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Macroscopic Model of Liquid Crystals (De Gennes)

I Liquid crystals find everyday use in modern technology.

I LCDs, optics, etc.

I Liquid crystal molecules are often idealized as
elongated rods or ellipsoidal disks.

I Further simplify by an averaging procedure to
replace local arrangements of many rods by
a few order parameters.

Essentially, the state of the system is:

I The local (average) orientation of molecules.

I The local (average) degree of orientation.

One model that captures this is the Q-tensor approach [De Gennes 74].
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Model: Ericksen’s model

I Q tensor is a symmetric, traceless 3× 3 tensor. Thus, Q is of the form

Q = −(s1n1 ⊗ n1 + s2n2 ⊗ n2) +
1

3
(s1 + s2)I

with eigenvalues between −1/3 and 2/3.

I Uniaxial liquid crystal: Q tensor reduces to Q = s(n⊗ n− 1
3
I).

I Further simplification: deal with the director n.

I The equilibrium state minimizes (one-constant Ericksen’s model):

E :=

∫
Ω

κ|∇s|2 + s2|∇n|2dx︸ ︷︷ ︸
:=E1

+

∫
Ω

ψB(s)dx︸ ︷︷ ︸
:=E2

where κ > 0 and ψB is a double well potential.

I s is the degree of orientation (−1/2 < s < 1).

I s = 1: perfect alignment with n.

I s = 0: no preferred direction (isotropic). This defines the set of defects:

{x ∈ Ω, s(x) = 0}.

I s = −1/2: perpendicular to n.
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Ericksen’s model vs. Oseen-Frank model

I When s = s0 > 0, the energy reduces to the Oseen-Frank energy:

E :=

∫
Ω

|∇n|2dx.

I Line and plane defects have infinite energy in the Oseen-Frank model:

r

z

C

I Line defects:

n =
r

|r|
, |∇n| =

2

|r|
.

I Compute
∫
C |∇n|

2dx :∫ 1

0

4

r2
rdr =∞.

I Ericksen’s model regularizes the defect.

I Goal: design a robust finite element method to capture these defects.
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Numerical Experiments: (point defect in 2d)

Consider the Dirichlet boundary conditions s = s∗, n = x
|x| . MOVIE
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Numerical Experiments: (point defect in 2d)

Energy Decrease:
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Admissible class

I Assume κ > 0. We seek a discrete energy Eh1 to approximate

E1 :=

∫
Ω

κ|∇s|2 + s2|∇n|2dx.

I Since ∇|n|2 = 2(∇n)n = 0, we have an identity:∫
Ω

|∇ (sn)︸︷︷︸
:=u

|2dx =

∫
Ω

|∇s⊗ n + s∇n|2dx =

∫
Ω

|∇s|2 + s2|∇n|2dx.

We rewrite the energy [Ambrosio 90, Lin 91]:

E1 =

∫
Ω

(κ− 1)|∇s|2 + |∇(sn)|2dx,

i.e. a simple quadratic functional, but with a negative term.

I Admissible class:

A := {(s,n) : s ∈ H1(Ω), u = sn ∈ H1(Ω) and |n| = 1 a.e. in Ω}.
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Numerical Discretization

I Let Th = {T} be a conforming, shape-regular triangulation of Ω, with set
of nodes (vertices) denoted by Nh.

I Exact solution: (s,n); Discrete solution (S,N) or (sh,nh).

I Piecewise linear approximation: S ∈Wh, N ∈ Vh:

Wh := {S ∈ H1(Ω) : S|T is affine},

Uh := {U ∈ H1(Ω)d : U |T is affine in each component},
Vh := {N ∈ Uh : |N(xi)| = 1 at all nodes xi ∈ Nh}.

I I.e. impose the unit length constraint at the mesh nodes.

I Denote the continuous piecewise linear “hat” basis functions by {φi}.
I Assume the entries of the stiffness matrix {kij} satisfy

kij = −
∫

Ω

∇φi · ∇φjdx ≥ 0, for i 6= j.

I If the mesh is weakly acute, then this condition is true.
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Discretization of the Energy

I The condition |N(x)| = 1 is only at the nodes x = xi,

I This suggests to view the discrete energy in terms of nodal values.

I For a piecewise linear function S, we have∫
Ω

|∇S|2dx =
1

2

∑
i,j

kij(Si − Sj)2,

where Si = S(xi) for all nodes xi.

I We approximate

E1 =

∫
Ω

κ|∇s|2 + s2|∇n|2dx,

by a discrete energy:

Eh1 :=
κ

2

N∑
i,j=1

kij (Si − Sj)2

︸ ︷︷ ︸
standard

+
1

2

N∑
i,j=1

kij

(
S2
i + S2

j

2

)
|N i −N j |2︸ ︷︷ ︸

not standard

,

where N i = N(xi) for all nodes xi.
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Stability of the Discrete Energy

I Let U ∈ Uh such that U(xi) = S(xi)N(xi) for all nodes xi.

I Energy inequality:

Eh1 [Ω, S,N ] ≥ (κ− 1)

∫
Ω

|∇S|2dx+

∫
Ω

|∇U |2dx.

I Moreover,

Eh1 [Ω, S,N ] ≥ (κ− 1)

∫
Ω

|∇Ih|S||2dx+

∫
Ω

|∇Ũ |2dx.

I Ih is the linear interpolant of |S|.
I Ũ ∈ Uh, such that Ũ(xi) = |S(xi)|N(xi) for all nodes xi.

Remark: eventually, we need the right-hand-side to be convex with respect to
the gradient. Thus, we need |S|.
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Stability of the Discrete Energy

prove this: Eh1 ≥ (κ− 1)

∫
Ω

|∇S|2dx+

∫
Ω

|∇U |2dx.

∫
Ω

|∇U |2dx =
1

2

N∑
i,j=1

kij |SiN i︸ ︷︷ ︸
U i

−SjN j︸ ︷︷ ︸
U j

|2

=
1

2

N∑
i,j=1

kij

∣∣∣∣(Si + Sj
2

)
(N i −N j) + (Si − Sj)

(
N i + N j

2

)∣∣∣∣2 .
The unit length constraint on N at the nodes implies:
(N i −N j) · (N i + N j) = |N i|2 − |N j |2 = 0. Thus,∫

Ω
|∇U |2dx =

1

2

N∑
i,j=1

kij

(
Si + Sj

2

)2

|N i −Nj |2 +
1

2

N∑
i,j=1

kij(Si − Sj)
2

∣∣∣∣N i +Nj

2

∣∣∣∣2

=
1

2

N∑
i,j=1

kij

(
Si + Sj

2

)2

|N i −Nj |2 +
1

2

N∑
i,j=1

kij(Si − Sj)
2 −

1

2
E,

where we used
∣∣∣N i+N j

2

∣∣∣2 = 1−
∣∣∣N i−N j

2

∣∣∣2.
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Stability of the Discrete Energy

∫
Ω

|∇U |2dx =
1

2

N∑
i,j=1

kij(Si − Sj)2 +
1

2

N∑
i,j=1

kij

(
Si + Sj

2

)2

|N i −N j |2 −
1

2
E ,

where

E :=
N∑

i,j=1

kij (Si − Sj)2

∣∣∣∣N i −N j

2

∣∣∣∣2 (positive term).

Next, plug in: (
Si + Sj

2

)2

=

(
S2
i + S2

j

2

)
−
(
Si − Sj

2

)2

,

to get∫
Ω

|∇U |2dx =
1

2

N∑
i,j=1

kij(Si − Sj)2 +
1

2

N∑
i,j=1

kij

(
S2
i + S2

j

2

)
|N i −N j |2 − E ,
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Stability of the Discrete Energy

prove this: Eh1 ≥ (κ− 1)

∫
Ω

|∇S|2dx+

∫
Ω

|∇U |2dx.

Adding (κ− 1)
∫

Ω
|∇S|2dx to both sides gives

(κ− 1)

∫
Ω

|∇S|2dx+

∫
Ω

|∇U |2dx

=
κ

2

N∑
i,j=1

kij(Si − Sj)2 +
1

2

N∑
i,j=1

kij

(
S2
i + S2

j

2

)
|N i −N j |2 − E

≤ Eh1 .

Note that E ≥ 0 provided the meshes are weakly acute.
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Numerical Experiments: (plane defect in 3d) [Ambrosio Virga 1991]

x

y

z

S+

S−

I n = e1 on S−.

I n = e2 on S+.

I Set s = s0 on S+ and S−,
where s0 is the minimizer of
double well potential ψB .

I κ = 0.2

I Set of defect: {z = 1/2}.
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Numerical Experiments: (plane defect in 3d)

MOVIE
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Numerical Experiments: (plane defect in 3d)

Energy Decrease:
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Main Theorem

Γ-Convergence of the Discrete Energy Eh1 :

I Let {Th} be a sequence of weakly acute meshes.

I lim-sup: there exists a sequence {(sh,nh)}, such that (sh,nh) converges
to (s,n) in L2, and

E1[s,n] ≥ lim sup
h→0

Eh1 [sh,nh].

I lim-inf: for every sequence {(sh,nh)}, such that (sh,nh) converges to
(s,n) in L2, we have

E1[s,n] ≤ lim inf
h→0

Eh1 [sh,nh].

Convergence of the Finite Element Method:

I Eh1 [sh,nh] is coercive: any sequence {(sh,nh)} with finite discrete energy
is pre-compact in L2.

I Let {(sh,nh)} be a minimizing sequence of Eh1 [sh,nh].

I Then (sh,nh) converges to (s,n) in L2, where (s,n) is a minimizer of
E1[s,n].
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Limit-Sup Inequality

Let (s,n) be in A and set u = sn. Then

Eh1 [sh,nh]→ E1[s,n], as h→ 0,

where (sh,nh) are the Lagrange interpolants of (s,n).
Proof:

I Recall the identity

Eh1 [sh,nh] = (κ− 1)

∫
Ω

|∇sh|2dx+

∫
Ω

|∇uh|2dx+ E

I Since sh → s, uh → u, we only need to show

E =

N∑
i,j=1

kij (si − sj)2
∣∣∣ni − nj

2

∣∣∣2 → 0, as h→ 0,

where si = sh(xi), ni = nh(xi).

I E ≈ 2h2
∫

Ω
|∇sh|2dx if n is smooth.

I But n may have a discontinuity.
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Consistency of the Discrete Energy

Proof:
We divide Ω into two regions:

Sε = {x ∈ Ω, |s(x)| < ε} and Kε = Ω \ Sε.

I Step 1, Estimate on Kε:∑
xi,xj∈Kε

kij(si − sj)2
∣∣∣ni − nj

2

∣∣∣2 ≤ C
 max

xi,xj∈Kε,
|xi−xj |≤h

|ni − nj |2
∫

Ω

|∇sh|2dx.

I Step 2, Estimate on Sε:∑
either xi or xj ∈ Sε

kij(si − sj)2
∣∣∣ni − nj

2

∣∣∣2 ≤ 2

∫
∪ωi
|∇sh|2dx ≤ 2

∫
S2ε

|∇sh|2dx,

where ∪ωi is taken over all nodes xi in Sε.
I Combining both estimates, we have

E ≤ C

 max
xi,xj∈Kε,
|xi−xj |≤h

|ni − nj |2


︸ ︷︷ ︸
O(h2)

∫
Kε
|∇sh|2dx+ 2

∫
S2ε

|∇sh|2dx︸ ︷︷ ︸
→0 as ε→0

.
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Limit-Inf Inequality

The main issue is dealing with the case 0 < κ < 1.

Recall a previous result:

Eh1 [Ω, sh,nh] ≥ (κ− 1)

∫
Ω

|∇Ih|sh||2dx+

∫
Ω

|∇ũh|2dx,

where ũh in Uh and ũh(xi) = |sh(xi)|nh(xi) for all nodes xi.

I Coercivity: for all κ > 0, we have

Eh1 [Ω, sh,nh] ≥ min{κ, 1}
∫

Ω

|∇ũh|2dx ≥ min{κ, 1}
∫

Ω

|∇Ih|sh||2dx.

I Weak Lower Semi-continuity: Let wh ∈ Uh. The energy∫
Ω

Lh(wh,∇wh)dx, where

Lh(wh,∇wh) := (κ− 1)|∇Ih|wh||2 + |∇wh|2,
is weakly lower semi-continuous, i.e. we have

lim inf
h→0

∫
Ω

Lh(wh,∇wh)dx ≥
∫

Ω

(κ− 1)|∇|w||2 + |∇w|2dx.

for any weakly convergent sequence wh ⇀ w in the H1 norm.
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Numerical Experiment: (plane defect in 3d)

Visualization of defect formation:

MOVIE
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Weak Lower Semi-continuity

Proof:

Main Goal:
Show that

Lh(wh,∇wh) := (κ− 1)|∇Ih|wh||2 + |∇wh|2

is convex with respect to ∇wh, even for 0 < κ < 1.

Rewrite energy density:

I Suppose dimension is d = 2. Let T be a triangle in Th with vertices
x0, x1, x2. Define

ei := xi − x0, for i = 1, 2, wi := wh(xi) for i = 0, 1, 2.

I A simple calculation gives:

∇wh = (w1 −w0)⊗ e∗1 + (w2 −w0)⊗ e∗2,

∇Ih|wh| = (|w1| − |w0|)e∗1 + (|w2| − |w0|)e∗2,

where ei · e∗j = δij (dual basis).

I Note:

|wi| − |w0| =
wi + w0

|wi|+ |w0|
· (wi −w0).
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Weak Lower Semi-continuity

Proof:

I Therefore,
∇Ih|wh| = Gh(wh) : ∇wh,

where Gh is a 3-tensor:

Gh(wh) :=
w1 + w0

|w1|+ |w0|
⊗ e1 ⊗ e∗1 +

w2 + w0

|w2|+ |w0|
⊗ e2 ⊗ e∗2.

I We define (g1 ⊗ g2 ⊗ g3) : (m1 ⊗m2) = (g1 ·m1)(g2 ·m2)g3.

I Hence,
Lh(wh,∇wh) = |∇wh|2 + (κ− 1)|Gh : ∇wh|2.

Note:

I e1 ⊗ e∗1 + e2 ⊗ e∗2 = I, i.e. the identity matrix.

I If wh → w a.e., then, for a.e. x such that w(x) 6= 0,

wi + w0

|wi|+ |w0|
→ w

|w| , for i = 1, 2 ⇒ Gh → G(w) :=
w

|w| ⊗ I.
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Weak Lower Semi-continuity

Proof:

I Claim: the energy density

L(w,M) := |M |2 + (κ− 1)|G(w) : M |2

is convex with respect to any matrix M .

I Indeed, L(w,M) is quadratic in M , so we only need to show that
L(w,M) > 0 for any M .

I This is equivalent to showing |G : M | ≤ |M |, which follows by simple
inequalities.

I A similar argument shows that Lh(wh,M) > 0 for any matrix M , and so
also convex.

For the remainder of the proof, letting wh be a weakly convergent sequence in
H1(Ω), and applying standard limiting arguments, we get the assertion.
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Limit-Inf Inequality

Proof:

I Let {(sh,nh)} be any sequence converging strongly to (s,n) in L2.

I We know that the H1 norms of Ih|sh| and ũh are bounded.

I Extract a subsequence {(Ih|sh|, ũh)} converging weakly in H1 and
strongly in L2 to (|s|, ũ).

I Moreover, one can show ũ(x) = |s(x)|n(x), with |n(x)| = 1, for a.e. x.

By previous results and weak lower semi-continuity:

lim inf
h→0

Eh1 [sh,nh] ≥
∫

Ω

(κ− 1)|∇|ũ||2 + |∇ũ|2dx

=

∫
Ω

κ|∇|s||2 + |s|2|∇n|2dx

=

∫
Ω

κ|∇s|2 + s2|∇n|2dx

= E1[s,n].
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I Moreover, one can show ũ(x) = |s(x)|n(x), with |n(x)| = 1, for a.e. x.

By previous results and weak lower semi-continuity:

lim inf
h→0

Eh1 [sh,nh] ≥
∫

Ω
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Alternating Direction Method

I We design a gradient flow to seek a minimizer (S,N) of the discrete
energy Eh[S,N ].

I Given the k-th iteration (Sk,Nk), to respect the unit length constraint for
Nk+1 at all nodes, we consider a first order variation with respect to Nk

in the discrete tangent space [Alouges 97, Bartels 10]:

Tkh = {T ∈ H1(Ω),T |T is affine, and T i ·Nk
i = 0 for all nodes xi}.

I Step (a): find T k in Tkh such that for any V in Tkh we have

δNEh1 [Sk,Nk + T k;V ] = 0.

I Step (b): normalize:

Nk+1
i :=

Nk
i + T k

i

|Nk
i + T k

i |
, at all nodes.

I Step (c): find Sk+1 in Wh such that for any Zh ∈Wh we have∫
Ω

Sk+1
h − Skh
δt

Zh = − δSEh1 [Sk+1
h ,Nk+1

h ;Zh]− δSEh2 [Sk+1
h ;Zh].
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Monotone Energy Decrease

I Energy decrease of the gradient flow:
Given a pair (Nk

h, S
k
h), let (Nk+1

h , Sk+1
h ) be the discrete gradient flow

obtained by the algorithm above. Then

Eh[Sk+1
h ,Nk+1

h ] ≤ Eh[Skh,N
k
h].

Equality holds if and only if the flow (Nk
h, S

k
h) attains an equilibrium

state, that is,
(Nk+1

h , Sk+1
h ) = (Nk

h, S
k
h).

I Proof is essentially based on linear arguments, except for step (b) which
uses an argument from [Alouges 97, Bartels 10].
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Fluting effect and line defect

r

z

C

I We neglect the double well
potential ψB .

I Consider the minimizers of

E =

∫
C

κ|∇s|2 + s2|∇n|2dx.

I Boundary condition:

s|S0 = s0 > 0 and n|S0 =
r

|r| .

I Theorem [Characterization of singular set, Mizel Roccato Virga1991]:
If (s,n) is the minimizer of energy E, then either the singular set S is
empty or S = {|r| = 0}.
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Numerical Experiments: κ = 10 Fluting effect
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Numerical Experiments: κ = 10 Fluting effect
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Numerical Experiments: κ = 0.1 “Propeller” Defect

MOVIE
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Numerical Experiments: κ = 0.1 “Propeller” Defect

MOVIE

0 0.5 1
0

0.5

1
Z = 0.2  Slice

X

Y

0 0.5 1
0

0.5

1
Z = 0.4  Slice

X

Y

0 0.5 1
0

0.5

1
Z = 0.6  Slice

X

Y

0 0.5 1
0

0.5

1
Z = 0.8  Slice

X

Y

FEM For Liquid Crystals S. W. Walker



Ericksen’s Model Discrete Energy and Finite Element Method Γ-Convergence Gradient Flow Numerical Experiments

Numerical Experiments: κ = 0.1 “Propeller” Defect

Energy Decrease:
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Numerical Experiments: κ = 0.1 Defect In A Rectangular Box

MOVIE: Director Field

MOVIE: Defect Evolution
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Numerical Experiments: κ = 0.1 Defect In A Rectangular Box

Energy Decrease:
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Conclusion

I We have a finite element method (FEM) for the one constant Ericksen’s
model:

E :=

∫
Ω

κ|∇s|2 + s2|∇n|2dx+

∫
Ω

ψB(s)dx.

I We have Γ-convergence of the FEM.

I We have monotone energy decrease of the gradient flow.

I Our FEM is capable of capturing high dimensional defects.

Future Work:

I Include magnetic (electric) field to manipulate the liquid crystal.

I Investigate the Q-tensor method.

I Study flows of liquid crystals (couple Ericksen’s model with Stokes flow).
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