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Bilayer Bending

Applications: thermostats, nanotubes, microrobots

General setting:

I two thin sheets attached to each other

I thermal or electrical stimuli

I one material compresses, one expands

I small forces, large deformations

I bending: small energies

Goals:

I effective mathematical description

I convergent discretization

I reliable (and efficient) solution technique

I applications
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Laboratory Experiments of E. Smela (Mechanical Engineering, UMD)

Experiment 1: Selfassembling Microcube. Conducting layers of polypyrrole
(polymer) and gold (Au) were used as hinges to connect ridig plates to each
other and to a Si substrate. The bending of the hinges was electrically
controlled.

E. W. H. Jager, E. Smela, and O. Inganäs, Microfabricating conjugated
polymer actuators, Science, 290 (2000), 1540–1545.
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Experiment 2: Bilayers Moving Rigid Plates

The plates are 150 µm on each side, and the hinges are 30 x 30 µm. Hinges of
that size were also able to rotate plates that were 1 mm on a side - these
bilayers are strong.

E. Smela, M. Kallenbach, and J. Holdenried, Electrochemically driven
polypyrrole bilayers for moving and positioning bulk micromachined silicon
plates, J. Microelectromechanical Systems, 8 (4) (1999), 373–383.
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Experiment 3: Moving Silicon Plates with Bilayer Hinges

The actuator holds a couple of fixed positions and is robust: it operates even
when it comes into contact with macro-scale obstacles.

E. Smela, M. Kallenbach, and J. Holdenried, Electrochemically Driven
Polypyrrole Bilayers for Moving and Positioning Bulk Micromachined Silicon
Plates, J. Microelectromechanical Systems, 8(4), (1999), 373–383.
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Experiment 4: Polypyrrole (PPy)/Gold (Au) Micro-Bilayers on a Silicon
Substrate

The actuators move from completely flat to fully curled and back (to/from fully
oxidized to/from fully reduced) in about 1 second (the PPy is 0.5 µm thick).

E. Smela, O. Inganäs, and I. Lundström, Controlled folding of
micrometer-size structures, Science, 268 (1995), 1735–1738.
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Simulation: Partially Clampled Plate

• Domain: Ω = (−2, 2)× (0, 10)

• Boundary Condition: ∂DΩ = (−1, 1)× {0}.
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Notation

• Domain: Ωt = Ω× (−t/2, t/2) ⊂ R3 with thickness t and midplane Ω ⊂ R2;

• Plate deformation: u : Ωt → R3;

• Scaled hyperelastic energy: It[u] = t−3
∫

Ωt

(
W (∇u, x)− ft · u

)
dx;

• Energy density: W : R3×3 × Ωt → R is taken to be

W (F, x) = dist2
(
F, [I3 ± δN(x′)]SO(3)

)
, ±x3 > 0,

where x = (x′, x3) ∈ R3, δ > 0, and N = N(x′) : Ω→ R3×3 is a symmetric
matrix (N = I3 for homogeneous isotropic materials)

N =

[
N11 m
mT n

]
,

where N11 = N11(x′) ∈ R2×2,m = m(x′) ∈ R2 and n ∈ R is a constant.

• Bilayers: {x ∈ Ωt : ±x3 > 0} are composed of two different materials.

Goal 1: Characterizing the asymptotic bending behavior of the plate Ωt as t→ 0
upon assuming that the energy remains bounded in this limit.
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Approximations and Surface Representation

• Energy density: For small values of W (∇u, x) we have

W (F, x) ≈ 1

4

∣∣FTF−(I3±δN)T (I3±δN)
∣∣2 = 1

4

∣∣FTF − (I3±2δN + δ2N2)
∣∣2;

• Surface parametrization:

y : Ω→ R3, Γ = y(Ω);

• Unit normal to Γ:

ν : Ω→ R3, b = βν (β > 0);

• Deformation:
u(x′, x3) = y(x′) + x3b(x

′);

• Deformation gradient: ∇u = [∂iu]3i=1 ∈ R3×3 can be written as

∇u = [∇′y, b] + x3[∇′b, 0]

Bilayer Plates Ricardo H. Nochetto
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Approximate Energy

• Auxiliary matrix M ∈ R3×3:

M = I3 ± 2δN + δ2N2 =

[
M11 M12

MT
12 M22

]
• Approximate energy (with load ft = 0):

It[u] ≈ 1

4t3

∫
Ωt

∣∣(∇u)T∇u−M
∣∣2

• Role of y and b in the approximate energy:

It[u] =
1

4t3

∫
Ωt

∣∣∣ [(∇′y)T (∇′y)−M11 −M12

−MT
12 |b|2 −M22

]

+ x3

[
2(∇′b)T∇′y (∇′b)T b
bT (∇′b) 0

]
+ x2

3

[
(∇′b)T∇′b 0

0 0

] ∣∣∣2dx
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Asymptotics as t→ 0

• Relation between δ and t: We expect δ ≈ t;

• Vector b: |b|2 −M22 should be at least order t2

|b|2−M22 = |b|2−(1±δn)2−δ2|m|2 = −δ2|m|2 ⇐ |b| = 1±δn, ±x3 > 0;

• Relation between b and ν: b = (1± δn)ν is independent of x′, whence

∇′b = (1± δn)∇′ν ⇒ (∇′b)T b = 0;

• (1− 2) Term of energy:

1

4t3

∫
Ωt

|M12|2 ≈
1

t3

∫
Ωt

δ2|m|2 =
δ2

t2

∫
Ω

|m|2 ⇒ δ ≈ t
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Asymptotics as t→ 0 (continued)

• First fundamental form: For It[u] to remain bounded, we must impose

g = (∇′y)T∇′y = I2 ⇒ ∂iy · ∂jy = δij .

This implies that the parametrization y of surface Γ is an isometry.

• Second fundamental form: h = −(∇′ν)T∇′y

• Approximate energy: Let λ := δ/t and drop terms that are order t or higher

It[u] ≈ 1

12

∫
Ω

(
|h|2 + 6λN11 : h

)
dx′ + λ2

∫
Ω

(
|N11|2 + 2|m|2

)
dx′

• Rearrange and take limit t→ 0:

lim
t→0

It[u] =
1

12

∫
Ω

∣∣h+ 3λN11

∣∣2dx′ + λ2

∫
Ω

(1

4
|N11|2 + 2|m|2

)
dx′.

Bilayer Plates Ricardo H. Nochetto



Motivation Model Reduction Identities Kirchhoff Convergence Gradient Flow Experiments Conclusions

Reduced Model

• Reduced energy: Dropping constant terms and rescaling

E[y] =
1

2

∫
Ω

∣∣h+ Z
∣∣2dx′ − ∫

Ω

f · y dx′

with load f and
Z = 3λN11

subject to the isometry constraint

[∇′y]T [∇′y] = I2.

• Spontaneous curvature tensor: The quantity Z acts as a spontaneous
curvature for the bending energy E[y] and encodes properties of the bilayer
material. If the material is homogeneous and isotropic, then Z = αI2 with
α ∈ R. On the other hand, the material could possess inhomogeneities and
anisotropies which are x′-dependent and are encoded in N11. We observe
that both n and m play no role in the reduced energy.
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Nonlinear Kirchhoff Models: References
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Comm. Pure Appl. Math., Vol. LV, (2002), 1461–1506.

• B. Schmidt, Plate theory for stressed heterogeneous multilayers of finite bending
energy, J. Math. Pures Appl. 88 (2007) 107-122.

• B. Schmidt, Minimal energy configurations of strained multi-layers, Calc. Var. 30,
(2007), 477-497.

• M. Lewicka, M. G. Mora, M. R. Pakzad, The matching property of
infinitesimal isometries on elliptic surfaces and elasticity of thin shells, Arch. Rat.
Mech. Anal. 200, 3 (2011), 1023–1050.

Applications:

• N. Bassik, B. T. Abebe, K. E. Laflin, D. H. Gracias, Photolithographically
patterned smart hydrogel based bilayer actuators, Polymer 51 (2010), 6093–6098.
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non-Euclidean plates, J. Mechs. Phys. Solids 57 (2009), 762-775.
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• M. Wardetzky, M. Bergou, D. Harmon, D. Zorin, and E. Grinspun, A
Quadratic Bending Model for Inextensible Surfaces, Eurographics Symposium on
Geometry Processing (2006), K. Polthier, A. Sheffer (eds).

• G. Stoychev, N. Puretskiy, and L. Ionov, Self-folding all-polymer
thermoresponsive microcapsules, Soft Matter, 7 (2011), 3277–3279.
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Geometric Identities

The following geometric identities are valid for isometries y:

∂iy · ∂jy = δij i, j = 1, 2.

• Second fundamental form:

∂i∂jy = hijν,

• Gauss Curvature (developable surfaces):

κ = 0;

• Hessian of parametrization and second fundamental form:

|D2y|2 = |h|2 = |∆y|2 = H2.
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Choice of Finite Element Space

• Notation: Derivatives in Ω: ∇′ = ∇, ∂′i = ∂i;

• 4-th Order: y ∈ [H2(Ω)]3 ⇒ yh ∈Wh nonconforming space;

• Unit normal: ν = ∂1y × ∂2y ⇒ yh ∈Wh subspace of H1(Ω);

• Isometry constraint: [∇y]T [∇y] = I2 ⇒ Φh = ∇hyh ≈ ∇yh must
satisfied nodal constraints.

• Gradient space: Φh ∈ Θh ⇒ Θh subspace of H1(Ω)

• Kirchhoff quadrilaterals: Wh continuous Q3, Θh continuous [Q2]2

h

Bilayer Plates Ricardo H. Nochetto
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Definition of Degrees of Freedom (on Quadrilateral T )

• Deformation Space Wh: wh ∈Wh ⊂ C(Ω)

I Function values of wh at vertices of T

I Gradients ∇wh at vertices of T

I Normal derivatives at midpoint of edges E of T (ziE vertices of E):

∇wh(zE) · nE = 1
2

(
∇wh(z1

E) +∇wh(z
2
E)

))
· nE .

• Gradient Space Θh: θh ∈ Θh ⊂ C(Ω;R2)

I Nodal values of vector θh.

Bilayer Plates Ricardo H. Nochetto
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The Reduced Gradient ∇h : Wh → Θh: Definition

The operator ∇h : Wh +H2(Ω)3 → Θh is uniquely defined by the degrees of
freedom:

• Vertices z ∈ Nh:
∇hwh(z) = ∇wh(z);

• Barycenter xT of T ∈ Th:

∇hwh(zT ) =
1

4

∑
z∈Nh∩T

∇wh(z);

• Midpoint xE of Edges E ∈ Eh:

∇hwh(zE) = ∇wh(zE).

Bilayer Plates Ricardo H. Nochetto
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Properties of the Reduced Gradient ∇h

There exist constants c1, c2, c3, c4 > 0 depending on shape regularity but not
on h such that

• H1-Stability: The operator ∇h is well defined and for all wh ∈Wh we have

c−1
1 ‖∇wh‖ ≤ ‖∇hwh‖ ≤ c1‖∇wh‖;

• H2-Stability: For all wh ∈Wh and T ∈ Th we have

c−1
2 ‖D

2wh‖L2(T ) ≤ ‖∇∇hwh‖L2(T ) ≤ c2‖D
2wh‖L2(T );

• Approximation in H3(Ω): For all w ∈ H3(Ω) and T ∈ Th we have

‖∇w −∇hw‖L2(T ) + hT ‖D2w −∇∇hw‖L2(T ) ≤ c3h
2
T ‖D3w‖L2(T );

• Approximation in Wh: For all wh ∈Wh and T ∈ Th we have

‖∇wh −∇hwh‖L2(T ) ≤ c4hT ‖D
2wh‖L2(T ).

Bilayer Plates Ricardo H. Nochetto
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Energy Reformulation

• Reduced energy:

E[y] =
1

2

∫
Ω

|h+ Z|2dx−
∫

Ω

f · ydx

• Unit normal vector: ν = ∂1y × ∂2y/|∂1y × ∂2y| for isometries also reads

ν = ∂1y × ∂2y =
∂1y

|∂1y|
× ∂2y

|∂2y|
• Second fundamental form: h = −[∇ν]T∇y for isometries also reads

hij = ∂i∂jy · (∂1y × ∂2y) = ∂i∂jy ·
∂1y

|∂1y|
× ∂2y

|∂2y|
• Equivalent reduced energy:

Ẽ[y] =
1

2

∫
Ω

|D2y|2dx

+

2∑
i,j=1

∫
Ω

∂i∂jy ·
( ∂1y

|∂1y|
× ∂2y

|∂2y|

)
Zijdx

+
1

2

∫
Ω

|Z|2dx−
∫

Ω

f · ydx,

Bilayer Plates Ricardo H. Nochetto
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Discrete Minimizers

• Discrete energy

Ẽh[yh] =
1

2

∫
Ω

|∇Φh|2dx

+
2∑

i,j=1

(
∂iI1

h[Φh,j ] ·
( Φh,1
|Φh,1|

× Φh,2
|Φh,2|

)
, Zij

)
h

+
1

2

∫
Ω

|Z|2dx−
∫

Ω

f · yhdx.

• Almost discrete minimizers: Let yh ∈Wh be a minimizer of Ẽh[yh] with
Φh = ∇hyh ∈ Θh satisfying the inexact isometry constraint∣∣[Φh(z)]TΦh(z)− I2

∣∣ ≤ Ch ∀z ∈ Nh;

pairs (yh,Φh) are limits of k-th iterates (ykh,Φ
k
h) of the discrete H2 gradient

flow with τ ≈ h to be discussed later.

• Boundary data: yh = yD,h → yD and Φh = ΦD,h → ΦD in L2(ΓD) as
h→ 0.
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Γ-Convergence

• Attainment: Given any y ∈ H2(Ω;R3) with [∇y]T∇y = Id2 and
y|ΓD = yD, ∇y|ΓD = ΦD there exists a sequence {yh}h>0 such that
yh ∈Wh, Φh = ∇hyh ∈ Θh with yh|ΓD = yD,h,Φh|ΓD = ΦD,h and

[Φh(z)]T [Φh(z)] = Id2 ∀z ∈ Nh

for all h > 0 and

yh → y in H1(Ω;R3), Φh → Φ = ∇y in H1(Ω;R3×2), Ẽh[yh]→ E[y]

as h→ 0.

• Lower bound property: If {yh}h>0 is a sequence with yh ∈Wh,

Ẽh[yh] ≤ C, and
∣∣[∇hyh(z)]T∇hyh(z)− Id2

∣∣ ≤ Ch for all z ∈ Nh and all
h > 0, then there exist y ∈ H2(Ω;R3) and Φ = ∇y ∈ H1(Ω;R3×2) such
that [Φ]TΦ = Id2, y|ΓD = yD and Φ|ΓD = ΦD and

yh → y in H1(Ω;R3), Φh ⇀ Φ in H1(Ω;R3×2),

as well as
E[y] ≤ lim inf

h→0
Ẽh[yh].

Bilayer Plates Ricardo H. Nochetto
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Convergence of Almost Global Minimizers

Let C > 0 be a constant independent of h and {yh}h be a sequence of almost

global discrete minimizers of Ẽh, namely

Ẽh[yh] ≤ inf
wh∈Ah

Ẽh[wh] + εh ≤ C, (1)

where εh → 0 as h→ 0. Then {yh}h is precompact in H1(Ω)3 and every
cluster point y of yh is a global minimizer of E, namely

E[y] = inf
w∈A

E[w]. (2)

Moreover, there exists a subsequence of {yh}h (not relabeled) such that

lim
h→0
‖y − yh‖H1(Ω) = 0 and lim

h→0
Ẽh[yh] = E[y]. (3)

Bilayer Plates Ricardo H. Nochetto
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Semi-Discrete H2 Gradient Flow

Algorithm 1 (H2 gradient flow): Let τ, εstop > 0 and set k = 0. Choose
y0 ∈ H2(Ω;R3) such that y0|ΓD = yD,∇y0|ΓD = ΦD and

[∇y0]T [∇y0] = Id2.

(1) Compute yk+1 ∈ H2(Ω;R3) which is minimal for

y 7→ F kτ [y] =
1

2τ
‖D2(y − yk)‖2 + Ẽ[y]

subject to y|ΓD = yD,∇y|ΓD = ΦD and the linearized isometry constraint

[∇(y − yk)]T [∇yk] + [∇yk]T [∇(y − yk)] = 0.

(2) Stop if ‖D2(yk+1 − yk)‖ ≤ εstop; otherwise increase k → k + 1 and go
to (1).

Bilayer Plates Ricardo H. Nochetto
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Euler-Lagrange Equations

Every step of the semi-discrete gradient flow requires computing the solution
yk+1 ∈ H2(Ω;R3) of the nonlinear system of equations

1

τ
(D2[yk+1 − yk], D2w) + (D2yk+1, D2w)

+
k∑

i,j=1

∫
Ω

{
∂i∂jw ·

( ∂1y
k+1

|∂1yk+1| ×
∂2y

k+1

|∂2yk+1|

)
+ ∂i∂jy

k+1 ·
[ ∂1w

|∂1yk+1| −
∂1y

k+1(∂1y
k+1 · ∂1w)

|∂1yk+1|3
]
× ∂2y

k+1

|∂2yk+1|

+ ∂i∂jy
k+1 · ∂1y

k+1

|∂1yk+1| ×
[ ∂2w

|∂2yk+1| −
∂2y

k+1(∂2y
k+1 · ∂2w)

|∂2yk+1|3
]}
Zijdx = (f, w)

for all w ∈ H2(Ω;R3) with w|ΓD = 0,∇w|ΓD = 0 and

[∇w]T [∇yk] + [∇yk]T [∇w] = 0,

subject to yk+1|ΓD = yD,∇yk+1|ΓD = ΦD and

[∇(yk+1 − yk)]T [∇yk] + [∇yk]T [∇(yk+1 − yk)] = 0.
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Euler-Lagrange Equations: Reformulation

• Deformation gradient: Φk = ∇yk ∈ H1(Ω,R3×2), Φkj = ∂jy
k;

• Projection matrix: Given a ∈ R3 with |a| ≥ 1 let Pa ∈ R3×3 be

Pa :=
1

|a|

(
I3 −

aT

|a|
a

|a|

)
;

• Linearized isometry constraint:

L[Φ; Φk] := ΦTΦk + [Φk]TΦ = 0;

• Euler-Lagrange equation: Seek Φ = Φk+1 ∈ H1(Ω) with ΦΓD = ΦD and

1

τ
(∇[Φ− Φk],∇Ψ) + (∇Φ,∇Ψ)

+
2∑

i,j=1

(
∂iΨj ·

( Φ1

|Φ1|
× Φ2

|Φ2|

)
, Zij

)

+
2∑

i,j=1

(
∂iΦj ·

([
PΦ1Ψ1

]
× Φ2

|Φ2|
+

Φ1

|Φ1|
×
[
PΦ2Ψ2

])
, Zij

)
= (f, w)

for Ψ = ∇w ∈ H1(Ω) with w|ΓD = 0,ΨΓD = 0 and L(Ψ; Φk) = 0, subject to

L(Φ− Φk; Φk) = 0.
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Key Property of Linearized Isometry Constraint

• If Φ ∈ H1(Ω,R3×2) satisfies L(Φ− Φk; Φk) = 0, then

ΦTΦ− I2 = [Φk + Φ− Φk]T [Φk + Φ− Φk]− I2
= [Φk]TΦk − I2 + [Φ− Φk]T [Φ− Φk] ≥ [Φk]TΦk − I2;

• Induction starting from [Φ0]TΦ0 = I2 yields

[Φk]TΦk ≥ I2 ⇒ |Φi| ≥ 1 i = 1, 2;

This extends similar property for director fields |nj | = 1.

jn

j+1

n j+1

v

• Algorithm 1, which contains Φi/|Φi|, is well defined.
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Discrete Gradient Flow: Ingredients

• Reduced gradient: ∇h : Wh → Θh;

• Interpolation operator: I1
h : [L2(Ω)]3 → [Vh]3 ⊂ H1(Ω), the space of

piecewise bilinear finite elements;

• Quadrature: If Ih : C(Ω̄)→ Vh is the Lagrange interpolation operator, then

(φ, ψ)h =

∫
Ω

Ih[φψ]dx;

• Discrete energy: Let Φh := ∇hyh and

Ẽh[yh] =
1

2

∫
Ω

|∇Φh|2dx

+

2∑
i,j=1

(
∂iI1

h

[
Φj
]
·
( Φh,1
|Φh,1|

× Φh,2
|Φh,2|

)
, Zij

)
h

+
1

2

∫
Ω

|Z|2dx−
∫

Ω

f · yhdx;

• Discrete linearized isometry constraint: L(Φh; Φkh) = 0 enforced at vertices

Lh(Φh; Φkh) := Ih
(

ΨT
hΦkh + [Φkh]TΨh

)
.
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Discrete Gradient Flow: Algorithm 2

Let τ, εstop > 0 and set k = 0. Choose y0
h ∈Wh and Φ0

h = ∇hy0
h with

y0
h|ΓD = yD,h,Φ

0
h|ΓD = ΦD,h and

[Φ0
h(z)]T [Φ0

h(z)] = Id2 ∀ z ∈ Nh;

(1) Compute yk+1
h ∈Wh which is minimal for

yh 7→ F kh,τ [yh] =
1

2τ
‖∇(Φh − Φkh)‖2 + Ẽh[yh]

subject to yh|ΓD = yD,Φh|ΓD = ΦD,h and

Lh(Φh − Φkh; Φkh) = 0;

(2) Stop if ‖∇Φk+1
h − Φkh)‖ ≤ εstop; otherwise increase k → k + 1 and go

to (1).
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Discrete Euler-Lagrange Equation

Let Φ̃h := Φkh for k ≥ 0. Seek yh ∈Wh,Φh = ∇hyh ∈ Θh such that
yh|ΓD = yD,Φh|ΓD = ΦD,h and

1

τ
(∇[Φh − Φ̃h],∇Ψh) + (∇Φh,∇Ψh)

+
2∑

i,j=1

(
Ah[∂iΨh,j ] ·

( Φh,1
|Φh,1|

× Φh,2
|Φh,2|

)
, Zij

)
h

+

2∑
i,j=1

(
Ah[∂iΦh,j ] ·

([
PΦh,1Ψh,1

]
× Φh,2
|Φh,2|

)
, Zij

)
h

+

2∑
i,j=1

(
Ah[∂iΦh,j ] ·

( Φh,1
|Φh,1|

×
[
PΦh,2Ψh,2

])
, Zij

)
h

= (f, wh)

for all Ψh = ∇hwh ∈ V0,h with Lh(Ψh; Φ̃h) = 0, and subject to the condition

Lh(Φh − Φ̃h; Φ̃h) = 0.
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Constructive Existence: Fixed Point Iteration

Algorithm 3: Let δstop > 0, define Φ0
h = Φ̃h ∈ Va, and set ` = 0.

(1) Compute Φ`+1
h ∈ Va with Lh(Φ`+1

h − Φ̃h; Φ̃h) = 0 such that

1

τ
(∇[Φ`+1

h − Φ̃h],∇Ψh) + (∇Φ`+1
h ,∇Ψh)

= −
2∑

i,j=1

(
Ah[∂iΨh,j ] ·

( Φ`h,1
|Φ`h,1|

×
Φ`h,2
|Φ`h,2|

)
, Zij

)
h

−
2∑

i,j=1

(
Ah[∂iΦ

`
h,j ] ·

[
PΦ`

h,1
Ψh,1

]
×

Φ`h,2
|Φ`h,2|

, Zij
)
h

−
2∑

i,j=1

(
Ah[∂iΦ

`
h,j ] ·

Φ`h,1
|Φ`h,1|

×
[
PΦ`

h,2
Ψh,2

]
, Zij

)
h

+ (f, wh)

for all Ψh = ∇hwh ∈ V0,h with Lh(Ψh; Φ̃h) = 0.

(2) Stop if ‖∇(Φ`+1
h − Φ`h)‖ ≤ δstop; otherwise increase `→ `+ 1 and go

to (1).
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Contraction Property of Algorithm 3

If the previous iterate Φ̃h satisfies

‖∇Φ̃h‖ ≤ C1,

|Φ̃h,j(z)| ≥ 1 ∀z ∈ Nh, j = 1, 2,

then

• the iterates Φ`h satisfy |Φ`h(z)| ≥ 1 for all z ∈ Nh, ` ≥ 0 and Algorithm 3 is
well defined;

• there is a unique solution Φ`+1
h which is uniformly in H1(Ω) in the sense

‖∇Φ`+1
h ‖ ≤ (1 +

√
τ)‖∇Φ̃h‖

provided τ ≤ C0 depending on ‖∇Φ̃h‖L2(Ω), the Poincaré constant of Ω,
‖f‖L∞(Ω) and ‖Z‖L∞(Ω).

• Algorithm 3 is a contraction with constant C5τ .
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Energy Decay and Violation of Isometry Constraint

Let (ykh)∞k=0 be the iterates of Algorithm 2 (discrete H2 gradient flow) and
Φkh = ∇hykh. We then have for all k ≥ 0

• Energy decay:

Ẽh[yk+1
h ] +

1

2τ

k∑
`=0

‖∇(Φ`+1
h − Φ`h)‖2 ≤ Ẽh[y0

h];

• Lower energy bound: ‖∇Φkh‖ ≤ C1 and

Ẽh[ykh] ≥ 1

4
‖∇Φkh‖2 − C2

(
‖Z‖2 + ‖f‖2

)
;

• Violation of isometry constraint: there is C3 > 0 depending on y0
h, f , and

Z such that
‖[Φkh]T [Φkh]− Id2‖L1

h
(Ω) ≤ C3τ,

where ‖v‖L1
h

(Ω) =
∫

Ω
Ih|v|.
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Experiment 1: Aspect Ratio and Homogeneous Spontaneous Curvature

• From Right to Left: aspect ratio (length/clamped side) = 0.5, 1.0, 7/4, 10/4

• From Bottom to Top: spontaneous curvature Z = aI, a = 1, 2, 5

Rectangular Plates
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Plate with a Hole

• aspect ratio = 10/4, spontaneous curvature Z = 2I

Plate with a hole
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I-Shaped Plate

• aspect ratio = 1, spontaneous curvature Z = I

I-shaped plate
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Partially Clampled Plate

• Domain: Ω = (−2, 2)× (0, 10)
• Boundary Condition: ∂DΩ = (−1, 1)× {0}.
• Spontaneous Curvature: Z = I2.
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Bilayer Clamped at a Corner

• Domain: Ω = (−3, 3)× (−2, 2)
• Boundary condition: ∂DΩ = {−3} × (−2, 0) ∪ (−3, 0)× {−2}
• Spontaneous curvature: N = I2

Variable spontaneous curvature
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Bilayer Clamped at a Corner

• Domain: Ω = (−3, 3)× (−2, 2)
• Boundary condition: ∂DΩ = {−3} × (−2, 0) ∪ (−3, 0)× {−2}
• Spontaneous curvature: N = I2

Variable spontaneous curvature
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Anisotropic Spontaneous Curvature

• Spontaneous curvatures: Z1 =

[
−5 0
0 −1

]
; Z2 =

[
−3 2
2 −3

]
• Principal eigenpairs for Z2: κ1 = 1, e1 = [1,−1]T ; κ2 = 5, e2 = [1, 1]T

• Domain: Ω = (−2, 2)× (−3, 3)

corkscrew-shape
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Thermal Actuation: Simplified Mathematical Model

• Elastic Energy:

Iδ[u] =

∫
Ωδ

Wθ(∇u(x), x)dx

• Elastic Energy Density:

Wθ(F, x) = µ(x)
∣∣FTF − (1 + αθ(x, t))I3

∣∣2
with variable rigidity µ(x) and temperature θ(x, t).

• Heat Energy:
Dtθ − κ∆θ = f in ωδ

• Reduced Elastic Energy:

I[y] =
1

2

∫
Ω

µ(x′)
∣∣H − αθI2∣∣2dx′
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Self-Assembling Composite-Material Box

• Domain: 6 squares of size 1x1; Hinges: width π/24
• Rigidity coefficient: µ = 1 in the hinges and µ = 20 otherwise
• Temperature source: f = 5 until t = 28.2 then f = −5 afterwards
• Spontaneous curvature: = −θ (-temperature)
• Heat diffusion coefficient: κ = 5

Bilayer Plates Ricardo H. Nochetto
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Temperature Distribution

I At iteration 50: Blue: θ = 3.98; Red: θ = 4.42
I At switch of heating: θ ≈ 23 everywhere.
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Encapsulation with Self-Folding Microcapsules: Drug Delivery

G. Stoychev, N. Puretskiy, and L. Ionov, Self-folding all-polymer
thermoresponsive microcapsules, Soft Matter, 7 (2011), 3277–3279.

Bilayer Plates Ricardo H. Nochetto



Motivation Model Reduction Identities Kirchhoff Convergence Gradient Flow Experiments Conclusions

Encapsulation with Self-Folding Microcapsules: Simulation

• Domain: center 1x1 square; sides: trapezoidal base 1 top 3/5 height 1
• Rigidity coefficient: µ = 1
• Spontaneous curvature: 12I.
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Conclusions

• Bilayer model: Nonlinear Kirchhoff model that allows for bending but not
stretching or shearing (isometry constraint). The model allows for a
spontaneous curvature tensor and for large deformations.

• Kirchhoff Quadrilaterals: Nonconforming FE of H2(Ω) and key properties
of discrete gradient ∇h.

• Γ-convergence: Convergence of inexact discrete minimizers to mimimizers
of the continuous energy E[y].

• Discrete gradient flow: H2 gradient flow for a modified energy Ẽ[y];
constructive existence of every iterate; convergence to the discrete problem;
control of violation of isometry constraint.

• Simulations: Exhibit presence of local minimizers (other than cylinders) and
interesting interplay between geometry and bending patterns. Obtained with
deal.II.

• Applications: Microdevices with self-folding mechanisms actuated by
temperature (thermal couple), electric current (polymers), hydrogels.
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