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Liquid crystals - Phenomena

Clearing transition

Nematic phase, 1" < T Isotropic phase, 1" > 1
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Spatially varying anisotropy, 7(7")
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Euler-Lagrange equation,
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One-constant approximation,
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Euler-Lagrange equation,
An = —(Vn)*n,

solutions are S2-valued harmonic maps
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Oseen-Frank theory

TINILY /‘\,}
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TINRIYIR Y n(r), local orientation

One-constant approximation,

3
el = [ FOVnR (Tnt= 3 (0

Euler-Lagrange equation,

An = —(Vn)?n,

solutions are S2-valued harmonic maps

Problematic for 2d point de-
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Oseen-Frank theory

TINILY /‘\,}
1WA -
TINRIYIR Y n(r), local orientation

One-constant approximation,

el = [ FOVnR (Tnt= 3 (0

Euler-Lagrange equation,
An = —(Vn)?n,

solutions are S2-valued harmonic maps

Would like to resolve the structure of defects. . .
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Landau-de Gennes | — ()-tensors

e N-particle distribution py (75, €e;) —
p(r, e), 1-particle distribution

00 [

p(r,e) = Z Z i (7)Yim(€)

[=0 m=—I
Assume uniform density,

/52 p(r,e)d’e =1 = cgo(r) = 1.

Assume nematic (not polar),
p(r,e) = p(r,—e) = ¢y, =0, [odd

Lowest-order nontrivial terms,

2
Bl = / p(r,e)Yy (e)d*e, m=—2,...

S

Same information is contained in

1

Qjk(r) = / p(r,e)e;ex d’e — = i
o 3

matrix-valued function.

The Q-tensor Q(r) is a real 3 x 3 symmetric traceless
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Landau-de Gennes Il — Symmetry characteri-
sation of ()-tensors

Q— ROR'

Isotropic A\{ = A9 = A3

o

Q=0
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Landau-de Gennes Il — Symmetry characteri-
sation of ()-tensors

Q— ROR'

Isotropic A\{ = A9 = A3

Q=0

Prolate uniaxial A1 > A9 = A3

Q=s(n®n—3I),s>0

Connection to Frank theory. . .

Oblate uniaxial A1 = A9 > A3

Q=s(n®n—3I),s<0

Biaxial A7 > Ao > A3

n
Q = An1®n1+Aano®@no+ Azng®@ns, ”3ﬁ'
M+ A+ A3=0
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Landau-de Gennes lll — Potential energy

Want f(Q), rotationally invariant.

F(Q)

bulk energy.

= gTrQ2 + gTrQ?’ + %(Tr@2)2,

C >0
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Landau-de Gennes lll — Potential energy

Want f(Q), rotationally invariant.

A B C
flQ =T + - TQ’ + —(TrQ%)?,
2 3 4
bulk energy. C >0

A > 0, isotropic () is a (local) minimum,
A < 0, isotropic () is a local maximum

B > 0, oblate uniaxial is favoured
B < 0, prolate uniaxial is favoured

A B,C ~103J/m3

We take
A=—qa%? B=-b, C=¢c.

In this regime, minimisers of f are prolate uniaxial of the

form
1

Q:S+(n®n_ §I)>

b% + (b2 + 24a?c?)'/?
st 4¢2
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Landau-de Gennes IV — Full energy

Q)= | 3

— Tr
2

(VQ? + 1/(@)

T (VQ)? = >7,1(0iQjx)?, one-constant elastic energy

L, elastic constant
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Landau-de Gennes IV — Full energy

Q)= [ 5TVQP+ L@

T (VQ)? = >7,1(0iQjx)?, one-constant elastic energy
L, elastic constant

Relation to Oseen-Frank theory (Majumdar + Zarnescu).

For Q C R?, fix n,(r) smooth on 9. Let n denote the
minimiser of the one-constant Oseen-Frank energy with

n = n, on 8. Let Qx := s1(n, ® ny — 51) on 9. Let
(2 1, denote global minimizer of LdG energy with () = (). on
0S). If rg is not a singularity of n, then as L — 0,

Qr(ro) = s+(n(rg) @ n(rg) — %I)
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Landau-de Gennes IV — Full energy

Q)= [ 5TVQP+ L@

T (VQ)? = >7,1(0iQjx)?, one-constant elastic energy
L, elastic constant

Relation to Oseen-Frank theory (Majumdar + Zarnescu).

For Q C R?, fix n,(r) smooth on 9. Let n denote the
minimiser of the one-constant Oseen-Frank energy with

n = n, on 8. Let Qx := s1(n, ® ny — 51) on 9. Let
(2 1, denote global minimizer of LdG energy with () = (). on
0S). If rg is not a singularity of n, then as L — 0,

Qr(ro) = s+(n(rg) @ n(rg) — %I)

Current research is directed at the fine structure of defects in
the Landau-de Gennes model. Cf vortices in the
Ginzburg-Landau model, where the order parameter is a
complex scalar (in place of ()-tensor).

Universal features of defects play a role in mesoscopic
descriptions. - 119
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where
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ng = (cos(5¢),sin(5¢),0).
( =
\ |

Defects of index 3 (left) and —% (right)
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Full problem

Dpr C R?, 2-d disk about 0 of radius R

We consider (Q-tensors on D satisfying "defect boundary
conditions”

Q(R,9) = Qr(9),

where

Qr(P) = s+ (nk®nk_§ >,

ng = (cos(5¢),sin(£¢),0).

Defects of index 1 (left) and —1 (right
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Full problem

Dpr C R?, 2-d disk about 0 of radius R

We consider (Q-tensors on D satisfying "defect boundary
conditions”

Q(R,9) = Qr(9),

where

27\\3// :
;@\\

Defects of index 3/2 (left) and —3/2 (right)




Full problem

Dpr C R?, 2-d disk about 0 of radius R

We consider ()-tensors on D satisfying "defect boundary
conditions”

CQ(}37¢0 ::Cgk(¢07
where
Qr(P) = s+ (nk R N — %I>

ng = (cos( ®), sin( %qﬁ),O

= fDR LT (VQ)* + %f(@), full energy
f(@Q) = —5 (@) = E (@) + F(T(@)),

bulk potential

A={Q e H'(Dr). Q(R.¢)=Qx(9)},

admissible space
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Full problem

Dpr C R?, 2-d disk about 0 of radius R

We consider ()-tensors on D satisfying "defect boundary
conditions”

Q(R,9) = Qr(9),

where

ni, = (cos(§9), sin(§9), 0).

ElQ] = fDR LT (VQ)? + %f(@), full energy
f(Q) =-%T(Q) - LT (Q% + S (T (@)

bulk potential

A={Q e H'(Dr). Q(R.¢)=Qx(9)},

admissible space

Full problem (FP): Minimise £[Q)] for Q) € A.

Euler-Lagrange equation,

LAQ = —a*Q — b* Tr (Q* — %Tr Q1)+ T (QHQ.
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Candidates for solutions

e Uniaxial

T(r,¢) = £(r)Qx(@) = F(r) (nkw) & i ()
with f(0) = 0and f(R) = s4.
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Won't satisfy EL, as AY cannot be expressed as a
function of Y.
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Candidates for solutions

e Uniaxial

T(r,¢) = £(r)Qx(@) = F(r) (nkw) ® () — 1) |
with f(0) = 0and f(R) = s4.

Won't satisfy EL, as AY cannot be expressed as a
function of Y.

e Biaxial (with a principal axis along e3)

Y(r) = u(r)Fr(¢) +v(r)F3(¢),

where
| 1 0 0
Fr(¢) = V2 nk(¢)®nk(¢)—§ 0 1 0 :
0 0 0
3 1
F3 = 5(63@63—§I>.
Then 1 1
—s, | —F. — —Fy ).
Qk +(\/§ k 76 3)

Substituting Y into the Euler-Lagrange equations leads

to 2 coupled ODE’s foru and v . ...
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Restricted problem

Consider Y (1) = u(r)F.(¢) + v(r)F3(o).
Restricted energy,

R > 5 k2 1
SR[u,v]:/ [%(u’ + o' +T—2u2+fg(u,v) rdr,
0

where g(u,v) = f(Y).

Admissible space,

Ap = {(u, v) | Vru', /T, %, Vrv € L*(0, R),

_ 84 oo 5%
u(R) = =5 v(R) \@}‘
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Restricted problem

Consider Y (1) = u(r)F.(¢) + v(r)F3(o).
Restricted energy,

R > 5 k2 1
SR[u,v]:/ [%(u’ + o' +T—2u2+fg(u,v) rdr,
0

where g(u,v) = f(Y).

Admissible space,

A = { (uw,v) | V7', Vrv', ==, v/rv € L2(0, R),

=
_ St gy 5t
u(R) = =5 v(R) \@}‘

Restricted problem (RP): Minimise Er|u, v] for (u,v) € Apg.

Euler-Lagrange equation,

1 K 2
;(ru’)’—r—;:% —a2—|—\/gb2v+02 (u2+”02) :
1 I/ v 2 1 2 2 (,,2 2]
—(ru') = = |—a®" — —=bv+c" (v +v
~(ru) TPt ()
1
+ ——b%u?
V6L
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Result for Restricted Problem

Theorem 1. There exists a global minimiser (u, v) of the
restricted problem (RP), and u and v satisfy its
Euler-Lagrange equations.

u € C*(0,R) N C°[0, R], and u(0) = 0.
v € C*(0,R) N C0, R], and v’ (0) = 0.
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continuity follows from standard results and calculations. The
boundary conditions at r = 0 are consistent with
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Result for Restricted Problem

Theorem 1. There exists a global minimiser (u, v) of the
restricted problem (RP), and u and v satisfy its
Euler-Lagrange equations.

u € C*(0,R) N C°[0, R], and u(0) = 0.
v € C*®(0,R)NC0, R], andv'(0) = 0.

Proof: Existence, interior smoothness and boundary
continuity follows from standard results and calculations. The
boundary conditions at r = 0 are consistent with

Y (r,9) = u(r)Fi(¢) + v(r)F3 being analytic.

In fact, the global minimiser (u, v) of the restricted problem
satisfies the Euler-Lagrange equation for the full problem.
But it needn’t be a global or even a local minimiser of the full

problem (in fact, for |k| > 1, it isn’t — Bauman, Park, Phillips
(2012)). ..
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Special case: b = 0

Bulk potential,

fQ=-5T@) - 3T(Q)+ (T (Q))
For b* = 0,
c? 9 a2\’
fo(@) = T (TFQ — §> + const

12/19




Special case: b = 0

Bulk potential,

a? b2 2
fQ) = -5 (@) - 3 T(@) + (T(Q))°
For b2 = 0,
2 0 a2\
fo(Q) = i (TFQ — C—2> + const

Minimisers of the bulk energy:

For b? = 0, minimisers are characterised by

a® 2,

2
TI'Q :§:§S+,

and may be identified with S4.

12/19




Special case: b = 0

Bulk potential,

a? 2 b? 3 c? 27\ 2
f(Q) = —ETF(Q ) — ETF(Q ) + Z(TF(Q )
For b2 = 0,
2 , a? 2
fo(Q) = i (TFQ — C—2> + const

Minimisers of the bulk energy:

For b? = 0, minimisers are characterised by

a® 2,

2
TI'Q :gzgs_i_,

and may be identified with S4.

For b* # 0, minimisers are characterised by

2
Tr Q2 = gsi

and prolate uniaxiality,
—)\1 — —)\2 = %)\3 > 0,

and may be identified with R P2,

For b% = 0, biaxiality is no longer penalised. . .
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Special problem

Special energy,

fl@) = [ 1TVQP + 1A(@

where

Admissible space,

As ={Q € H(Dg), Q(R.¢)=Qu(¢)}.
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Special problem

Special energy,

fl@) = [ 1TVQP + 1A(@

where

Admissible space,

As ={Q € H' (Dr), Q(R,¢)=Qw(®)}.
Special problem (SP): Minimise E50[Q] for Q € Ag.
Euler-Lagrange equation,

LAQ = (¢*Q* — a®)Q.

The global minimiser of the restricted problem remains a
candidate. . .
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Lemma. LetY = ufl} + vF3 be a global minimiser of the
restricted energy with b*> = 0. Thenu > 0 andv < 0 on
0, R].
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Proof:  For b? = 0, the restricted energy density

L2 2 2\ 2
%(u/2+vlz+r_2u2+Z_L(u2+U2_a_>

is even in u and v. Therefore, 4 := |u| and ¥ := —|v|
constitute a global minimiser.
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Lemma. LetY = ufl} + vF3 be a global minimiser of the
restricted energy with b®> = 0. Thenw > 0 andv < 0 on
0, R].

Proof:  For b? = 0, the restricted energy density

k2 2 a’ 2
e B £ ()

is even in u and v. Therefore, 4 := |u| and ¥ := —|v|
constitute a global minimiser.

By Theorem 1, % and v are smooth on (0, R), and @
satisfies the Euler-Lagrange equation

d ka1
u" + u? — T—zu = Z(CQ(QQ + 7%) — a?)i.
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Lemma. LetY = ufl} + vF3 be a global minimiser of the
restricted energy with b®> = 0. Thenw > 0 andv < 0 on
0, R].

Proof:  For b? = 0, the restricted energy density

k2 2 a’ 2
e B £ ()

is even in u and v. Therefore, 4 := |u| and ¥ := —|v|
constitute a global minimiser.

By Theorem 1, % and v are smooth on (0, R), and @
satisfies the Euler-Lagrange equation

i+ — — — = = (c*(@* + ) — a?)d.

Suppose @ (rg) = 0. Then @'(rg) = 0. Then EL would
imply that « = 0, contradicting the boundary condition
u(R) =u(R) > 0.Sou # 0on (0, R), sothat w > 0 on
0, R].

A similar argument shows that v < 0 on [0, R].
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Result for special problem

Theorem 2. LetY = uF}. + vF3 be a global minimiser of
the restricted energy with b®> = 0. ThenY is the unique
global minimiser of the full problem (FP) with b? = 0.

15/19




Result for special problem

Theorem 2. LetY = uF}. + vF3 be a global minimiser of
the restricted energy with b®> = 0. ThenY is the unique
global minimiser of the full problem (FP) with b? = 0.

Proof: For () € A, calculation gives

E(Q)—&EY)=1(Q-Y) +/ é(Ter)z, where

Dy 4

I(P) = [, (VP)? +VP?andV = (—a® +¢*) TrY?.

15/19




Result for special problem

Theorem 2. LetY = uF}. + vF3 be a global minimiser of
the restricted energy with b®> = 0. ThenY is the unique
global minimiser of the full problem (FP) with b? = 0.

Proof: For () € A, calculation gives

E(Q)—&EY)=1(Q-Y) +/ é(Ter)z, where

Dr 4
I(P) = [, (VP)? +VP?andV = (—a® +¢*) TrY?.
For P € H;(Dg, S),

I(P) = /D T P(LP),

where L = —A + V is a Schrodinger operator.

15/19




Result for special problem

Theorem 2. LetY = uF}. + vF3 be a global minimiser of
the restricted energy with b®> = 0. ThenY is the unique
global minimiser of the full problem (FP) with b? = 0.

Proof: For () € A, calculation gives
2
(@~ &(V) =1@-Y)+ [ T(TWQ22, whers
Dpr
I(P) = [, (VP)? +VP?andV = (—a® +¢*) TrY?.
For P € H;(Dg, S),

I(P) = /D T P(LP),

where L = —A + V is a Schrodinger operator.

Hardy trick: Suppose ¥ € H?(€) is a nonvanishing null
eigenfunction of L = —A + V. Then for f € HZ (),

1) = [ v (vé) > O|If| 2.

In the present case, Lv = 0, from the Euler-Lagrange

equation, and v < 0 from Lemma. Hence:
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Result for special problem

Theorem 2. LetY = uF}. + vF3 be a global minimiser of
the restricted energy with b®> = 0. ThenY is the unique
global minimiser of the full problem (FP) with b? = 0.

Proof: For () € A, calculation gives

E(Q)—&EY)=1(Q-Y) +/ é(Ter)z, where

Dy 4

I(P) = [, (VP)? +VP?andV = (—a® +¢*) TrY?.

&0(Q) —&(Y) 2 Cf|Q = Y[ 2.

But what do the solutions look like. . .

15/19




The small-L regime

2 2\ 2
qio)= [ 1mvQre o (rer- %)

For L — 0, the bulk potential term acts as a constraint,
2
TQR? = —

This motivates the following:

Ero = L 2 Tr (VQ)Q

a2

Ao ={Q € H'(Dp) | TQ* = 3 ae}

Limit problem (LP0): Minimise E1,[Q] for Q € Ag.
Euler-Lagrange equation,

C2

AQ =—— (T (VQ)’) @.

Solutions of EL are S*-valued harmonic maps.

16/19




The small-L regime

2
qio)= [ 1mvQre o (rer- %)

For L — 0, the bulk potential term acts as a constraint,
2
TQR? = —

This motivates the following:

Ero = L 2 Tr (VQ)Q

a2

Ao ={Q € H'(Dp) | TQ* = 3 ae}

Limit problem (LP0): Minimise E1,[Q] for Q € Ag.
Euler-Lagrange equation,

C2

AQ =—— (T (VQ)’) @.

Solutions of EL are S*-valued harmonic maps.

Relation to full problem established via I'-convergence.

16/19




The small-L regime

2 2\ 2
qio)= [ 1mvQre o (rer- %)

For L — 0, the bulk potential term acts as a constraint,
2
TQR? = —

This motivates the following:
2

5L0:/ LT (VQ)?
Dpgr
a

Ao ={Q € H'(Dp) | TQ* = 3 ae}

Limit problem (LP0): Minimise E1,[Q] for Q € Ag.
Euler-Lagrange equation,

C2

AQ =—— (T (VQ)’) @.

Solutions of EL are S*-valued harmonic maps.
Relation to full problem established via I'-convergence.

Three explicit solutions to the limit problem are available. . .
16/19




Results for limit problem

e [wo biaxial solutions

02
Yi(r,¢) = = (cos Y4 (r)Fi (@) — sinpy (1) F3),
tan 21y (r) = % (%)qE'k' .

Y_ is the unique global minimiser of £1,.
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e For k even, a uniaxial solution (‘escape to the third
dimension’ — Cladis-Kléman).

2
l](T,¢O ::Av/gééz <%nwg>n@__'§]i)a

(2Re f,2Im f,1 — | f]?)
L+ |72 |

o\ k/2
f(x,y)=<xzzy) ,

m is a harmonic map from Dp to S2.1n general, if

m : Dr — 52 is harmonic, then U : D — S% is not
harmonic. However, if m is conformal, then U is
harmonic.

ﬂ@(i@g{)::
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ﬂ@(i@g{)::

a2 2

a
Ero(Y-) = [klr=,  Ero(Ys) = Ero(U) = 3lklm=.
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Yo, k=—1
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Special vs full problem

Q)= [ 4T(VQR+ /(@)

For b? # 0, expect U (7, ¢) ~ s, Q(¢) outside a core of
radius d, where
V'L

d ~ —— ~ 1 micron, core radius.
c

For b2 = 0, the “core” is the whole domain.
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Crossover: “biaxial penalty” = “core energy”

L
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For b # 0 and R large, Y is unstable for |k| # 1 (Ignat,
Nguyen, Slastikov, Zarnescu, in preparation). In line with
expectation that n defects of index +1/2 have less energy
that one defect of strength n (energy ~ (index)?).

They have also established the stability of the Y profile for
|k| = 1 (in preparation).
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