Defects in Landau-de Gennes Theory

G Di Fratta (Bristol, Paris) JR and V Slastikov (Bristol)
A Zarnescu (Sussex, Bucharest)

Complex materials; Mathematical models and numerical methods Oslo University
(and parallel work by R Ignat, L Nguyen, V Slastikov, A Zarnescu)

June 10, 2015

Liquid crystals - Phenomena

Clearing transition

Nematic phase, $T<T_{*} \quad$ Isotropic phase, $T>T_{*}$

Liquid crystals - Phenomena

Viewed through crossed polarisers

Liquid crystals - Phenomena

Viewed through crossed polarisers

Spatially varying anisotropy, $n(r)$
$n(r)$ has singularities, or defects

Oseen－Frank theory

> 11101 M11 1 分
> 11111111 ハ
> 11111 Mい I I! $n(r)$, local orientation

Oseen-Frank theory

Oseen-Frank energy,
$\mathcal{E}[n]=\int_{\Omega} \frac{K_{1}}{2}(\nabla \cdot n)^{2}+\frac{K_{2}}{2}(n \cdot(\nabla \times n))^{2}+\frac{K_{3}}{2}(n \times(\nabla \times n))^{2}$,
invariant under rotations, $n \rightarrow-n$

Oseen-Frank theory

1101101010
 \|UII IIVU|

One-constant approximation,

$$
\mathcal{E}[n]=\int_{\Omega} \frac{L}{2}(\nabla n)^{2}, \quad(\nabla n)^{2}=\sum_{i, j=1}^{3}\left(\partial_{i} n_{j}\right)^{2}
$$

Euler-Lagrange equation,

$$
\Delta n=-(\nabla n)^{2} n
$$

solutions are S^{2}-valued harmonic maps

Oseen－Frank theory

1111 NII PND
 11111111 a
 11111 パパ！
 $n(r)$ ，local orientation

One－constant approximation，

$$
\mathcal{E}[n]=\int_{\Omega} \frac{L}{2}(\nabla n)^{2}, \quad(\nabla n)^{2}=\sum_{i, j=1}^{3}\left(\partial_{i} n_{j}\right)^{2} .
$$

Euler－Lagrange equation，

$$
\Delta n=-(\nabla n)^{2} n
$$

solutions are S^{2}－valued harmonic maps

Okay for 3d point defects

Oseen－Frank theory

1111101 分
 111111011
 11111 リハ1！$n(r)$ ，local orientation

One－constant approximation，

$$
\mathcal{E}[n]=\int_{\Omega} \frac{L}{2}(\nabla n)^{2}, \quad(\nabla n)^{2}=\sum_{i, j=1}^{3}\left(\partial_{i} n_{j}\right)^{2}
$$

Euler－Lagrange equation，

$$
\Delta n=-(\nabla n)^{2} n
$$

solutions are S^{2}－valued harmonic maps

$\mathrm{m}=+1 / 2$

$\mathrm{m}=+1$

$m=-1 / 2$
Problematic for 2d point de－ fects

Oseen-Frank theory

11101010 分

One-constant approximation,

$$
\mathcal{E}[n]=\int_{\Omega} \frac{L}{2}(\nabla n)^{2}, \quad(\nabla n)^{2}=\sum_{i, j=1}^{3}\left(\partial_{i} n_{j}\right)^{2} .
$$

Euler-Lagrange equation,

$$
\Delta n=-(\nabla n)^{2} n
$$

solutions are S^{2}-valued harmonic maps

Would like to resolve the structure of defects. . .

Landau-de Gennes I-Q-tensors

N-particle distribution $\rho_{N}\left(r_{j}, e_{j}\right) \rightarrow$ $\rho(r, e)$, 1-particle distribution

Landau-de Gennes I - Q-tensors

N-particle distribution $\rho_{N}\left(r_{j}, e_{j}\right) \rightarrow$
$\quad \rho(r, e), 1$-particle distribution

$$
\rho(r, e)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m}(r) Y_{l m}(e)
$$

Landau-de Gennes I - Q-tensors

$$
\begin{array}{r}
N \text {-particle distribution } \rho_{N}\left(r_{j}, e_{j}\right) \rightarrow \\
\quad \rho(r, e), 1 \text {-particle distribution } \\
\rho(r, e)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m}(r) Y_{l m}(e)
\end{array}
$$

Assume uniform density,

$$
\int_{S^{2}} \rho(r, e) d^{2} e=1 \Longrightarrow c_{00}(r)=1 .
$$

Assume nematic (not polar),

$$
\rho(r, e)=\rho(r,-e) \Longrightarrow c_{l m}=0, l \text { odd }
$$

Lowest-order nontrivial terms,

$$
c_{2, m}(r)=\int_{S}^{2} \rho(r, e) Y_{2 m}^{*}(e) d^{2} e, \quad m=-2, \ldots, 2
$$

Landau-de Gennes I - Q-tensors

N-particle distribution $\rho_{N}\left(r_{j}, e_{j}\right) \rightarrow$ $\rho(r, e), 1$-particle distribution

$$
\rho(r, e)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m}(r) Y_{l m}(e)
$$

Assume uniform density,

$$
\int_{S^{2}} \rho(r, e) d^{2} e=1 \Longrightarrow c_{00}(r)=1 .
$$

Assume nematic (not polar),

$$
\rho(r, e)=\rho(r,-e) \Longrightarrow c_{l m}=0, \quad l \text { odd }
$$

Lowest-order nontrivial terms,

$$
c_{2, m}(r)=\int_{S}^{2} \rho(r, e) Y_{2 m}^{*}(e) d^{2} e, m=-2, \ldots, 2
$$

Same information is contained in

$$
Q_{j k}(r)=\int_{S^{2}} \rho(r, e) e_{j} e_{k} d^{2} e-\frac{1}{3} \delta_{j k}
$$

Landau-de Gennes I-Q-tensors

N-particle distribution $\rho_{N}\left(r_{j}, e_{j}\right) \rightarrow$ $\rho(r, e)$, 1-particle distribution

$$
\rho(r, e)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m}(r) Y_{l m}(e)
$$

Assume uniform density,

$$
\int_{S^{2}} \rho(r, e) d^{2} e=1 \Longrightarrow c_{00}(r)=1 .
$$

Assume nematic (not polar),

$$
\rho(r, e)=\rho(r,-e) \Longrightarrow c_{l m}=0, l \text { odd }
$$

Lowest-order nontrivial terms,

$$
c_{2, m}(r)=\int_{S}^{2} \rho(r, e) Y_{2 m}^{*}(e) d^{2} e, \quad m=-2, \ldots, 2
$$

Same information is contained in

$$
Q_{j k}(r)=\int_{S^{2}} \rho(r, e) e_{j} e_{k} d^{2} e-\frac{1}{3} \delta_{j k}
$$

The Q-tensor $Q(r)$ is a real 3×3 symmetric traceless matrix-valued function.

Landau-de Gennes II - Symmetry characterisation of Q-tensors

$$
Q \mapsto \mathcal{R} Q \mathcal{R}^{T}
$$

$\underline{\text { Isotropic }} \lambda_{1}=\lambda_{2}=\lambda_{3}$
$Q=0$

Landau-de Gennes II - Symmetry characterisation of Q-tensors

$$
Q \mapsto \mathcal{R} Q \mathcal{R}^{T}
$$

$\underline{\text { Isotropic }} \lambda_{1}=\lambda_{2}=\lambda_{3}$
$Q=0$

Prolate uniaxial $\lambda_{1}>\lambda_{2}=\lambda_{3}$
$Q=s\left(n \otimes n-\frac{1}{3} I\right), s>0$
Connection to Frank theory. . .

Landau-de Gennes II - Symmetry characterisation of Q-tensors

$$
Q \mapsto \mathcal{R} Q \mathcal{R}^{T}
$$

$\underline{\text { Isotropic }} \lambda_{1}=\lambda_{2}=\lambda_{3}$
$Q=0$

Prolate uniaxial $\lambda_{1}>\lambda_{2}=\lambda_{3}$
$Q=s\left(n \otimes n-\frac{1}{3} I\right), s>0$
Connection to Frank theory. . .

Oblate uniaxial $\lambda_{1}=\lambda_{2}>\lambda_{3}$
$Q=s\left(n \otimes n-\frac{1}{3} I\right), s<0$

Landau-de Gennes II - Symmetry characterisation of Q-tensors

$$
Q \mapsto \mathcal{R} Q \mathcal{R}^{T}
$$

$\underline{\text { Isotropic }} \lambda_{1}=\lambda_{2}=\lambda_{3}$
$Q=0$

Prolate uniaxial $\lambda_{1}>\lambda_{2}=\lambda_{3}$
$Q=s\left(n \otimes n-\frac{1}{3} I\right), s>0$
Connection to Frank theory. . .

Oblate uniaxial $\lambda_{1}=\lambda_{2}>\lambda_{3}$
$Q=s\left(n \otimes n-\frac{1}{3} I\right), s<0$

Biaxial $\lambda_{1}>\lambda_{2}>\lambda_{3}$
$Q=\lambda_{1} n_{1} \otimes n_{1}+\lambda_{2} n_{2} \otimes n_{2}+\lambda_{3} n_{3} \otimes n_{3}$,
 $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$

Landau-de Gennes III - Potential energy

Want $f(Q)$, rotationally invariant.

$$
f(Q)=\frac{A}{2} \operatorname{Tr} Q^{2}+\frac{B}{3} \operatorname{Tr} Q^{3}+\frac{C}{4}\left(\operatorname{Tr} Q^{2}\right)^{2},
$$

bulk energy. $\quad C>0$

Landau-de Gennes III - Potential energy

Want $f(Q)$, rotationally invariant.

$$
f(Q)=\frac{A}{2} \operatorname{Tr} Q^{2}+\frac{B}{3} \operatorname{Tr} Q^{3}+\frac{C}{4}\left(\operatorname{Tr} Q^{2}\right)^{2},
$$

bulk energy. $\quad C>0$
$A>0$, isotropic Q is a (local) minimum,
$A<0$, isotropic Q is a local maximum

Landau-de Gennes III - Potential energy

Want $f(Q)$, rotationally invariant.

$$
f(Q)=\frac{A}{2} \operatorname{Tr} Q^{2}+\frac{B}{3} \operatorname{Tr} Q^{3}+\frac{C}{4}\left(\operatorname{Tr} Q^{2}\right)^{2},
$$

bulk energy. $\quad C>0$
$A>0$, isotropic Q is a (local) minimum,
$A<0$, isotropic Q is a local maximum
$B>0$, oblate uniaxial is favoured
$B<0$, prolate uniaxial is favoured
$A, B, C \sim 10^{3} \mathrm{~J} / \mathrm{m}^{3}$

Landau-de Gennes III - Potential energy

Want $f(Q)$, rotationally invariant.

$$
f(Q)=\frac{A}{2} \operatorname{Tr} Q^{2}+\frac{B}{3} \operatorname{Tr} Q^{3}+\frac{C}{4}\left(\operatorname{Tr} Q^{2}\right)^{2},
$$

bulk energy. $\quad C>0$
$A>0$, isotropic Q is a (local) minimum,
$A<0$, isotropic Q is a local maximum
$B>0$, oblate uniaxial is favoured
$B<0$, prolate uniaxial is favoured
$A, B, C \sim 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
We take

$$
A=-a^{2}, \quad B=-b^{2}, \quad C=c^{2} .
$$

In this regime, minimisers of f are prolate uniaxial of the form

$$
\begin{aligned}
Q & =s_{+}\left(n \otimes n-\frac{1}{3} I\right), \\
s_{+} & =\frac{b^{2}+\left(b^{2}+24 a^{2} c^{2}\right)^{1 / 2}}{4 c^{2}}
\end{aligned}
$$

Landau-de Gennes IV - Full energy

$$
\mathcal{E}[Q]=\int_{\Omega} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q),
$$

$\operatorname{Tr}(\nabla Q)^{2}=\sum_{i j k}\left(\partial_{i} Q_{j k}\right)^{2}$, one-constant elastic energy L, elastic constant

Landau-de Gennes IV - Full energy

$$
\mathcal{E}[Q]=\int_{\Omega} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)
$$

$\operatorname{Tr}(\nabla Q)^{2}=\sum_{i j k}\left(\partial_{i} Q_{j k}\right)^{2}$, one-constant elastic energy L, elastic constant

Relation to Oseen-Frank theory (Majumdar + Zarnescu).
For $\Omega \subset \mathbb{R}^{3}$, fix $n_{*}(r)$ smooth on $\partial \Omega$. Let n denote the minimiser of the one-constant Oseen-Frank energy with $n=n_{*}$ on $\partial \Omega$. Let $Q_{*}:=s_{+}\left(n_{*} \otimes n_{*}-\frac{1}{3} I\right)$ on $\partial \Omega$. Let Q_{L} denote global minimizer of LdG energy with $Q=Q_{*}$ on $\partial \Omega$. If r_{0} is not a singularity of n, then as $L \rightarrow 0$,

$$
Q_{L}\left(r_{0}\right) \rightarrow s_{+}\left(n\left(r_{0}\right) \otimes n\left(r_{0}\right)-\frac{1}{3} I\right) .
$$

Landau-de Gennes IV - Full energy

$$
\mathcal{E}[Q]=\int_{\Omega} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)
$$

$\operatorname{Tr}(\nabla Q)^{2}=\sum_{i j k}\left(\partial_{i} Q_{j k}\right)^{2}$, one-constant elastic energy L, elastic constant

Relation to Oseen-Frank theory (Majumdar + Zarnescu).
For $\Omega \subset \mathbb{R}^{3}$, fix $n_{*}(r)$ smooth on $\partial \Omega$. Let n denote the minimiser of the one-constant Oseen-Frank energy with $n=n_{*}$ on $\partial \Omega$. Let $Q_{*}:=s_{+}\left(n_{*} \otimes n_{*}-\frac{1}{3} I\right)$ on $\partial \Omega$. Let Q_{L} denote global minimizer of LdG energy with $Q=Q_{*}$ on $\partial \Omega$. If r_{0} is not a singularity of n, then as $L \rightarrow 0$,

$$
Q_{L}\left(r_{0}\right) \rightarrow s_{+}\left(n\left(r_{0}\right) \otimes n\left(r_{0}\right)-\frac{1}{3} I\right) .
$$

Current research is directed at the fine structure of defects in the Landau-de Gennes model. Cf vortices in the Ginzburg-Landau model, where the order parameter is a complex scalar (in place of Q-tensor).

Universal features of defects play a role in mesoscopic descriptions.

Full problem
$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi),
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right) .
\end{aligned}
$$

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi)
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right) .
\end{aligned}
$$

Defects of index $\frac{1}{2}$ (left) and $-\frac{1}{2}$ (right)

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi)
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right) .
\end{aligned}
$$

Defects of index 1 (left) and -1 (right)

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi),
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right) .
\end{aligned}
$$

Defects of index $3 / 2$ (left) and $-3 / 2$ (right)

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi),
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right)
\end{aligned}
$$

$\mathcal{E}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)$, full energy
$f(Q)=-\frac{a^{2}}{2} \operatorname{Tr}\left(Q^{2}\right)-\frac{b^{2}}{3} \operatorname{Tr}\left(Q^{3}\right)+\frac{c^{2}}{4}\left(\operatorname{Tr}\left(Q^{2}\right)\right)^{2}$,
bulk potential
$\mathcal{A}=\left\{Q \in H^{1}\left(D_{R}\right), \quad Q(R, \phi)=Q_{k}(\phi)\right\}$,
admissible space

Full problem

$D_{R} \subset \mathbb{R}^{2}$, 2-d disk about 0 of radius R
We consider Q-tensors on D_{R} satisfying "defect boundary conditions"

$$
Q(R, \phi)=Q_{k}(\phi),
$$

where

$$
\begin{aligned}
Q_{k}(\phi) & =s_{+}\left(n_{k} \otimes n_{k}-\frac{1}{3} I\right), \\
n_{k} & =\left(\cos \left(\frac{k}{2} \phi\right), \sin \left(\frac{k}{2} \phi\right), 0\right)
\end{aligned}
$$

$\mathcal{E}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)$, full energy
$f(Q)=-\frac{a^{2}}{2} \operatorname{Tr}\left(Q^{2}\right)-\frac{b^{2}}{3} \operatorname{Tr}\left(Q^{3}\right)+\frac{c^{2}}{4}\left(\operatorname{Tr}\left(Q^{2}\right)\right)^{2}$,
bulk potential
$\mathcal{A}=\left\{Q \in H^{1}\left(D_{R}\right), \quad Q(R, \phi)=Q_{k}(\phi)\right\}$,
admissible space
Full problem (FP): Minimise $\mathcal{E}[Q]$ for $Q \in \mathcal{A}$.
Euler-Lagrange equation,

$$
L \Delta Q=-a^{2} Q-b^{2} \operatorname{Tr}\left(Q^{2}-\frac{1}{3} \operatorname{Tr} Q^{2} I\right)+c^{2} \operatorname{Tr}\left(Q^{2}\right) Q
$$

Candidates for solutions

- Uniaxial
$\tilde{Y}(r, \phi)=f(r) Q_{k}(\phi)=f(r)\left(n_{k}(\phi) \otimes n_{k}(\phi)-\frac{1}{3}\right)$, with $f(0)=0$ and $f(R)=s_{+}$.

Candidates for solutions

- Uniaxial
$\tilde{Y}(r, \phi)=f(r) Q_{k}(\phi)=f(r)\left(n_{k}(\phi) \otimes n_{k}(\phi)-\frac{1}{3}\right)$, with $f(0)=0$ and $f(R)=s_{+}$.

Won't satisfy EL , as $\Delta \tilde{Y}$ cannot be expressed as a function of Y.

Candidates for solutions

- Uniaxial

$\tilde{Y}(r, \phi)=f(r) Q_{k}(\phi)=f(r)\left(n_{k}(\phi) \otimes n_{k}(\phi)-\frac{1}{3}\right)$, with $f(0)=0$ and $f(R)=s_{+}$.

Won't satisfy EL , as $\Delta \tilde{Y}$ cannot be expressed as a function of Y.

- Biaxial (with a principal axis along e_{3})

$$
Y(r)=u(r) F_{k}(\phi)+v(r) F_{3}(\phi),
$$

where

$$
\begin{aligned}
F_{k}(\phi) & =\sqrt{2}\left(n_{k}(\phi) \otimes n_{k}(\phi)-\frac{1}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\right), \\
F_{3} & =\sqrt{\frac{3}{2}}\left(e_{3} \otimes e_{3}-\frac{1}{3} I\right) .
\end{aligned}
$$

Then

$$
Q_{k}=s_{+}\left(\frac{1}{\sqrt{2}} F_{k}-\frac{1}{\sqrt{6}} F_{3}\right) .
$$

Substituting Y into the Euler-Lagrange equations leads to 2 coupled ODE's for u and $v \ldots$

Restricted problem

Consider $Y(r)=u(r) F_{k}(\phi)+v(r) F_{3}(\phi)$.
Restricted energy,
$\mathcal{E}_{R}[u, v]=\int_{0}^{R}\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{1}{L} g(u, v)\right] r d r\right.$,
where $g(u, v)=f(Y)$.
Admissible space,

$$
\begin{array}{r}
\mathcal{A}_{R}=\left\{(u, v) \mid \sqrt{r} u^{\prime}, \sqrt{r} v^{\prime}, \frac{u}{\sqrt{r}}, \sqrt{r} v \in L^{2}(0, R),\right. \\
\left.u(R)=\frac{s_{+}}{\sqrt{2}}, v(R)=-\frac{s_{+}}{\sqrt{6}}\right\} .
\end{array}
$$

Restricted problem

Consider $Y(r)=u(r) F_{k}(\phi)+v(r) F_{3}(\phi)$.
Restricted energy,
$\mathcal{E}_{R}[u, v]=\int_{0}^{R}\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{1}{L} g(u, v)\right] r d r\right.$,
where $g(u, v)=f(Y)$.
Admissible space,

$$
\begin{array}{r}
\mathcal{A}_{R}=\left\{(u, v) \mid \sqrt{r} u^{\prime}, \sqrt{r} v^{\prime}, \frac{u}{\sqrt{r}}, \sqrt{r} v \in L^{2}(0, R)\right. \\
\left.u(R)=\frac{s_{+}}{\sqrt{2}}, v(R)=-\frac{s_{+}}{\sqrt{6}}\right\}
\end{array}
$$

Restricted problem (RP): Minimise $\mathcal{E}_{R}[u, v]$ for $(u, v) \in \mathcal{A}_{R}$.
Euler-Lagrange equation,

$$
\begin{aligned}
& \frac{1}{r}\left(r u^{\prime}\right)^{\prime}-\frac{k^{2} u}{r^{2}}=\frac{u}{L}\left[-a^{2}+\sqrt{\frac{2}{3}} b^{2} v+c^{2}\left(u^{2}+v^{2}\right)\right], \\
& \frac{1}{r}\left(r u^{\prime}\right)^{\prime}=\frac{v}{L}\left[-a^{2}-\frac{1}{\sqrt{6}} b^{2} v+c^{2}\left(u^{2}+v^{2}\right)\right] \\
& +\frac{1}{\sqrt{6} L} b^{2} u^{2} .
\end{aligned}
$$

Result for Restricted Problem

Theorem 1. There exists a global minimiser (u, v) of the restricted problem (RP), and u and v satisfy its
Euler-Lagrange equations.
$u \in C^{\infty}(0, R) \cap C^{0}[0, R]$, and $u(0)=0$.
$v \in C^{\infty}(0, R) \cap C^{1}[0, R]$, and $v^{\prime}(0)=0$.

Result for Restricted Problem

Theorem 1. There exists a global minimiser (u, v) of the restricted problem (RP), and u and v satisfy its
Euler-Lagrange equations.
$u \in C^{\infty}(0, R) \cap C^{0}[0, R]$, and $u(0)=0$.
$v \in C^{\infty}(0, R) \cap C^{1}[0, R]$, and $v^{\prime}(0)=0$.

Proof: Existence, interior smoothness and boundary continuity follows from standard results and calculations. The boundary conditions at $r=0$ are consistent with $Y(r, \phi)=u(r) F_{k}(\phi)+v(r) F_{3}$ being analytic.

Result for Restricted Problem

Theorem 1. There exists a global minimiser (u, v) of the restricted problem (RP), and u and v satisfy its
Euler-Lagrange equations.
$u \in C^{\infty}(0, R) \cap C^{0}[0, R]$, and $u(0)=0$.
$v \in C^{\infty}(0, R) \cap C^{1}[0, R]$, and $v^{\prime}(0)=0$.

Proof: Existence, interior smoothness and boundary continuity follows from standard results and calculations. The boundary conditions at $r=0$ are consistent with $Y(r, \phi)=u(r) F_{k}(\phi)+v(r) F_{3}$ being analytic.

In fact, the global minimiser (u, v) of the restricted problem satisfies the Euler-Lagrange equation for the full problem.

But it needn't be a global or even a local minimiser of the full problem (in fact, for $|k|>1$, it isn't - Bauman, Park, Phillips (2012)). . .

Special case: $b^{2}=0$
Bulk potential,

$$
f(Q)=-\frac{a^{2}}{2} \operatorname{Tr}\left(Q^{2}\right)-\frac{b^{2}}{3} \operatorname{Tr}\left(Q^{3}\right)+\frac{c^{2}}{4}\left(\operatorname{Tr}\left(Q^{2}\right)\right)^{2}
$$

For $b^{2}=0$,

$$
f_{0}(Q)=\frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}+\text { const. }
$$

Special case: $b^{2}=0$

Bulk potential,

$$
f(Q)=-\frac{a^{2}}{2} \operatorname{Tr}\left(Q^{2}\right)-\frac{b^{2}}{3} \operatorname{Tr}\left(Q^{3}\right)+\frac{c^{2}}{4}\left(\operatorname{Tr}\left(Q^{2}\right)\right)^{2}
$$

For $b^{2}=0$,

$$
f_{0}(Q)=\frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}+\text { const }
$$

Minimisers of the bulk energy:
For $b^{2}=0$, minimisers are characterised by

$$
\operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}}=\frac{2}{3} s_{+}^{2},
$$

and may be identified with S^{4}.

Special case: $b^{2}=0$

Bulk potential,

$$
f(Q)=-\frac{a^{2}}{2} \operatorname{Tr}\left(Q^{2}\right)-\frac{b^{2}}{3} \operatorname{Tr}\left(Q^{3}\right)+\frac{c^{2}}{4}\left(\operatorname{Tr}\left(Q^{2}\right)\right)^{2}
$$

For $b^{2}=0$,

$$
f_{0}(Q)=\frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}+\text { const. }
$$

Minimisers of the bulk energy:
For $b^{2}=0$, minimisers are characterised by

$$
\operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}}=\frac{2}{3} s_{+}^{2},
$$

and may be identified with S^{4}.
For $b^{2} \neq 0$, minimisers are characterised by

$$
\operatorname{Tr} Q^{2}=\frac{2}{3} s_{+}^{2}
$$

and prolate uniaxiality,

$$
-\lambda_{1}=-\lambda_{2}=\frac{1}{2} \lambda_{3}>0,
$$

and may be identified with $R P^{2}$.
For $b^{2}=0$, biaxiality is no longer penalised. . .

Special problem

Special energy,

$$
\mathcal{E}_{S 0}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f_{0}(Q)
$$

where

$$
f_{0}(Q)=\frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}
$$

Admissible space,

$$
\mathcal{A}_{S}=\left\{Q \in H^{1}\left(D_{R}\right), \quad Q(R, \phi)=Q_{k}(\phi)\right\} .
$$

Special problem

Special energy,

$$
\mathcal{E}_{S 0}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f_{0}(Q)
$$

where

$$
f_{0}(Q)=\frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}
$$

Admissible space,

$$
\mathcal{A}_{S}=\left\{Q \in H^{1}\left(D_{R}\right), \quad Q(R, \phi)=Q_{k}(\phi)\right\} .
$$

Special problem (SP): Minimise $\mathcal{E}_{S 0}[Q]$ for $Q \in \mathcal{A}_{S}$.
Euler-Lagrange equation,

$$
L \Delta Q=\left(c^{2} Q^{2}-a^{2}\right) Q
$$

The global minimiser of the restricted problem remains a candidate. . .

Lemma. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then $u \geq 0$ and $v<0$ on $[0, R]$.

Lemma. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then $u \geq 0$ and $v<0$ on $[0, R]$.
Proof: For $b^{2}=0$, the restricted energy density

$$
\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{c^{2}}{4 L}\left(u^{2}+v^{2}-\frac{a^{2}}{c^{2}}\right)^{2}\right]\right.
$$

is even in u and v. Therefore, $\tilde{u}:=|u|$ and $\tilde{v}:=-|v|$ constitute a global minimiser.

Lemma. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then $u \geq 0$ and $v<0$ on $[0, R]$.
Proof: For $b^{2}=0$, the restricted energy density

$$
\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{c^{2}}{4 L}\left(u^{2}+v^{2}-\frac{a^{2}}{c^{2}}\right)^{2}\right]\right.
$$

is even in u and v. Therefore, $\tilde{u}:=|u|$ and $\tilde{v}:=-|v|$ constitute a global minimiser.

By Theorem 1, \tilde{u} and \tilde{v} are smooth on $(0, R)$, and \tilde{u} satisfies the Euler-Lagrange equation

$$
\tilde{u}^{\prime \prime}+\frac{\tilde{u}^{\prime}}{r}-\frac{k^{2} \tilde{u}}{r^{2}}=\frac{1}{L}\left(c^{2}\left(\tilde{u}^{2}+\tilde{v}^{2}\right)-a^{2}\right) \tilde{u} .
$$

Lemma. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then $u \geq 0$ and $v<0$ on $[0, R]$.
Proof: For $b^{2}=0$, the restricted energy density

$$
\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{c^{2}}{4 L}\left(u^{2}+v^{2}-\frac{a^{2}}{c^{2}}\right)^{2}\right]\right.
$$

is even in u and v. Therefore, $\tilde{u}:=|u|$ and $\tilde{v}:=-|v|$ constitute a global minimiser.

By Theorem 1, \tilde{u} and \tilde{v} are smooth on $(0, R)$, and \tilde{u} satisfies the Euler-Lagrange equation

$$
\tilde{u}^{\prime \prime}+\frac{\tilde{u}^{\prime}}{r}-\frac{k^{2} \tilde{u}}{r^{2}}=\frac{1}{L}\left(c^{2}\left(\tilde{u}^{2}+\tilde{v}^{2}\right)-a^{2}\right) \tilde{u} .
$$

Suppose $\tilde{u}\left(r_{0}\right)=0$. Then $\tilde{u}^{\prime}\left(r_{0}\right)=0$. Then EL would imply that $\tilde{u}=0$, contradicting the boundary condition $\tilde{u}(R)=u(R)>0$. So $\tilde{u} \neq 0$ on $(0, R)$, so that $u \geq 0$ on $[0, R]$.

Lemma. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then $u \geq 0$ and $v<0$ on $[0, R]$.
Proof: For $b^{2}=0$, the restricted energy density

$$
\left[\frac{1}{2}\left(u^{\prime 2}+v^{\prime 2}+\frac{k^{2}}{r^{2}} u^{2}+\frac{c^{2}}{4 L}\left(u^{2}+v^{2}-\frac{a^{2}}{c^{2}}\right)^{2}\right]\right.
$$

is even in u and v. Therefore, $\tilde{u}:=|u|$ and $\tilde{v}:=-|v|$ constitute a global minimiser.

By Theorem 1, \tilde{u} and \tilde{v} are smooth on $(0, R)$, and \tilde{u} satisfies the Euler-Lagrange equation

$$
\tilde{u}^{\prime \prime}+\frac{\tilde{u}^{\prime}}{r}-\frac{k^{2} \tilde{u}}{r^{2}}=\frac{1}{L}\left(c^{2}\left(\tilde{u}^{2}+\tilde{v}^{2}\right)-a^{2}\right) \tilde{u} .
$$

Suppose $\tilde{u}\left(r_{0}\right)=0$. Then $\tilde{u}^{\prime}\left(r_{0}\right)=0$. Then EL would imply that $\tilde{u}=0$, contradicting the boundary condition $\tilde{u}(R)=u(R)>0$. So $\tilde{u} \neq 0$ on $(0, R)$, so that $u \geq 0$ on $[0, R]$.

A similar argument shows that $v<0$ on $[0, R]$.

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Proof: For $Q \in \mathcal{A}$, calculation gives
$\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y)=I(Q-Y)+\int_{D_{R}} \frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}\right)^{2}$, where

$$
I(P)=\int_{D_{R}}(\nabla P)^{2}+V P^{2} \text { and } V=\left(-a^{2}+c^{2}\right) \operatorname{Tr} Y^{2} .
$$

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Proof: For $Q \in \mathcal{A}$, calculation gives
$\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y)=I(Q-Y)+\int_{D_{R}} \frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}\right)^{2}$, where
$I(P)=\int_{D_{R}}(\nabla P)^{2}+V P^{2}$ and $V=\left(-a^{2}+c^{2}\right) \operatorname{Tr} Y^{2}$.
For $P \in H_{0}^{2}\left(D_{R}, S\right)$,

$$
I(P)=\int_{D_{R}} \operatorname{Tr} P(L P)
$$

where $L=-\Delta+V$ is a Schrödinger operator.

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Proof: For $Q \in \mathcal{A}$, calculation gives
$\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y)=I(Q-Y)+\int_{D_{R}} \frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}\right)^{2}$, where
$I(P)=\int_{D_{R}}(\nabla P)^{2}+V P^{2}$ and $V=\left(-a^{2}+c^{2}\right) \operatorname{Tr} Y^{2}$.
For $P \in H_{0}^{2}\left(D_{R}, S\right)$,

$$
I(P)=\int_{D_{R}} \operatorname{Tr} P(L P)
$$

where $L=-\Delta+V$ is a Schrödinger operator.
Hardy trick: Suppose $\Psi \in H^{2}(\Omega)$ is a nonvanishing null eigenfunction of $L=-\Delta+V$. Then for $f \in H_{0}^{2}(\Omega)$,

$$
I(f)=\int_{\Omega} \Psi^{2}\left(\nabla \frac{f}{\Psi}\right)^{2} \geq C\|f\|_{L^{2}}
$$

In the present case, $L v=0$, from the Euler-Lagrange equation, and $v<0$ from Lemma. Hence:

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Proof: For $Q \in \mathcal{A}$, calculation gives

$$
\begin{aligned}
& \mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y)=I(Q-Y)+\int_{D_{R}} \frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}\right)^{2}, \text { where } \\
& I(P)=\int_{D_{R}}(\nabla P)^{2}+V P^{2} \text { and } V=\left(-a^{2}+c^{2}\right) \operatorname{Tr} Y^{2}
\end{aligned}
$$

$$
\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y) \geq C\|Q-Y\|_{L^{2}} .
$$

Result for special problem

Theorem 2. Let $Y=u F_{k}+v F_{3}$ be a global minimiser of the restricted energy with $b^{2}=0$. Then Y is the unique global minimiser of the full problem (FP) with $b^{2}=0$.

Proof: For $Q \in \mathcal{A}$, calculation gives
$\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y)=I(Q-Y)+\int_{D_{R}} \frac{c^{2}}{4}\left(\operatorname{Tr} Q^{2}\right)^{2}$, where

$$
I(P)=\int_{D_{R}}(\nabla P)^{2}+V P^{2} \text { and } V=\left(-a^{2}+c^{2}\right) \operatorname{Tr} Y^{2} .
$$

$$
\mathcal{E}_{0}(Q)-\mathcal{E}_{0}(Y) \geq C\|Q-Y\|_{L^{2}} .
$$

But what do the solutions look like. . .

The small- L regime

$$
\mathcal{E}_{0}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{c^{2}}{4 L}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}
$$

For $L \rightarrow 0$, the bulk potential term acts as a constraint,

$$
\operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}} .
$$

This motivates the following:

$$
\begin{gathered}
\mathcal{E}_{L 0}=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2} \\
\mathcal{A}_{L 0}=\left\{Q \in H^{1}\left(D_{R}\right) \left\lvert\, \operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}}\right. \text { a.e. }\right\}
\end{gathered}
$$

Limit problem (LPO): Minimise $\mathcal{E}_{L 0}[Q]$ for $Q \in \mathcal{A}_{S 0}$. Euler-Lagrange equation,

$$
\Delta Q=-\frac{c^{2}}{a^{2}}\left(\operatorname{Tr}(\nabla Q)^{2}\right) Q
$$

Solutions of EL are S^{4}-valued harmonic maps.

The small- L regime

$$
\mathcal{E}_{0}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{c^{2}}{4 L}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}
$$

For $L \rightarrow 0$, the bulk potential term acts as a constraint,

$$
\operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}} .
$$

This motivates the following:

$$
\begin{gathered}
\mathcal{E}_{L 0}=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2} \\
\mathcal{A}_{L 0}=\left\{Q \in H^{1}\left(D_{R}\right) \left\lvert\, \operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}}\right. \text { a.e. }\right\}
\end{gathered}
$$

Limit problem (LPO): Minimise $\mathcal{E}_{L 0}[Q]$ for $Q \in \mathcal{A}_{S 0}$. Euler-Lagrange equation,

$$
\Delta Q=-\frac{c^{2}}{a^{2}}\left(\operatorname{Tr}(\nabla Q)^{2}\right) Q
$$

Solutions of EL are S^{4}-valued harmonic maps.
Relation to full problem established via Γ-convergence.

The small- L regime

$$
\mathcal{E}_{0}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{c^{2}}{4 L}\left(\operatorname{Tr} Q^{2}-\frac{a^{2}}{c^{2}}\right)^{2}
$$

For $L \rightarrow 0$, the bulk potential term acts as a constraint,

$$
\operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}} .
$$

This motivates the following:

$$
\begin{gathered}
\mathcal{E}_{L 0}=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2} \\
\mathcal{A}_{L 0}=\left\{Q \in H^{1}\left(D_{R}\right) \left\lvert\, \operatorname{Tr} Q^{2}=\frac{a^{2}}{c^{2}}\right. \text { a.e. }\right\}
\end{gathered}
$$

Limit problem (LPO): Minimise $\mathcal{E}_{L 0}[Q]$ for $Q \in \mathcal{A}_{S 0}$. Euler-Lagrange equation,

$$
\Delta Q=-\frac{c^{2}}{a^{2}}\left(\operatorname{Tr}(\nabla Q)^{2}\right) Q
$$

Solutions of EL are S^{4}-valued harmonic maps.
Relation to full problem established via Γ-convergence.
Three explicit solutions to the limit problem are available. . .

Results for limit problem

- Two biaxial solutions

$$
\begin{aligned}
Y_{ \pm}(r, \phi) & =\frac{a^{2}}{c^{2}}\left(\cos \psi_{ \pm}(r) F_{k}(\phi)-\sin \psi_{ \pm}(r) F_{3}\right) \\
\tan \frac{1}{2} \psi_{ \pm}(r) & =\frac{1}{\sqrt{3}}\left(\frac{r}{R}\right)^{\mp|k|}
\end{aligned}
$$

Y_{-}is the unique global minimiser of $\mathcal{E}_{L 0}$.

Results for limit problem

- Two biaxial solutions

$$
\begin{aligned}
Y_{ \pm}(r, \phi) & =\frac{a^{2}}{c^{2}}\left(\cos \psi_{ \pm}(r) F_{k}(\phi)-\sin \psi_{ \pm}(r) F_{3}\right) \\
\tan \frac{1}{2} \psi_{ \pm}(r) & =\frac{1}{\sqrt{3}}\left(\frac{r}{R}\right)^{\mp|k|}
\end{aligned}
$$

Y_{-}is the unique global minimiser of $\mathcal{E}_{L 0}$.

- For k even, a uniaxial solution ('escape to the third dimension' - Cladis-Kléman).

$$
\begin{aligned}
U(r, \phi) & =\sqrt{\frac{3}{2}} \frac{a^{2}}{c^{2}}\left(m \otimes m-\frac{1}{3} I\right) \\
m(x, y) & =\frac{\left(2 \operatorname{Re} f, 2 \operatorname{lm} f, 1-|f|^{2}\right)}{1+|f|^{2}} \\
f(x, y) & =\left(\frac{x+i y}{R}\right)^{k / 2}
\end{aligned}
$$

m is a harmonic map from D_{R} to S^{2}. In general, if $m: D_{R} \rightarrow S^{2}$ is harmonic, then $U: D_{R} \rightarrow S^{4}$ is not harmonic. However, if m is conformal, then U is harmonic.

Results for limit problem

- Two biaxial solutions

$$
\begin{aligned}
Y_{ \pm}(r, \phi) & =\frac{a^{2}}{c^{2}}\left(\cos \psi_{ \pm}(r) F_{k}(\phi)-\sin \psi_{ \pm}(r) F_{3}\right), \\
\tan \frac{1}{2} \psi_{ \pm}(r) & =\frac{1}{\sqrt{3}}\left(\frac{r}{R}\right)^{\mp|k|}
\end{aligned}
$$

Y_{-}is the unique global minimiser of $\mathcal{E}_{L 0}$.

- For k even, a uniaxial solution ('escape to the third dimension' - Cladis-Kléman).

$$
\begin{aligned}
U(r, \phi) & =\sqrt{\frac{3}{2}} \frac{a^{2}}{c^{2}}\left(m \otimes m-\frac{1}{3} I\right) \\
m(x, y) & =\frac{\left(2 \operatorname{Re} f, 2 \operatorname{lm} f, 1-|f|^{2}\right)}{1+|f|^{2}} \\
f(x, y) & =\left(\frac{x+i y}{R}\right)^{k / 2}
\end{aligned}
$$

m is a harmonic map from D_{R} to S^{2}. In general, if $m: D_{R} \rightarrow S^{2}$ is harmonic, then $U: D_{R} \rightarrow S^{4}$ is not harmonic. However, if m is conformal, then U is harmonic.

$$
\mathcal{E}_{L 0}\left(Y_{-}\right)=|k| \pi \frac{a^{2}}{c^{2}}, \quad \mathcal{E}_{L 0}\left(Y_{+}\right)=\mathcal{E}_{L 0}(U)=3|k| \pi \frac{a^{2}}{\substack{c^{2} \\ 17 / 19}}
$$

$$
Y_{-}, k=1
$$

$$
Y_{-}, k=-1
$$

$$
U, k=2
$$

Special vs full problem

$$
\mathcal{E}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)
$$

For $b^{2} \neq 0$, expect $U(r, \phi) \sim s_{+} Q_{k}(\phi)$ outside a core of radius d, where
$d \sim \frac{\sqrt{L}}{c} \sim 1$ micron, core radius.
For $b^{2}=0$, the "core" is the whole domain.

Special vs full problem

$$
\mathcal{E}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)
$$

For $b^{2} \neq 0$, expect $U(r, \phi) \sim s_{+} Q_{k}(\phi)$ outside a core of radius d, where

$$
d \sim \frac{\sqrt{L}}{c} \sim 1 \text { micron, core radius. }
$$

For $b^{2}=0$, the "core" is the whole domain.
Crossover: "biaxial penalty" = "core energy"

$$
b^{2} \sim \frac{L}{R^{2}} .
$$

Special vs full problem

$$
\mathcal{E}[Q]=\int_{D_{R}} \frac{1}{2} \operatorname{Tr}(\nabla Q)^{2}+\frac{1}{L} f(Q)
$$

For $b^{2} \neq 0$, expect $U(r, \phi) \sim s_{+} Q_{k}(\phi)$ outside a core of radius d, where

$$
d \sim \frac{\sqrt{L}}{c} \sim 1 \text { micron, core radius. }
$$

For $b^{2}=0$, the "core" is the whole domain.
Crossover: "biaxial penalty" = "core energy"

$$
b^{2} \sim \frac{L}{R^{2}} .
$$

For $b^{2} \neq 0$ and R large, Y is unstable for $|k| \neq 1$ (Ignat, Nguyen, Slastikov, Zarnescu, in preparation). In line with expectation that n defects of index $\pm 1 / 2$ have less energy that one defect of strength n (energy $\left.\sim(\text { index })^{2}\right)$.

They have also established the stability of the Y profile for $|k|=1$ (in preparation).

