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1. Transformations of random variables

Suppose X has density f(x), and consider a transformation Y = h(X), where h is smooth

and monotone. Then the density of Y is

g(y) = f(x(y))|x′(y)|,

where x(y) = h−1(y) is the inverse function. See Devore & Berk Ch. 4.7 for discussion and

applications.

(a) Prove the formula.

(b) IfX ∼ N(0, 1), find the density of Y = exp(X). Generalise to the case ofX ∼ N(ξ, σ2),

where Y = exp(X) is said to have the log-normal distribution. Find the mean, variance

and skewness of Y .

(c) If U is uniform on (0, 1), find the density of V = U/(1 − U). Find also its median.

What about its mean?

(d) Let again U be uniform on the unit interval. Find the distribution of W = − logU .

(e) Suppose X has a Weibull distribution with cumulative distribution function

F (x) = 1− exp{−(x/a)b} for x ≥ 0.

Find the distribution of V = (X/a)b, and use this to represent X as a function of a

unit exponential.

2. Transformations of random vectors

The natural generalisation of the transformation formula of Exercise 1 is the following.

Suppose X = (X1, . . . , Xn)
t is a random vector with joint probability density function

f(x) = f(x1, . . . , xn), and consider Y = (Y1, . . . , Yn) = h(X), involving smooth functions

Y1 = h1(x), . . . , Yn = hn(x). Then the density of Y may be written

g(y) = f(x(y)) ||J(y)||,

in which x(y) = h−1(y) is the inverse transformation, i.e. solving y = h(x) with respect to

x, and

J(y) = x′(y) =
∂x(y)

∂y
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is the n × n Jacobian matrix of this inverse transformation. Its row no. i has the partial

derivatives of xi(y1, . . . , yn) with respect to y1, . . . , yn. Above ||J(y)|| is the absolute value
of |J(y)|, the determinant of J(y). The formula above is valid if the sign of this determinant

is the same throughout the range of y.

(a) Try to prove the formula, appealing to transformation theorems from mathematical

analysis for multiple integrals. See also Devore & Berk, Section 5.4.

(b) Let X and Y be independent unit exponentials, and consider U = X/(X + Y ) and

V = X + Y . Find the joint density of (U, V ), show that these two are independent,

and find their separate distributions.

(c) We say that Z has the gamma distribution with parameters (a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) for z > 0.

Now take X and Y to be independent with gamma distributions (a, 1) and (b, 1), and

consider U = X/(X + Y ). Show that U has a Beta density with parameters (a, b).

(d) In generalisation of the above, let X1, . . . , Xn be independent, with Xi being gamma

with parameters (ai, 1). Then consider the random probability vector

(Y1, . . . , Yn) =
(X1

S
, . . . ,

Xn

S

)
,

with S = X1 + · · ·+Xn. Show that the density of (Y1, . . . , Yn−1) can be written as

g(y1, . . . , yn−1) =
Γ(a1 + · · ·+ an)

Γ(a1) · · ·Γ(an)
ya1−1
1 · · · yan−1−1

n−1 (1− y1 − · · · − yn−1)
an−1

on the simplex of (y1, . . . , yn−1) with nonnegative components and sum smaller than

one. We say that (Y1, . . . , Yn) has the Dirichlet distribution with parameters (a1, . . . ,

an). It is being extensively used as models for probability vectors, e.g. in Bayesian

statistics. Show also that

EYi =
ai
a
, VarYi =

1

a+ 1

ai
a

(
1− ai

a

)
, cov(Yi, Yj) = − 1

a+ 1

ai
a

aj
a
,

where a = a1 + · · ·+ an.

3. A pair of normals

Let (X,Y ) be a pair of independent standard normals, and transform to polar coordinates,

X = R cos θ, Y = R sin θ.

Find the distribution of the random length R and the random angle θ, and show that these

are independent.
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4. Ordering exponentials

Let X1, X2, X3 be independent unit exponentials (with density exp(−x) for x positive),

and order them, to X(1) < X(2) < X(3). Then define the so-called spacings between them,

Y1 = X(1), Y2 = X(2) −X(1), Y3 = X(3) −X(2).

Find their joint distribution, and show that they are independent. (This is not true for

other start distributions for the data points than the exponential.)

Then generalise, considering i.i.d. unit exponentials X1, . . . , Xn, ordered into X(1) <

· · · < X(n). Work with the scaled spacings

V1 = nX(1),

V2 = (n− 1)(X(2) −X(1)),

V3 = (n− 2)(X(3) −X(2)),

...

Vn−1 = 2(X(n−1) −X(n−2)),

Vn = X(n) −X(n−1).

Show that

X(1) =
V1

n
,X(2) =

V1

n
+

V2

n− 1
, . . . , X(n) =

V1

n
+

V2

n− 1
+ · · ·+ Vn−1

2
+

Vn

1
,

and then show that in fact V1, . . . , Vn are i.i.d. unit exponentials.

Use this to show that Mn = maxXi has mean close to log n+ γ, where γ = 0.5772...

is the Euler constant, and variance converging to π2/6. Finally find the limit distribution

for Wn = Mn − log n.

5. Ratios of ordered uniforms

Let U1, . . . , Un be an i.i.d. sample from the uniform distribution on the unit interval, and

order these into U(1) < · · · < U(n). From these form the ratios

V1 =
U(1)

U(2)
, V2 =

U(2)

U(3)
, . . . , Vn−1 =

U(n−1)

U(n)
, Vn =

U(n)

1
.

(a) Show that the inverse transformation leads to the representation

U(n) = Vn, U(n−1) = VnVn−1, . . . , U(2) = VnVn−1 · · ·V2, U(1) = VnVn−1 · · ·V2V1.

(b) Find the joint probability density for (V1, . . . , Vn), and show in fact that these are

independent, with

V1 ∼ Beta(1, 1), V2 ∼ Beta(2, 1), . . . , Vn−1 ∼ Beta(n− 1, 1), Vn ∼ Beta(n, 1).
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(c) Independently of the details above, find the density of U(i), and show that it is a

Beta(i, n− i+ 1). In particular, we have

EU(i) =
i

n+ 1
and VarU(i) =

1

n+ 2

i

n+ 1

(
1− i

n+ 1

)
.

The previous point then tells us that this Beta(i, n − i + 1) can be represented as a

product of different independent Beta variables.

(d) It is of course a somewhat cumbersome simulation recipe for generating a uniform

sample, but it is a useful exercise, opening doors & minds to fruitful generalisations:

For n = 10, say, generate ordered uniform samples of size n in your computer via the

representation above, in terms of products of Beta variables. Carry out some checks

to see that each single U(i) then has the right distribution, i.e. as described in (c).

(e) Work with the following generalisation of the construction above: Let X1, . . . , Xn be

an i.i.d. sample from the distribution with density f(x) = axa−1, i.e. a Beta(a, 1).

Again form the ratios Vi = X(i)/X(i+1) as above, leading to X(i) = ViVi+1 · · ·Vn.

Show that the Vi are again independent, now with Vi ∼ Beta(ai, 1).

6. The multinormal distribution

‘Multivariate statistics’ is broadly speaking the area of statistical modelling and analysis

where data exhibit dependencies. The most important multivariate distribution is the

multinormal one. We say that X = (X1, . . . , Xk)
t is multinormal with mean vector ξ (a

k-vector) and variance matrix Σ (a positive definite k × k matrix) if its density has the

form

f(x) = (2π)−k/2|Σ|−1/2 exp{− 1
2 (x− ξ)tΣ−1(x− ξ)} for x ∈ IRk.

We write X ∼ Nk(ξ,Σ) to indicate this. For dimension k = 1 this corresponds to the

traditional Gaußian N(ξ, σ2).

(a) Show that if X ∼ Nk(ξ,Σ) and A is k × k of full rank, and b a k-vector, then

Y = AX + b ∼ Nk(Aξ + b, AΣAt).

(b) Show that if X ∼ Nk(ξ,Σ), then indeed

EX = ξ and VarX = Σ,

justifying the semantic terms used above.

(c) Let now X ∼ Nk(0,Σ). By a famous theorem of linear algebra, for the given positive

definite symmetric matrix Σ there is an orthonormal matrix P (i.e. PP t = Ik = P tP )

such that PΣP t = D, where D is a diagonal matrix with the eigenvalues λ1, . . . , λn of

Σ along the diagonal. Show that Y = PX has independent components Y1, . . . , Yk –

we are hence transforming from dependence to independence. Generalise to the case

of non-zero mean, i.e. X ∼ Nk(ξ,Σ).
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(d) Show that X is multinormal if and only if all linear combinations are normal. In

particular, if X ∼ Nk(ξ,Σ), then atX = a1X1 + · · · + akXk is N(atξ, atΣa). – We

will also allow saying ‘X ∼ Nk(ξ,Σ)’ in cases where Σ has less than full rank. in

particular, a constant may be seen as a normal distribution with zero variance.

(e) Generalise the result of (a) to the situation where A is of dimension m × k (rather

than merely k × k).

7. Multinormal conditional distributions

This exercise is concerned with the fundamental properties of conditional distributions in

multinormal contexts.

(a) An important property of the multinormal is that a subset of components, conditional

on another subset of components, remains multinormal. Show in fact that if

X =

(
X(1)

X(2)

)
∼ Nk1+k2

(

(
ξ(1)

ξ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

)
),

then

X(1) | {X(2) = x(2)} ∼ Nk1
(ξ(1) +Σ12Σ

−1
22 (x

(2) − ξ(2)),Σ11 − Σ12Σ
−1
22 Σ21).

(b) How tall is Professor Hjort? Assume that the heights of Norwegian men above the

age of twenty follow the normal distribution N(ξ, σ2), with ξ = 180 cm and σ = 9

cm. Thus, if you have not yet seen or bothered to notice this particular aspect of

Professor Hjort and his lectures, your point estimate of his height ought to be ξ = 180

and a 95% prediction interval for his height would be ξ ± 1.96σ, or [162.4, 197.6]. –

Assume now that you learn that his four brothers are actually 195 cm, 207 cm, 196

cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the

population of Norwegian men is equal to ρ = 0.80. Use this information about his four

brothers (still assuming that you have not noticed Professor Hjort’s height) to revise

your initial point estimate of Professor Hjort’s height. Is he a five-percent statistical

outlier in his family (i.e. outside the 95% prediction interval)?

(f) Assume Professor Hjort has n brothers (rather than merely four) and that you’re

learning their heights X1, . . . , Xn. What is the conditional distribution of Professor

Hjort’s height X0, given this information? Represent this as a N(ξn, σ
2
n) distribution,

with proper formulae for its parameters. How small is σn for a large number of

brothers? (The point here is partly that even if you observe and measure my 99

brothers, there’s still a limit to how much you can infer about me.)

8. Distributions associated with a normal sample

Here I indicate proofs of some results given in Devore & Berk, Ch. 6, pertaining to dis-

tributions associated with a normal sample. Suppose X1, . . . , Xn are i.i.d. and standard

normal, and let X̄ = n−1
∑n

i=1 Xi and Z =
∑n

i=1(Xi − X̄)2.
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(a) Let P be an orthonormal n × n matrix. Show that Y = PX gives another set of

i.i.d. standard normals, Y1, . . . , Yn. Show also that X and PX have identical lengths;

‖X‖ = ‖PX‖.
(b) Construct a particular orthonormal matrix by letting the first row be (1/

√
n, . . . ,

1/
√
n) and then filling in something for rows 2, . . . , n. With Y = PX, demonstrate

that

Y1 =
√
nX̄ and Z =

n∑

i=2

Y 2
i .

Show also that Z ∼ χ2
n−1 and independent of X̄.

(c) Now consider a general normal i.i.d. sample X1, . . . , Xn from some N(µ, σ2). Show

that

µ̂ = X̄n and σ̂2 =
1

n− 1

n∑

i=1

(Xi − X̄)2

are independent, that µ̂ is normal (µ, σ2/n), and that σ̂2 =d σ2χ2
n−1/(n − 1). Here

‘=d’ means equality in distribution.

(d) Show that

t =
X̄ − µ

σ̂/
√
n

=d
N

(χ2
m/m)1/2

,

where N is standard normal and independent of the χ2
m, and where finally m = n−1.

But this is by definition the tm distribution, the t with degrees of freedom equal to

m = n− 1.

9. Convergence in probability

Consider a sequence of random variables V1, V2, . . .. We say that Vn converges in probability

to the constant a, and write Vn →p a, if

P (|Vn − a| ≤ ε) → 1 for all ε > 0

as n → ∞. The definition extends easily to the case where the limit in probability is a

random variable V rather than a constant, and is also equivalent to

P (|Vn − V | ≥ ε) → 0 for all ε > 0.

For most of our applications inside the STK 1110 course the probability limit will in fact

be a constant, however, i.e. not a random variable per se.

(a) Show that if Vn →p a and h(v) is a function continuous at a, then h(Vn) →p h(a).

(b) Extend the previous result to the case where the probability limit is a random variable,

i.e. if Vn →p V and h(v) is continuous on the domain of V , then h(Vn) →p h(V ).

(Explain also why the proof indicated in the book’s exercises is not fully correct.)
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(c) Suppose An →p a and Bn →p b. Show that An +Bn →p a+ b and that AnBn →p ab.

Attempt to generalise these results; in effect, h(An, Bn) →p h(a, b) provided h is

continuous at position (a, b).

10. The Law of Large Numbers

Let X1, X2, . . . be a sequence of i.i.d. variables, with EXi = ξ and VarXi = σ2.

(a) Show that the sequence of averages X̄n = n−1
∑n

i=1 Xi converges in probability to

ξ, i.e. X̄n →p ξ. You may use Chebyshov’s inequality (neravenstvo Qebyxëva).

The Law of Large Numbers (LLN) says that we still have X̄n →p ξ, even without

further assumptions that the mean is finite, i.e. even if the variance is infinite; the

proof becomes more complicated, however.

(b) Suppose the variance σ2 is finite. Show that

S2
n = n−1

n∑

i=1

(Xi − X̄n)
2 →p σ2.

Explain why this also implies that Sn →p σ. We say that Sn is a consistent estimator

for the parameter σ; similarly, X̄n is consistent for the mean parameter ξ.

(c) Suppose that also the third moment is finite. Show that

Tn = n−1
n∑

i=1

(Xi − X̄n)
3 →p γ3 = E(Xi − ξ)3,

and that the so-called empirical skewness converges to the theoretical skewness:

κ̂3 = n−1
n∑

i=1

(Xi − X̄n

Sn

)3

=
Tn

S3
n

→p κ3 = E
(Xi − ξ

σ

)3

.

(d) Generalise the above to the case of higher order moments.

11. Convergence in distribution

Let V1, V2, . . . be a sequence of random variables. We say that Vn converges in distribution

to V , and write Vn →d V to indicate this, if

Fn(t) = P (Vn ≤ t) → F (t) = P (V ≤ t) for all t = CF

as n → ∞, where CF is the set of points at which the cdf F of the limit distribution is

continuous. In particular, if this limit distribution is continuous, Vn →d V if Fn(t) → F (t)

for all t.

(a) Show that if V →d V , then

P (Vn ∈ (a, b]) → P (V ∈ (a, b])
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for all intervals (a, b] for which a, b are continuity points. If Vn →d N(0, 1), where this

is accepted and traditional short-hand notation for the more cumbersome ‘Vn →d V ,

where V ∼ N(0, 1), etc., then P (|Vn| ≤ 1.96) → 0.95, etc.

(b) For an i.i.d. sample U1, . . . , Un from the uniform distribution on (0, 1), let Mn =

maxi≤n Ui = U(n). Find the limit distribution of Vn = n(1−Mn).

(c) Suppose the Vn and the V have distributions on the integers 0, 1, 2, . . ., with probabil-

ities P (Vn = j) = fn(j) and P (V = j) = f(j) for j = 0, 1, 2, . . .. Prove that Vn →d V

is equivalent to convergence of these probabilities, i.e. fn(j) → f(j) for each j.

(d) Suppose Vn is a binomial (n, pn) where npn → λ, a positive parameter. Show that

Vn →d Pois(λ). This is how the Poisson distribution first saw light, in 1837 (though

a much earlier account, containing more or less the same approximation results, is by

de Moivre in 1711).

(e) Generalise the above result to the following ‘law of small numbers’. Let X1, X2, . . . be

independent binomials (1, pi) with small probabilities p1, p2, . . ., and consider Vn =∑n
i=1 Xi, the number of events after n trials. Show that if

∑n
i=1 pi → λ and δn =

maxi≤n pi → 0, then Vn →d Pois(λ). Show also that these conditions are also neces-

sary for convergence to a Poisson.

12. Convergence of densities

Suppose that Vn and V have densities fn and f .

(a) Show that if fn(v) → f(v) for all v, then there is also convergence of their cumulatives,

i.e. Fn(v) → F (v) for all v. In other words, convergence of density functions implies

convergence in distribution.

(b) If fn → f as above, show the somewhat stronger result∫
|fn(v)− f(v)| dv → 0.

This is called ‘L1 convergence’, and is also equivalent to convergence in the supremum

probability difference metric,

∆(Pn, P ) = sup
all A

|Pn(A)− P (A)| → 0.

(c) Work with the density of the tm, the t distribution with m degrees of freedom, and

show that it converges to the famous N(0, 1) density as m → ∞.

(d) For an i.i.d. sample U1, . . . , Un from the uniform distribution on the unit interval,

consider the median Mn, where we for simplicity take n = 2m + 1 to be odd, so

that Mn = U(m+1). Work out the density for Mn and then the density gn(v) for

Vn =
√
n(Mn − 1

2 ). Show that in fact

gn(v) →
1√
2π

2 exp(−2v2),

where you may need Stirling’s formula, m!
.
= mm exp(−m)

√
2πm. Thus

√
n(Mn −

1
2 ) →d N(0, 1

4 ).
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(e) Give an approximation formula for P (0.49 ≤ Mn ≤ 0.51), and determine how big n

needs to be in order for this probability to be at least 0.99.

13. The portmanteau theorem for convergence in distribution

The definition of convergence in distribution given above, in therms of their cumulative

distribution functions, is somewhat cumbersome and not easy to work with, so we need

reformulations and alternative conditions.

For random variables Vn and V with cumulative distribution functions Fn and F ,

corresponding also to probability measures Pn(A) = P (Vn ∈ A) and P (A) = P (V ∈ A)

(where the point is that also more complicated sets A may be worked with than only

intervals), consider the following statements:

(i) Vn →d V , i.e. Fn(v) → F (v) for continuity points v, as defined above.

(ii) lim inf Pn(O) ≥ P (O) for all open sets O.

(iii) lim supPn(F ) ≤ P (F ) for all closed sets F .

(iv) limPn(A) = P (A) for all sets A for which its boundary set ∂(A) = Ā − Ao has P -

probability zero. Here Ā is the smallest closed set containing A and A0 is the biggest

open set inside A; thus ∂(A) for the interval (a, b) would be the two-point set {a, b},
and likewise for [a, b], (a, b], [a, b).

(v) Eh(Vn) →d Eh(V ) for each continuous and bounded h: IR → IR.

The purpose of this exercise is to show that in fact (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv)

⇐⇒ (v), i.e. these five conditions are equivalent. This is the ‘portmanteau theorem’ for

convergence in distribution, due, I believe, to Aleksandrov (1943).

(a) Show that (i) ⇒ (ii). Use the mathematical analysis fact that a given open set O may

be represented as a finite or countable union of disjoint open intervals (ai, bi).

(b) Show that (ii) ⇒ (iii), by using the fact that a set F is closed if and only if its

complement F c is open. This also gives (iii) ⇒ (ii).

(c) Show that (iii) ⇒ (iv).

(d) Show that (iv) ⇒ (v), as follows. Take a bounded continuous function h, and for

simplicity stretch and scale it so that it lands inside [0, 1]. Then argue that

Eh(Vn) =

∫ 1

0

P (h(Vn) ≥ x) dx and Eh(V ) =

∫ 1

0

P (h(V ) ≥ x) dx.

This is related to the general fact that for any nonnegative random variable Y with

cumulative distribution function G, say, we have

EY =

∫ ∞

0

{1−G(y)}dy =

∫ ∞

0

P (Y ≥ y) dy.

Convergence of Eh(Vn) to Eh(V ) then follows by showing that P (h(Vn) ≥ x) con-

verges to P (h(V ) ≥ x) for all x except for at most a countable number of exceptions.

Lebesgue’s theorem on convergence of integrals may be called upon.
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(e) Finally show that (e) ⇒ (a). For given v at which F is continous, build a continuous

bounded function hε so that hε(x) = 1 for x ≤ v and hε(x) = 0 for x ≥ v + ε, where

ε is positive and small. Play a similar game with another function being 1 to the left

of v − ε and 0 to the right of v.

14. The continuity theorem

Show that if Vn →d V and g is continuous, then g(Vn) →d g(V ). The g function here may

be unbounded, so exp(Vn) →d exp(V ) etc.

(a) Suppose Vn →d N(0, σ2). Show that V 2
n /σ

2 →d χ2
1. What is the limit of |Vn|/σ?

(b) Assume that nonnegative variables X1, X2, . . . are such that the sequence of geometric

means converges in distribution, say Gn = (X1 · · ·Xn)
1/n → U . Show that

n−1
n∑

i=1

logXi →d V,

and identify the limit V .

(c) Suppose again that Vn →d V . Show that exp(tVn) →d exp(tV ), for each given t.

When can we expect this to lead to

Mn(t) = E exp(tVn) → M(t) = E exp(tV ) ?

(d) One can indeed show a counterpart to the above, stated and used in the book without

a proof: If Mn(t) → M(t), for each t in some neighbourhood (−δ, δ) around zero,

then Vn →d V . A full proof of this may be found in ‘Hjorts lille grønne’ from 1979

(‘Kompendium for sannsynlighetsregning III’, used in a course on large-sample theory

for probability and statistics here at the Department of Mathematics at the University

of Oslo for some fifteen years), or in e.g. Billingsley’s Convergence of Probability

Measures (1999). It involves characteristic functions and inversion formuale, giving

us formulae for distributions in terms of such functions.

15. Slutsky–Cramér Rule

Certain very useful rules, sometimes called the Slutsky Rules, but equally due to Harald

Cramér, rule. They can be presented in various ways, depending also on what precisely

one has learned in advance.

(a) If Xn →d X and Yn →p 0, show that XnYn →p 0. To prove this, start from

P (|XnYn| ≥ ε) = P (|XnYn| ≥ ε, |Xn| ≤ M) + P (|XnYn| ≥ ε, |Xn| > M)

≤ P (|Yn| ≥ ε/M) + P (|Xn| > M),

from which it follows that lim supP (|XnYn| ≥ ε) ≤ r(M), where

r(M) = lim supP (|Xn| > M).
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Show from convergence in distribution that r(M) may be made arbitrarily small;

hence XnYn →p 0.

(b) If Xn →d X and Yn →p 0, show that Xn + Yn →d X.

(c) Now change the above assumptions to Xn →d X and Yn →p y, with a y non-zero

constant. Use the above to show thatXnYn →d Xy, Xn+Yn →d X+y andXn/Yn →d

X/y.

(d) Try also to show that as long as g(x′, y′) is continuous on the domain of X and at

position y, then g(Xn, Yn) →d g(X, y). Explain how this generalises the previous

results.

16. The Central Limit Theorem

Let X1, X2, . . . be i.i.d. and for simplicity here with mean zero and standard deviation one.

Consider

Zn =
√
nX̄n = n−1/2

n∑

i=1

Xi,

where it is to be noted that Zn has mean zero and variance one, for each n. The Central

Limit Theorem (the CLT) says that Zn →d N(0, 1), i.e. that

P (a ≤
√
nX̄n ≤ b) → P (a ≤ N(0, 1) ≤ b) for all intervals (a, b).

A full proof, without further assumptions, needs e.g. characteristic functions, see ‘Hjorts

lille grønne’ or Billingsley (1999). A satisfactory proof may however be given for the case

of Xi having a moment-generating function M(t) = E exp(tX) being finite in a neigh-

bourhood around zero, appealing to the result about convergence of moment-generating

functions discussed in Exercise 14.

Under the above conditions, show that

M(t) = 1 + 1
2 t

2 + 1
6E, X

3
i t

3 + 1
24EX4

i t
4 + · · · = 1 + 1

2 t
2 + r(t),

say, where r(t) is small enough to make r(t)/t2 → 0 as t → 0. Now work through the

details to learn that

Mn(t) = E exp(tZn) = M(t/
√
n)n = {1 + 1

2 t
2/n+ r(t/

√
n)} → exp( 12 t

2) = E exp(tZ),

where Z ∼ N(0, 1).

Show from the CLT that if Xn is binomial (n, p), then

Xn − np

{np(1− p)}1/2 →d N(0, 1),

and that if Yn is Pois(n), then
Yn − n√

n
→d N(0, 1).

Show finally that if Zn ∼ χ2
n, then

Zn − n√
2n

→d N(0, 1).
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