u
0 (! )dxd!

D
#0

t
#

Limit Flow Energy Inequality 

LEFM (u0 ) = µ |!u0 |
2

D
" dx +G(H1(Su0 ))

LEFM (u0 (t)) = µ |!u0 (t) |2
D
" dx +G(H1(S

u0 (t )
))

Potential energy Work done on the 
body 

Total energy 
at time=t 



Now make a technical hypothesis 
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J
u0 (t )

1. Assume jump set of u0,           is closed 

S
u0 (t )

P({y ! H! (x) :| S
! |<"}) =1 !

2. Fix δ & for ε sufficiently small  assume all neighborhoods  
    are stable outside a domain of ``width’’  δ   containing 
               

S
u0 (t )



Recover classic wave equation for the limiting  
``brittle’’ evolution for points not on crack set 

Robert Lipton LSU 

Distinguished limit of vanishing nonlocality 
 
Theorem.  For  
 
The limit flow satisfies the wave equation   
 
 

J. ELAS Lipton. 2014 

!!!u0 = div(! )+ b

 As  ε-> 0 the cohesive evolution uε(x,t) approaches  
PDE based fracture given by the deformation - jump set pair  

u0 (t, x) S
u0 (t )

For points (x,t) not on the crack set  

! = µ = (1 / 4) f '(0) r2
0

1

! J(r)dr

S
u0 (t )

! = "ITr(Eu0 )+ 2µEu0



Some of the mathematical tools necessary 
for the analysis 

Robert Lipton LSU 

•  Gamma-convergence tools from image processing 
•  Specifically M. Gobbino’s solution (2000) of conjecture 
     by De Giorgi  for the Mumford Shah Functional (1996). 
 
M. Gobbino, Finite difference approximation of the  
Mumford–Shah functional, Commun. Pure Appl. Math., 51  
(1998), 197–228. 
 



Conclusions 

 
•  The nonlocal cohesive model in peridynamic formulation is 

mathematically well posed. It is a free process zone model 
providing nucleation and propagation of fracture surface 
driven by mesoscopic instability. 

     This feature is distinct from classic cohesive zone  
     models where cohesive zones are restricted to 
     prescribed surfaces and the equations of elasticity  
     are enforced off these surfaces. 
 
•  Cohesive dynamics provides a-priori estimates for size of 

process zone in terms of model parameters. Useful for 
calibrating the model to the material sample. 

•  These nonlocal models recover a brittle fracture limit with 
bounded Griffith fracture energy in the limit of vanishing 
nonlocality. 

 



Anti-plane shear:Journal of 
Elasticity 2014,  

DOI 10.1007/s10659-013-9463-0 
 

General 3-d evolutions: ArXive 2015 

Publications in 

Robert Lipton LSU 


