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Motivation lodel Reduction Identitie: Kirchhoff C Gradient Floy Experiments

Bilayer Bending

Applications: thermostats, nanotubes, microrobots

General setting:
» two thin sheets attached to each other
) > thermal or electrical stimuli
< >
> one material compresses, one expands
.y - » small forces, large deformations

> bending: small energies

Goals:
» effective mathematical description

> convergent discretization

v

reliable (and efficient) solution technique

> applications
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Motivation

Laboratory Experiments of E. Smela (Mechanical Engineering, UMD)

Experiment 1: Selfassembling Microcube. Conducting layers of polypyrrole
(polymer) and gold (Au) were used as hinges to connect ridig plates to each
other and to a Si substrate. The bending of the hinges was electrically

controlled.
= wader
mttoachom e ot \‘
il awer Baege slare
unfolded

partially Folded

folded into a cube

E. W. H. JAGER, E. SMELA, AND O. INGANAS, Microfabricating conjugated
polymer actuators, Science, 290 (2000), 1540-1545.
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Motivation

Experiment 2: Bilayers Moving Rigid Plates

The plates are 150 pm on each side, and the hinges are 30 x 30 um. Hinges of
that size were also able to rotate plates that were 1 mm on a side - these

bilayers are strong.

1Y

180

E. SMELA, M. KALLENBACH, AND J. HOLDENRIED, Electrochemically driven
polypyrrole bilayers for moving and positioning bulk micromachined silicon
plates, J. Microelectromechanical Systems, 8 (4) (1999), 373-383.
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Motivation

Experiment 3: Moving Silicon Plates with Bilayer Hinges

The actuator holds a couple of fixed positions and is robust: it operates even
when it comes into contact with macro-scale obstacles.

E. SMELA, M. KALLENBACH, AND J. HOLDENRIED, Electrochemically Driven
Polypyrrole Bilayers for Moving and Positioning Bulk Micromachined Silicon
Plates, J. Microelectromechanical Systems, 8(4), (1999), 373-383.
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Experiment 4: Polypyrrole (PPy)/Gold (Au) Micro-Bilayers on a Silicon
Substrate

The actuators move from completely flat to fully curled and back (to/from fully
oxidized to/from fully reduced) in about 1 second (the PPy is 0.5 um thick).

E. SMELA, O. INGANAS, AND 1. LUNDSTROM, Controlled folding of
micrometer-size structures, Science, 268 (1995), 1735-1738.
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Simulation: Partially Clampled Plate

e Domain: Q = (—2,2) x (0,10)
e Boundary Condition: 9p2 = (—1,1) x {0}.
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Model Reduction

OUTLINE

Bilayer Plate Model
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Motivation Model Reduction Identities Kirchhoff

Notation

e Domain: Q; = Q x (—t/2,t/2) C R® with thickness ¢ and midplane Q C R?;
e Plate deformation: u : Q; — R?;
e Scaled hyperelastic energy: I;[u] =t~ fﬂt (W(Vu,z) — fi - u)dz;
o Energy density: W : R®*3® x ; — R is taken to be
W (F,z) = dist? (F I + 6N(9c’)]SO(3)), +23 >0,

where © = (z',23) € R?, § >0, and N = N(2') : Q@ — R**3 is a symmetric
matrix (N = I3 for homogeneous isotropic materials)

_ N11 m
vl 5]

where Ni; = N11(2') € R**2m = m(a2’) € R* and n € R is a constant.

e Bilayers: {x € Q; : £x3 > 0} are composed of two different materials.
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Motivation Model Reduction Identities Kirchhoff

Notation

e Domain: Q; = Q x (—t/2,t/2) C R® with thickness ¢ and midplane Q C R?;
e Plate deformation: u : Q; — R?;
e Scaled hyperelastic energy: I;[u] =t~ fﬂt (W(Vu,z) — fi - u)dz;
o Energy density: W : R®*3® x ; — R is taken to be
W (F,z) = dist? (F I + 6N(9c’)]SO(3)), +23 >0,

where © = (z',23) € R?, § >0, and N = N(2') : Q@ — R**3 is a symmetric
matrix (N = I3 for homogeneous isotropic materials)

_ N11 m
vl 5]

where Ni; = N11(2') € R**2m = m(a2’) € R* and n € R is a constant.

e Bilayers: {x € Q; : £x3 > 0} are composed of two different materials.

Goal 1: Characterizing the asymptotic bending behavior of the plate Q; ast — 0

upon assuming that the energy remains bounded in this limit.
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Model Reduction

Approximations and Surface Representation

Energy density: For small values of W (Vu,x) we have

W)~ 31T Pty )~ NN

e Surface parametrization:

y: Q= R I = y(Q);

Unit normal to I':
v:Q- R b=pfv (8>0);

e Deformation:
u(@', x3) = y(a') + z3b(z");

o Deformation gradient: Vu = [9;u]>_; € R**3 can be written as

Vu = [V'y, b + z3[V'b, 0]
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Motivation Model Reduction Identitie!

Approximate Energy

o Auxiliary matrix M € R3*3;

M =I5 £ 25N + 6°N? = {M“ M”}

My Mo
e Approximate energy (with load f, = 0):
1 T 2
TAES E/nt |(Vu)' Vu— M|

e Role of y and b in the approximate energy:

I [u] = i/ ‘ [(v/y)T(vly) - Mll —M12 :|
' 4¢3 Q¢ _MiTQ |b|2 — MQQ

2V')TV v'6)Th v'o)Iv'y 0] 2
RS R AR |
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Motivation Model Reduction Identitie!

Asymptotics as ¢t — 0

Relation between 6 and ¢: We expect § ~ t;

Vector b: |b|? — Mo should be at least order ¢*

b]> =Moo = |b]*—(146n)>—8%|m|* = —6%|m|* <« |b| = 14+0n, =+x3 > 0;

Relation between b and v: b = (1 & én)v is independent of 2/, whence

Vbo=Q1+m)Vr = (Vb)'b=0;

e (1 —2) Term of energy:

1 2 1 2 2 07 2
a3 Jq, 2 /o, R
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Motivation Model Reduction Identitie!

Asymptotics as ¢t — 0 (continued)

First fundamental form: For I;[u] to remain bounded, we must impose
g = (vly)TV/y =1 = azy . a]y — 6”

This implies that the parametrization y of surface I is an isometry.

Second fundamental form: h = —(V'v)TV'y

e Approximate energy: Let A := ¢/t and drop terms that are order t or higher

1
L] ~ 12/ (1nP +6)\N11:h)dac’+)\2/Q(\N11|2+2\m|2)dx'

e Rearrange and take limit ¢ — 0:

lim 13[u] = / |h + 3ANy | da’ +/\2/ (i|N11|2+2|m|2)dm'
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Motivation Model Reduction Identities Kirchhoff Convergence Gradient Floy Experiments

Reduced Model

e Reduced energy: Dropping constant terms and rescaling

1 2, . ’
Ely] = 3 [z ‘h +Z|”d.:17 - [z frydz

with load f and

Z = 3AN11

subject to the isometry constraint

VYT [V'y] = L.

e Spontaneous curvature tensor: The quantity Z acts as a spontaneous
curvature for the bending energy E[y] and encodes properties of the bilayer
material. If the material is homogeneous and isotropic, then Z = als with
a € R. On the other hand, the material could possess inhomogeneities and
anisotropies which are x’-dependent and are encoded in Ni;. We observe
that both n and m play no role in the reduced energy.
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Motivation Model Reduction Identities Kirchhoff C rg Gradient Flow Experiments

Nonlinear Kirchhoff Models: References

Theory:
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OUTLINE

Differential Geometry Identities
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Motivation del Reduction Identities Kirchhoff Convergence

Geometric ldentities

The following geometric identities are valid for isometries y:

&-y . 8jy = 51'3' i,j = 1,2.
e Second fundamental form:
9i0;y = hijv,

e Gauss Curvature (developable surfaces):

k=0

e Hessian of parametrization and second fundamental form:

[D*y|* = |h* = |Ay|* = H*.
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Kirchhoff

OUTLINE

Kirchhoff Quadrilaterals
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Motivation lodel Reduction Identities Kirchhoff

Choice of Finite Element Space

o Notation: Derivatives in Q: V' =V, 9 =0;;

e 4-th Order: yc [H*(Q)® = yn € Wy nonconforming space;

e Unit normal: v =01y xday = yn € W), subspace of H'(Q);

e Isometry constraint: [Vy|'[Vy]=1. = &, = Vuyn = Vy, must
satisfied nodal constraints.

o Gradient space: &, c©;, = O} subspace of H'(Q)

o Kirchhoff quadrilaterals: TV}, continuous Q3, O}, continuous [Q2]?

Vh
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»del Reduction Identitie Kirchhoff

Definition of Degrees of Freedom (on Quadrilateral T')
o Deformation Space Wy,: w, € W, C C(Q)

> Function values of wy, at vertices of T’
> Gradients Vwy, at vertices of T

> Normal derivatives at midpoint of edges E of T (2%, vertices of E):
Vwp(zg) -ng = %(th(z};) + th(z%))) ‘ng.

e Gradient Space O5: 05, € ©, C C(Q;R?)

> Nodal values of vector 6y,.

Bilayer Plates Ricardo H. Nochetto



Identitie: Kirchhoff

The Reduced Gradient V : W), — ©y: Definition

The operator Vj, : Wy, + H?(Q)® — Oy, is uniquely defined by the degrees of
freedom:

e Vertices z € Nj,:
Viwn(z) = Vw(2);

e Barycenter 1 of T' € Tj:

Viwp (z7) Z Vwp (2

zEthT
e Midpoint xr of Edges E € &

Vh’wh(ZE) = th(zE).
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Motivation lodel Reduction Identitie! Kirchhoff

Properties of the Reduced Gradient V,

There exist constants ci, c2, c3,ca > 0 depending on shape regularity but not
on h such that

° Hl-StabiIity: The operator V}, is well defined and for all w;, € W; we have

¢ HIVwnll < (| Vawall < el Vwal;

e H>-Stability: For all w, € W), and T € T, we have

02_1||D2wh||L2(T) < IVVawnllpzery < e2l|D*wn g2 (ry;

o Approximation in H3(Q): For all w € H3(Q) and T € T, we have
[Vw = Viwl g2y + hT||D2w = VVaw| 2y < CShQTHD3w||L2(T)§

e Approximation in W: For all w, € W), and T € T}, we have

[Vwn = Viwal 21y < C4hT||D2'wh||L2(T)-
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Convergence

OUTLINE

I’~-Convergence of Discrete Minimizers
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Motivation lodel Reduction Identitie: Kirchho Convergence

Energy Reformulation

e Reduced energy:
1
_7/ |h+Z|2dw—/f~ydx
2 Ja Q
e Unit normal vector: v = 01y X d2y/|01y x day| for isometries also reads
Oy 02y
v =201y X Oy = X
R Jony] 0yl
o Second fundamental form: h = —[Vv]TVy for isometries also reads
81y 8224
j iy - (Ory X Oa2y) Y vyl > Toa]
e Equivalent reduced energy:

Ely] = /\D y|*dx

81y 62y
Z / |8 yl \(%yl) !

1,5=1

v |Z|2dx—/f-ydw,
2 Q Q

Bilayer Plates Ricardo H. Nochetto




Motivation lodel Reduction Identitie: Kirchhoff Convergence

Discrete Minimizers
e Discrete energy

En[yn) / |V®,|*dx

© 32 (o (e ) ),

i,j=1
1 2

+f/|Z| da:—/f~yhdac.
2 Ja Q

o Almost discrete minimizers: Let y;, € W), be a minimizer of Ej[ys] with
®p, = Vipyn € Oy, satisfying the inexact isometry constraint

[[@r(2)]" ®@n(2) — L] < Ch Yz € Nu;

pairs (yn, ®1,) are limits of k-th iterates (yF, ®F) of the discrete H? gradient
flow with 7 ~ h to be discussed later.

e Boundary data: y, = yp.n — yp and &, = &p — ®p in L*(I'p) as
h — 0.
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Motivation lodel Reduction Identitie: Kirchhoff Convergence

I’-Convergence

e Attainment: Given any y € H?(;R?) with [Vy]" Vy = Id> and
ylrp = yp, Vy|r, = Pp there exists a sequence {yx}n>o such that
yn € W, @, = Vyyn € O with yh|rD = yD,h7cI)h|1"D = CI)D,h and

[@1,(2)]" [@n(2)] =12 Vz €N,
for all h > 0 and
yn =y in H'(GR?), @), — & =Vyin H' (4R,  Eulyn] — Ely]
as h — 0.
e Lower bound property: If {yn}n>o is a sequence with y, € W,
Enlyn] < C, and |[Vayn(2)]" Vayn(z) — Id2| < Ch for all z € Ny, and all

h > 0, then there exist y € H*(Q;R?) and ® = Vy € H'(Q;R**?) such
that [®]7® = 1ds, y|r, = yp and ®|r, = ®p and

yn —yin H'(Q;R?), &, — & in H' (Q;R**?),

as well as _
Ely] < liminf Ey[ys].
h—0
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Motivation A Identitie: Convergence

Convergence of Almost Global Minimizers

Let C' > 0 be a constant independent of h and {yx}» be a sequence of almost
global discrete minimizers of Ejp, namely

Enlyn) < inf  En[ws] +en <O, (1)
wp €A
where €, — 0 as h — 0. Then {yp} is precompact in H'(Q)* and every
cluster point y of y; is a global minimizer of E, namely

FEly] = inf Elw]. 2
) = inf, Blu @)
Moreover, there exists a subsequence of {yn}, (not relabeled) such that

lim [ly = ynllmr) =0 and  lim Eyfys] = Ely]. (3)
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Gradient Flow

OUTLINE

Discrete Gradient Flow
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Motivation lodel Reduction Identities Kirchhoff f ence Gradient Flow

Semi-Discrete 1> Gradient Flow
Algorithm 1 (H? gradient flow): Let 7, &stop > 0 and set k = 0. Choose
y° € H*(;R®) such that 4°|r, = yp, V4°|r, = ®p and

(Vy°1"[Vy®] = Ida.

(1) Compute y*** € H?(£;R®) which is minimal for

y > Ffly] = 5 |I1D% (= v + Ely]

subject to y|r, = yp, Vy|r, = ®p and the linearized isometry constraint

[V(y — "7V + [V [V (y — y")] = 0.

(2) Stop if | D*(y" ™! — y¥)|| < estop; otherwise increase k — k -+ 1 and go
to (1).
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Motivation lodel Reduction Identitie Kirchhoff Convergence Gradient Flow

Euler-Lagrange Equations

Every step of the semi-discrete gradient flow requires computing the solution
y* 1 € H?(Q;R3) of the nonlinear system of equations

1
—(D*[y" =91, DPw) + (D", D)

81yk+1 (92yk+1
*Z/ {0000 (G g ¥ o))

i,j=1
1808 [ hw oy (01y Tt -Blw)] Doyt
GV oy EVERE o
oyt Dow Doy T Doy T - Daw)
k41 1Y 2 2y 2
+o0 " e > [ et ) st = ()

for all w € H?*(Q;R?) with w|r, = 0, Vw|r, =0 and
[Vl [Vy*] + [V [Vu] = 0,

k+1‘FD

subject to y =yp,Vy*|r, = ®p and

[V =T VY + (VYT IV =) =0
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Motivation lodel Reduction Identitie Kirchhoff Convergence Gradient Flow

Euler-Lagrange Equations: Reformulation

e Deformation gradient: " = Vy* € H'(Q,R**?), &% = 9y,

o Projection matrix: Given a € R® with |a| > 1 let P, € R®*® be
T

Poi= (- 408,
|al la| |al

e Linearized isometry constraint:
L[®; "] := o7 d" + [0%)T® = 0;

o Euler-Lagrange equation: Seek ® = ®**! ¢ H'(Q) with &1, = &p and
%(V[@ ~ 8", V) + (VO V)

+ 3 (o (3 é;) %)

2
i,j=1

for O = Vw € H*(Q) with w|r,, = 0,¥r,, = 0and L(¥; ®*) = 0, subject to
L(® — &% %) = 0.



Motivation n Identitie Convergence Gradient Flow

Key Property of Linearized Isometry Constraint

o If & € H'(Q,R3*?) satisfies L(® — ®*; ®*) = 0, then
T —L=[0"+0-d" "+ -0 - I,
=[®"T " — I 4+ [® — d*)T[® — "] > [@"])T D" — Iy,
e Induction starting from [®°]7®° = I, yields
@ T* > = [ >1 i=1,2%

This extends similar property for director fields |n;| = 1.

p i

e Algorithm 1, which contains ®;/|®;|, is well defined.
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Motivation lodel Reduction Identitie Kirchhoff Convergence Gradient Flow

Discrete Gradient Flow: Ingredients
e Reduced gradient: V,; : W), — Oy;

o Interpolation operator: 7} : [L*(Q)]® — [Vi]* € H*(Q), the space of
piecewise bilinear finite elements;

e Quadrature: If 7, : C(Q) — V), is the Lagrange interpolation operator, then
(6,90 = [ Tuléulds
Q
e Discrete energy: Let & := V,y;, and

~ 1
Enlyn] = 5/ V&, |°dx
Q

+ 22: (o7 (@4 - ( Pri o Bh2 ):2)
i+h J |q>h,1| |¢'h,2| s Hig h

i,j=1

+1/ |Z|2dx—/f-yhdx;
2 Q Q

o Discrete linearized isometry constraint: L(®y; ®5) = 0 enforced at vertices

L (®n; ®F) = Ty, (qf}fcbﬁ ¥ [@’;}T\yh)
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Motivation lodel Reduction Identities Kirchhoff Cc ence Gradient Flow

Discrete Gradient Flow: Algorithm 2

Let T, €stop > 0 and set k = 0. Choose 32 € W, and ®) = V,y!) with
Ynlrp = yp,n, ®hlrp, = @p,p and

[ég(z)]T[Cbg(z)] =1Ids V 2z €Ny

(1) Compute yy™ € Wy, which is minimal for

1

Yh — Flf‘.r[.yh} = Hv(q)h - (D;;)“Z + Eh [I/h]

2T

subject to yh|rD = yD,@hh"D = <I)D,h and

Li(®y — f; @) = 0;

(2) Stop if |[VEET! — ®F)|| < estop; otherwise increase k — k + 1 and go
to (1).
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Motivation n Identitie Convergence Gradient Flow

Discrete Euler-Lagrange Equation

Let &, := ®F for k > 0. Seek yn, € Wi, &y = Vyyn € Oy, such that
Ynlrp = yp, Palrp = ®p.n and

1 ~
;(V[@h — q)h]7 V\I’h) + (V<I>h, V\Ifh)

+ 22: (Ah[@i\llh,j] . (;ﬁ X ;ﬁ),zij)h

3,j=1

55 (o (1 0] < 22).2),

i,j=1

2
Dy,
+ 3 (Anloin) - (|<I>h1| % [Po, 2 ¥nz2] ). Z) = (fwn)
i,7=1 ’
for all ¥, = Vywy, € Vo with Ly (Uy; ®,) = 0, and subject to the condition

Ln(®), — ®p; ) = 0.
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Motivation n Identitie Convergence Gradient Flow

Constructive Existence: Fixed Point Iteration

Algorithm 3: Let 8.0p > 0, define ) = &, € V,,, and set £ = 0.
(1) Compute &, € V, with L, ()" — ®y,; @) = 0 such that

1 ~
—(V[@L = B, V) + (V) V)

2 q% q)e

N

@Z
0i®5, ;] [Py ﬂz)
(A0 - [Pag W) ¢ gy, 7),

B

<
Il
-

(I)l
(Anlor@f, ] - ot x [Py

2. el Zia), % wen)

¢
h,2

1

1

¥

for all ¥, = Vywp € Vo with Ly, (y; @) = 0.
(2) Stop if |[V(®4T! — @f)|| < dstop; Otherwise increase £ — £+ 1 and go
to (1).
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Motivation n Identitie Convergence Gradient Flow

Contraction Property of Algorithm 3

If the previous iterate ®;, satisfies
V@] < Cy,
|<T>h,j(z)\ >1 Vz€EN,j=1,2,
then

o the iterates ®% satisfy |®%(z)| > 1 for all z € Ny, £ > 0 and Algorithm 3 is
well defined;

e there is a unique solution ®," which is uniformly in H'(Q) in the sense
IV, < (14 VD)V

provided 7 < Cj depending on ||V<i>h||Lz(Q), the Poincaré constant of €,
[1fllzoe () and [|Z][Lo(q)-
e Algorithm 3 is a contraction with constant C5.
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Gradient Flow

Motivation

Energy Decay and Violation of Isometry Constraint

Let (yF)2, be the iterates of Algorithm 2 (discrete H? gradient flow) and
®F = V5,yh. We then have for all k > 0

e Energy decay:
v ) XNV¢”1 1)[|* < Enlyh];

o Lower energy bound: |V®f|| < C; and
~ 1
Eulyh] = 7IIV0RI? = Ca (121 + 111
e Violation of isometry constraint: there is C3 > 0 depending on %, f, and
Z such that
I[@5)7 [@7] = 1dal| 3 (@) < Ca,

where ||U||L1 @ = = Jo Inlvl.
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OUTLINE

Numerical Experiments
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Experiments

Experiment 1: Aspect Ratio and Homogeneous Spontaneous Curvature

e From Right to Left: aspect ratio (length/clamped side) = 0.5, 1.0, 7/4, 10/4
e From Bottom to Top: spontaneous curvature Z =al,a=1,2,5

Rectangular Plates

\\

%

Ricardo H. Nochetto
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Plate with a Hole

e aspect ratio = 10/4, spontaneous curvature Z = 21

Plate with a hole
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Experiments

I-Shaped Plate

e aspect ratio = 1, spontaneous curvature Z =1

I-shaped plate
/
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Partially Clampled Plate
e Domain: Q = (—2,2) x (0,10)

e Boundary Condition: 9p2 = (—1,1) x {0}.
e Spontaneous Curvature: Z = I.
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Bilayer Clamped at a Corner

e Domain: Q = (—3,3) x (—2,2)

e Boundary condition: 9pQ = {—3} x (—2,0) U (-3,0) x {—2}
e Spontaneous curvature: N = I

Variable spontaneous curvature
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Anisotropic Spontaneous Curvature
-5 0 -3 2
e Spontaneous curvatures: Z; = [0 _1]; Zy = [2 _3}
e Principal eigenpairs for Zo: x1 = 1,e; = [1,—1]7; k2 =5,es = [1,1]7
e Domain: Q = (—2,2) x (—3,3)

Bilayer Plates Ricardo H. Nochetto



Experiments

Thermal Actuation: Simplified Mathematical Model

Elastic Energy:

Elastic Energy Density:

Wo(F,z) = p(z)|FTF — (1 + ab(z, 1)) 15|

with variable rigidity u(x) and temperature 6(z,t).

Heat Energy:
D0 — kAO = f in ws

Reduced Elastic Energy:
1 / 250
Iy] = 5 w(@')|H — ablz| dx
Q
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Self-Assembling Composite-Material Box

Domain: 6 squares of size 1x1; Hinges: width 7/24

Rigidity coefficient: 1 =1 in the hinges and p = 20 otherwise
Temperature source: f =5 until £ = 28.2 then f = —5 afterwards
Spontaneous curvature: = —0 (-temperature)

Heat diffusion coefficient: kK =5
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Experiments

Temperature Distribution

> At iteration 50: Blue: § = 3.98; Red: 6 = 4.42
> At switch of heating: 6 ~ 23 everywhere.
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Encapsulation with Self-Folding Microcapsules: Drug Delivery

G. SToYCHEV, N. PURETSKIY, AND L. IoNOv, Self-folding all-polymer
thermoresponsive microcapsules, Soft Matter, 7 (2011), 3277-3279.
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Convergence Gradient Flow Experiments

Motivation lodel Reduction Identities Kirchhoff

Encapsulation with Self-Folding Microcapsules: Simulation

e Domain: center 1x1 square; sides: trapezoidal base 1 top 3/5 height 1
e Rigidity coefficient: © =1
e Spontaneous curvature: 121.
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OUTLINE

Conclusions
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Conclusions

e Bilayer model: Nonlinear Kirchhoff model that allows for bending but not
stretching or shearing (isometry constraint). The model allows for a
spontaneous curvature tensor and for large deformations.

o Kirchhoff Quadrilaterals: Nonconforming FE of H?(Q2) and key properties
of discrete gradient V.

e ['-convergence: Convergence of inexact discrete minimizers to mimimizers
of the continuous energy E[y].

o Discrete gradient flow: H? gradient flow for a modified energy E[y];
constructive existence of every iterate; convergence to the discrete problem;
control of violation of isometry constraint.

e Simulations: Exhibit presence of local minimizers (other than cylinders) and
interesting interplay between geometry and bending patterns. Obtained with
deal.II.

e Applications: Microdevices with self-folding mechanisms actuated by
temperature (thermal couple), electric current (polymers), hydrogels.
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