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1. Basic machinery for the linear-normal regression model

The classic linear-normal regression model is the most traditional way of investigating

statistically how data y1, . . . , yn on n individuals relate to say p-dimensional covariate

vectors x1, . . . , xn. The model takes the following form:

yi = xtiβ + εi = xi,1β1 + · · ·+ xi,pβp + εi for i = 1, . . . , n,

where the εi are i.i.d. N(0, σ
2). Thus the model has p+1 (typically unknown) parameters; p

for the regression surface and one for the spread. In more compact linear algebra language,

the model may be represented as

y = Xβ + ε ∼ Nn(Xβ, σ
2In),

where X is the n × p matrix with xti on its ith row, β = (β1, . . . , βp)
t is the vector of

regression coefficients, and y and ε are the n× 1 vectors collecting together the yi and εi.

(a) Show that the log-likelihood function takes the form

ℓn(β, σ) = −n log σ − 1
2Q(β)/σ2 − 1

2n log(2π),

where Q(β) =
∑n

i=1(yi − xtiβ)
2 = ‖y −Xβ‖2 is the residual sum of squares.

(b) Show that the maximum likelihood (ML) estimators are

β̂ = argmin(Q) = (XtX)−1Xty and σ̂ =
√
Qmin/n,

where

Qmin = minQ(β) = Q(β̂) =
n∑

i=1

(yi − xtiβ̂)
2 = ‖y −Xβ̂‖2

is the sum of the squared estimated residuals.

(c) Let

Σn = (1/n)
n∑

i=1

xix
t
i

be the empirical variance matrix of the n covariate vectors. Show that β̂ is unbiased

with variance matrix σ2Σ−1
n /n, and that it is multinormally distributed;

β̂ ∼ Np(β, σ
2Σ−1

n /n).

It is assumed here that Σn has full rank, which is equivalent to there being at least p

linearly independent covariate vectors; in particular, n ≥ p (so the present machinery

does not work if p > n).
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(d) Show that the estimated residuals may be expressed as

ε̂ = y −Xβ̂ = (In −H)y,

in terms of the so-called hat matrix

H = X(XtX)−1Xt.

Show that H is symmetric and that H2 = H (making H a so-called idempotent

matrix), and that its trace is Tr(H) = p.

(e) Deduce from the above that

ε̂ ∼ Nn(0, σ
2(I −H))

and that Q0 = ‖ε̂‖2 has mean equal to (n− p)σ2. Thus σ̂2 = Q0/n is actually under-

estimating the real variance σ2; a repaired version most frequently used (e.g. in output

from software packages) is

s =
√
Q0/(n− p) =

√
n

n− p
σ̂.

Show that in fact

Q0 ∼ σ2χ2
n−p,

and that Q0 and β̂ are stochastically independent. This is the basis for all exact infer-

ence for the linear-normal model. (The STK 4160 course aims however at developing

and applying methodology that relies on first-order large-sample approximations, valid

for general parametric models, as opposed to only the linear-normal regression model

worked with in this exercise.)

(f) Show that the log-likelihood maximum is

ℓn,max = −n log σ̂ − 1
2n− 1

2n log(2π),

with consequent AIC value

AIC = −2n log σ̂ − 2(p+ 1)− n− n log(2π).

Hence selecting a linear regression model via the AIC method, among competing

candidates, is equivalent to searching for the model that has the smallest value of

crit = n log σ̂ + p.

(Note that σ̂ depends on the model at hand, and changes value and interpretation if

one e.g. pushes a covariate component in or out of the model.)
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(g) Assume an estimate and a confidence interval are required for the parameter

µ = E(Y |x = x0),

the regression surface value at a given position x = x0 in the covariate space. If we

are willing to assume that the model is adequate, then E(Y |x) is the same as xtβ;

the following arguments continue from this assumption of absence of bias. Show that

the ML estimator is µ̂ = xt0β̂, and that

µ̂ = xt0β̂ ∼ N(µ, σ2xt0Σ
−1
n x0/n).

(h) From the above follows

Zn =
xt0β̂ − xt0β

σvn/
√
n

∼ N(0, 1) where vn = (xt0Σ
−1
n x0)

1/2,

which is not immediately employable since σ is unknown. Argue however that

Z∗

n =
xt0β̂ − xt0β

σ̂vn/
√
n

=
σ

σ̂
Zn ≈d N(0, 1),

since σ̂ is close to σ with high probability. A precise mathematical version of this is

that Z∗

n →d N(0, 1) as n increases. Deduce that

Pr{xt0β ∈ xt0β̂ ± 1.96 σ̂vn/
√
n} ≈ 0.95,

for example, i.e. we have an approximate 95% confidence interval for µ = xt0β. Again,

the accurate mathematical version of the approximation statement is that the left

hand side probability converges to precisely 0.95, as n→ ∞.

(i) A more careful probability calculation, when the model conditions are exactly in

force, gives the exact distribution of Z∗

n above. Show that indeed Z∗

n ∼ tn−p (the t

distribution with degrees of freedom equal to n−p). An exact 95% confidence interval

is therefore

xt0β ∈ xt0β̂ ± t0.975,n−p σ̂vn/
√
n,

in terms of the 0.975 quantile of the tn−p. We note that the difference between this

quantile and the corresponding 1.96 for the standard normal is not big, as soon as

n− p is say 30 or bigger (check this, via qt(0.975,n-p) in R). Also, both confidence

intervals (those of (h) and (i)) are large-sample valid even if the underlying error

distribution deviates from the normal.

2. Illustrations via simulations

This exercise leads to some concrete illustrations of the general linear-normal regression

machinery summarised in Exercise 1. The themes are (i) selection of a good model, bal-

ancing precision with complexity, and (ii) construction of different confidence intervals for

the same statistical parameter.

3



(a) For n = 250, generate first covariate values xi ∼ unif(0, 1), and then observations

yi = m(xi) + εi for i = 1, . . . , n,

where the true regression curve is taken to be m(x) = exp(sin(πx2)), and where the

εi are i.i.d. N(0, σ2
0), with σ0 = 0.333. The point is that the real data generating

mechanism corresponds to a regression curve that is smooth but never inside the

world of polynomial curves. – Plot the data.
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Figure 1: A total of n = 250 data points generated as described, along with fitted

polynomial regression curves of order three and six.

(b) Fit each of the ten models M1, . . . ,M10 to the data, where model Mp is the linear-

normal regression model corresponding to a polynomial order p model for the regres-

sion curve, i.e.

yi = mp(xi) + ε′i = β0 + β1xi + · · ·+ βpx
p
i + ε′i for i = 1, . . . , n,

with ε′i taken as N(0, σ2). For each of these ten models, compute the maximum

log-likelihood valus ℓn,max and the AIC value. You may use

lm(yy ∼ Xnow) or glm(yy ∼ Xnow, family=gaussian)

in R, where the Xnow matrix contains the columns (x, x2, . . . , xp), when you fit model

Mp. Which of the ten models is best, as judged by the AIC?
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(c) For each of the ten candidate models, compute also the model-based estimate of the

parameter µ = m(x0), where x0 = 0.75. Create (and then study and comment upon)

a table with the six columns model, maximum log-likelihood, model complexity, AIC

value, σ̂, and m̂(x0).

(d) Extend the previous analysis to include not only the model based parameter estimate

of m(x0), but also (still model based) 95% confidence intervals for this parameter.

Include both the large-sample approximation and the exact t based versions. Thus

create an extended table with ten columns, consisting of the six columns already

given above, plus lower and upper confidence points (approximate) and lower and

upper confidence points (exact). Comment on these confidence intervals.

3. Quotations and maxims

The point of this exercise is to gather a few maxims and quotations of significance, and

then to ponder their relevance and implications for model selection and model averaging

issues.

(a) ‘All models are wrong, but some are useful’ (most often attributed to G.E.P. Box).

(b) ‘Entia non sunt multiplicanda praeter necessitatem’ (more or less: entities should not

be multiplied beyond necessity, called Ockham’s razor, 1323, after the 14th century

English logician and Franciscan friar William of Ockham).

(c) ‘How odd it is that anyone should not see that all observation must be for or against

some view if it is to be of any service’ (C. Darwin).

(d) ‘The purpose of models is not to fit the data, but to sharpen the questions’ (S. Karlin).

(e) ‘It can scarcely be denied that the supreme goal of all theory is to make the irreducible

basic elements as simple and as few as possible without having to surrender the ade-

quate representation of a single datum of experience’ (A. Einstein, 1934; the somewhat

vulgarised version of this is ‘everything should be made as simple as possible, but not

simpler’).

(f) A famous exchange, after the 1782 premiere of KV 384 in Wien: Emperor Joseph II:

“Gewaltig viel Noten, lieber Mozart.” Mozart: “Gerade soviel Noten, Euer Majästät,

als nötig sind.”

4. Life-lengths in Roman era Egypt

Via the book’s home page feb.kuleuven.be/public/u0043181/modelselection/, access

the data set on mortality in ancient Egypt; see Example 2.6. In this exercise we take these

141 life-lengths (ranging from 1.5 to 96.0 years) to be i.i.d. from some underlying age-at-

death distribution. Here we are considering four different models:
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(i) the exponential distribution, with density b exp(−by);
(ii) the Gamma(a, b) distribution, with density {ba/Γ(a)} ya−1 exp(−by);
(iii) the Gompertz model with parameters (a, b), with hazard rate h(y) = a exp(by) and a

corresponding density of the form f(y) = exp{−H(y)}h(y), with H(y) the cumulative

hazard function, see the book;

(iv) the Weibull distribution, with cumulative distribution F (y) = 1− exp{−(y/a)b}.
(a) Fit each of these four models using maximum likelihood. Also display the his-

togram of the data points along with the four estimated probability densities. (Use

e.g. hist(y,prob=T,breaks=12) for the histogram part.)

(b) For each of the four models, compute approximate standard deviations for the param-

eter estimates involved, using the ML machinery formula

Var θ̂
.
= Ĵ−1

total,

where

Ĵtotal = −ℓ′′n(θ̂) = −∂
2ℓn(θ̂)

∂θ∂θt
,

the Hessian matrix associated with the log-likelihood function (cf. Section 2.2). Note

that this matrix is found ‘for free’ via an application of the nlm algorithm in R,

via nlm(minusloglik, starthere, hessian=T) for a pre-programmed minusloglik

function and a suitable starting point starthere for the iterative method underlying

the algorithm. The formula used here does assume that the parametric model used is

adequate.

(c) We are interested in estimating the two parameters

µ = med(F ) = F−1( 12 ) and κ = F−1(0.80),

the median and the 0.80 quantile point of the underlying life-time distribution. For

each of the four models, find (i) estimates and (ii) approximate 90% confidence inter-

vals for µ and for κ. You may use the formula

Var µ̂
.
= ĉt Var θ̂ ĉ

.
= ĉtĴ−1

totalĉ

from the large-sample theory of maximum likelihood, where µ̂ = µ(θ̂) is the ML

estimate of µ = µ(θ), and where

ĉ = ∂µ(θ̂)/∂θ

is the vector of partial derivatives of µ(θ), evaluated at the ML estimate. In practice

one is free to use the numerical version

ĉj =
µ(θ̂ + ε ej)− µ(θ̂ − ε ej)

2ε
for j = 1, . . . , p,

where ej = (0, . . . , 1, . . . , 0)t is the jth unit vector, and where one set e.g. ε = 10−5.

One may also use the grad operation of library(numDeriv). Comment on any no-

ticeable differences between these four estimates and confidence intervals, for µ and

for κ. (We may expect more agreement ‘in the middle’ than in the tails.)
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(d) For the four models, compute maximal log-likelihood values and AIC scores. Which

model is best, and which is worst (as judged by this criterion)?

(e) After these analyses, which estimates and confidence intervals would you ‘publish’, for

the median and 0.80 quantile point?

5. Modelling nerve impulse data

Access the site www.stat.ncsu.edu/sas/sicl/data/nerve.dat to find n = 799 nerve

impulse data (the time intervals between successive pulses along a certain nerve fibre),

measured in seconds, and ranging from 0.01 to 1.38. It is traditionally assumed that such

data ought to follow an exponential distribution. The figure displays a histogram of the

data, along with two fitted model densities; see the points below.

(a) Fit the following five parametric models to these data, via maximum likelihood esti-

mation (and assuming independence). Display for each model the parameter estimates

and their estimated standard deviations.

1. The exponential, with density θ exp(−θx).
2. The gamma, with density {ba/Γ(a)}xa−1 exp(−bx).
3. The cut-off normal, with density K(b, c)−1 exp(−bx− 1

2cx
2) on (0,∞); show that

K(b, c) =
√
2π exp( 12b

2/c){1− Φ(b/
√
c)}/

√
c,

and that the cumulative distribution function is of the form

F (x, b, c) = {Φ(
√
cx+ b/

√
c)− Φ(b/

√
c)}/{1− Φ(b/

√
c)}.

4. The ‘Beta-enveloped’ exponential, with cumulative distribution function and den-

sity respectively equal to

F (x) = 1− Be(exp(−x), a, b) and f(x) = be(exp(−x), a, b) exp(−x).

Here be(u, a, b) and Be(u, a, b) are the density and cumulative of a Beta distribu-

tion with parameters (a, b).

5. The Weibull, with cumulative distribution function F (x) = 1− exp{−(x/a)b}.
(b) Note that the exponential density is included as special cases in each of the models 2,

3, 4, 5 (corresponding respectively to the cases a = 1; c = 0; b = 1; b = 1). Compute

and display confidence intervals for these four expo-extending parameters, and check

whether the implied tests for exponentiality accept or reject this hypothesis.

(c) Use the parameter estimates to construct Figure 2, with the histogram supplemented

with two or more fitted densities.

(d) Compute AIC and BIC scores for each of the models. Which model appears to be

preferred? Assuming that the five models are a priori equally likely, what are the

approximate posterior probabilities for the models?
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(e) Define p = Pr{X ≥ 0.333}, in terms of a future random observation X from the nerve

impulse distribution. For each of the five models, estimate p, and compute both τ̂

and τ̂ /
√
n, with τ̂ the estimate of the standard deviation of the limit distribution

of
√
n(p̂ − p), using the theory of Exercise 4. Compare to the direct nonparametric

estimate and its standard deviation. See the table below.
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Figure 2: Histogram of the 799 nerve impulse data points, along with two fitted

densities, corresponding to the exponential and the Beta envelope model.

(f) Try to find or invent an appropriate three-parameter model that may do even better

than the best of the five models studied above, i.e. outscoring the Beta envelope model

in this table; for the AIC selector, this is tantamount to finding a model with higher

log-likelihood value than 423.167. (See Exercise 7.)

dim logLmax AIC BIC phat sd sd/rootn

1 1 415.987 829.973 825.290 0.2179 0.3320 0.0117 expo
2 2 422.150 840.300 830.933 0.2144 0.3317 0.0117 gamma
3 2 416.821 829.642 820.275 0.2212 0.3421 0.0121 cut-off
4 2 422.167 840.334 830.968 0.2143 0.3317 0.0117 envelope
5 2 420.009 836.018 826.651 0.2178 0.3323 0.0118 Weibull
6 0.2203 0.4144 0.0147 nonpmic

(g) Figure 2 indicates that to the extent the exponential distribution does not fully fit

the data, the discrepancy may take place for the very smallest data points. For

at least models 1, 2, 4, use the robustly weighted Kullback–Leibler estimation and

model selection methods of Section 2.10.2 to (i) re-estimate the parameters and (ii)
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re-compare the models, in terms of the wAIC criterion. Use weight function w(y) =

exp(−3y). (Note that care must be taken regarding the final interpretation of such

model comparison exercises, in that the smallest observations may not have been

measured with sufficient accuracy; they are here recorded to 0.01 seconds precision

level only.)

6. Predicting y2 from y1, y3, y4: The Adelskalenderen

Access and organise in your computer the Adelskalenderen data from the book’s website,

about the best speedskaters in the world. The table gives for each skater the personal bests

y1, y2, y3, y4 over the four classical distances 500-m, 1500-m, 5000-m, 10000-m. Translate

these times to the scale of seconds. The ranking is in terms of the canonical point-sum

y1 + y2/3 + y3/10 + y4/20,

in terms of 500-m times, so that e.g. Chad Hedrick’s 35.58, 1:42.78, 6:09.68, 12:55.11 are

translated into 35.580, 34.260, 36.968, 38.755, with samalogue sum 145.563. The data set

available at the book’s website stems from end-of-season 2006 (with Eskil Ervik #6 and

H̊avard Bøkko #15); you may check e.g. via links found in wikipedia that as of 15/iii/9,

Ervik is #8 and Bøkko is #4 (whereas Shani Davis and Sven Kramer have passed Hedrick).

– The present exercise is about predicting the 1500-m time from the other three results.

For this purpose we focus on the n = 250 best skaters on the Adelskalenderen.
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Figure 3: Personal best times for 500-m and 10000-m, for the 250 best skaters of

the world (as per the Adelskalenderen, end-of-season 2006).
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(a) Find Johan Olav Koss in the figure. Why is he not among the very best anymore?

(b) Consider at the outset seven different models for explaining y2 in terms of y1, y3, y4,

namely those termed 1, 3, 4, 13, 14, 34, 134. Here e.g. ‘14’ means the linear re-

gression model that takes y1, y4 as covariates (but not y3). Fit these seven models

to the Adelskalenderen data (with the n = 250 top skaters), and compute AIC and

BIC scores. Make a convenient table that displays model, dimension (the number of

unknown parameters in the model), log-likelihood maximum, σ̂, AIC, BIC. Here σ̂ is

the maximum likelihood estimate of the scale parameter in the appropriate N(xtiβ, σ
2)

model. Identify the AIC winner and the BIC winner, among these seven models, and

discuss their assumptions and properties.

(b) From the BIC scores, and assuming that the seven models were equally likely a priori,

compute approximate posterior model probabilities.

(c) It turns out, not too surprisingly, that the best of these seven models is model 13,

the one taking 500-m and 5000-m on board but not the 10000-m. Make some plots

to check whether the constant variability assumption, implicit in the linear regression

model 13, looks reasonable or not.

(d) Consider two skaters A and B. Skater A is fabulously strong, with personal bests 35.00

and 6.20.00 on the 500-m and 5000-m; skater B is rather more mediocre, with personal

bests 37.00 and 6.40.00. For these two skaters, and using model 13, (i) provide a point

estimate of the skater’s 1500-m time (i.e. his predicted time), and (ii) supplement this

predicted time with an approximate (or exact) 90% prediction interval.

– Inspired (or not) by point (c), we shall now investigate three more models, which I

choose to call 13plus1, 13plus3, 13plus13. Here ‘13plus13’ is the model that in addition

to the linear mean of model 13 includes variance heterogeneity in y1 and y3, of the

form

y2,i = β0 + β1y1,i + β3y3,i + σiεi for i = 1, . . . , n,

where

σi = σ exp(γ1v1,i + γ3v3,i), with v1,i = y1,i − ȳ1 and v3,i = y3,i − ȳ3.

Finally, the εi here are i.i.d. N(0, 1). The point of subtracting the means of y1 and

y3 here is to give σ an easy interpretation, as the standard deviation parameter of y2

data in the middle of the (y1, y3) ranges.

(e) For model 13plus13, write down a mathematical expression for the log-likelihood func-

tion (in terms of six unknown parameters); programme this function, and find the

maximum likelihood estimates numerically (cf. the nlm algorithm discussed in Exer-

cise 4). Check and comment on the confidence intervals for γ1 and γ3. For skaters

A and B (see above), compute again their predicted 1500-m times, along with 90%

prediction intervals. Comment on any differences with your answers under point (d).
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(f) Find AIC and BIC scores for the four models 13, 13plus1, 13plus3, 13plus13. Which

of these appears to be best? What are the (approximate) probabilities of these four

models, given the data, assuming that they are equally before this question came to

your attention?

(g) For model 13plus3, attempt to check its adequacy, perhaps via plots or goodness-of-fit

testing. Discuss your findings.

7. An extended Gamma-Weibull distribution

Consider the density of the form

f(y, a, b, c) = k(a, b, c)ya−1 exp(−byc) for y > 0,

where a, b, c are positive parameters. I have not seen such a thing in the literature before,

but it appears to be a useful extension of both the Gamma and the Weibull families; see

also page 142 in the book.
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Figure 4: Histogram of the 799 nerve impulse data points, along with three

fitted densities, corresponding to the exponential, the Gamma, and the extended

Gamma-Weibull model (with the highest peak).

(a) Show that the Gamma and Weibull distributions are indeed special cases, and carry

out the required integration exercise to show that

k(a, b, c) = c
ba/c

Γ(a/c)
.
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(b) For the n = 799 nerve impulse data points of Exercise 5, fit this three-parameter

model, by maximising the log-likelihood function

ℓn(a, b, c) =

n∑

i=1

{log c+ (a/c) log b− log Γ(a/c) + (a− 1) log yi − byci }.

Construct the plot of Figure 4, with the fitted Gamma and the extended Gamma-

Weibull densities. Also compute standard errors for the (â, b̂, ĉ) in question. [I find

(1.6004, 7.2877, 0.6442) for (â, b̂, ĉ).]

(c) Test the hypotheses H0,G and H0,W that the data come from respectively a Gamma

distribution or a Weibull distribution. Compute AIC and BIC scores and demonstrate

that the three-parameter Gamma-Weibull-extension family really works better than

both the Gamma and the Weibull. Convert the BIC scores to approximate posterior

model probabilities for the three models Gamma, Weibull, Gamma-Weibull-extension.

(d) Show that the three score functions (the log-density derivatives with respect to the

three parameters), computed at the narrow Gamma model (i.e. at a position (a, b, 1),

where c = 1), take the form

U1(y) = log(by)− ψ(a),

U2(y) = a/b− y = (1/b)(a− by),

V (y) = (log b)(by − a)− {by log(by)− {1 + aψ(a)}.

Here ψ(a) = Γ′(a)/Γ(a) is the log-derivative of the gamma function. Note that under

the conditions of the narrow Gamma model, the variable Y ∗ = bY follows a Gamma

distribution with parameters (a, 1). Show also that

EY ∗ = a, E log Y ∗ = ψ(a), EY ∗ log Y ∗ = 1 + aψ(a),

which is consistent with the mathematical fact that the score functions always have

mean zero.

(e) As made clear in Chapters 5 and 6, part of the theory of tolerance radii, comparisons of

different model based estimators, compromise estimators, etc., is driven by the Fisher

matrix of the wide model, computed under the narrow model. Here this matrix is

J = Jwide = Var



U1(Y )
U2(Y )
V (Y )


 = Var




W2

−(1/b)W1

(log b)W1 −W3


 ,

where

W1 = Y ∗ − a, W2 = log Y ∗ − ψ(a), W3 = Y ∗ log Y ∗ − {1 + aψ(a)}.

Formulae for the components of J may be put up, by computing variances and co-

variances of W1,W2,W3; note that these have distributions depending only on a. One

may use numerical integration or simulation of say a million score vectors from the

required bY ∼ Gamma(a, 1).
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(f) The nerve impulse data fitted to the Gamma distribution yield parameter estimates

(ânarr, b̂narr) = (1.1738, 5.3704). Compute the matrices

J =

(
J00 J01
J10 J11

)
and J−1 =

(
J00 J01

J10 J11

)

at this position, with J00 and J00 being 2 × 2 matrices, etc. Compute in particular

κ = (J11)1/2 and the tolerance radius around the Gamma distribution with respect to

the Gamma-Weibull-extension model. Conclude that for |c−1| ≤ 3.383/
√
n, Gamma-

based inference is better than that based on the extended three-parameter model.

8. Stretching the linear regression model

The classic linear regression model operates under these assumptions:

(i) linearity of the conditional mean function;

(ii) constancy of the variance level across covariates;

(iii) independence of observations given the covariates;

(iv) normality of the residuals (observations minus mean).

Each of these is often overlooked or left unchecked in statistical practice (depending on

the data and their context, as well as on the practitioner), with various side effects and

dangers. Often, assumption (iv) is less crucial than the others.

In the general spirit of Chapter 5, one may invent different extensions of the classic

linear model, involving one or more extra parameters, both because these may be of inter-

est and importance in their own right, and because we may study aspects of parametric

robustness, tolerance radii with respect to different model departures, etc. The variance

heterogeneity models studied in Exercise 6 are e.g. of this type, exemplifying a departure

from assumption (iii), of the type

yi = xtiβ + σ exp(γvi)εi with εi ∼ N(0, 1) for i = 1, . . . , n,

for a suitable vi. In this exercise we are concerned with a departure from assumption (i),

by ‘stretching the linearity’; see Figure 5.

(a) For the speedskating Adelskalenderen dataset (with the top n = 250 skaters, as in

Exercise 6), perform first an ordinary linear regression model for the 10000-m time

y = y4 on the 500-m time x = y1:

yi = β0 + β1(xi − x̄n) + εi for i = 1, . . . , n,

with εi ∼ N(0, σ2). (It is convenient to centre the covariate in this fashion, for

better comparison with the extended model below, and since it gives β0 an easy

interpretation.) Plot the linear regression line along with the (y1, y4) point cloud, and

compute the associated AIC score for this model [I find −2397.328].

13



35 36 37 38 39 40

8
0

0
8

5
0

9
0

0

500 m time

1
0

0
0

0
 m

 t
im

e

Figure 5: Personal best times for 500-m and 10000-m, for the 250 best skaters

of the world (as per the Adelskalenderen, end-of-season 2006), along with fitted

linear and a nonlinear regression lines. Can you spot Øystein Grødum?

(b) Study and plot the function

g(u, γ) =
exp(γu)− 1

γ

for u in a suitable window around zero, for different values of γ. Show that its series

expansion is u+ 1
2γu

2+ 1
6γ

2u3+ · · ·, so that in particular g(u, 0), defined by continuity,

is simply the function g(u, 0) = u.

(c) For the speedskating data, study and fit the extended regression model

yi = β0 + g(β1(xi − x̄n), γ) + εi = β0 + {exp(γβ1(xi − x̄n))− 1}/γ + εi,

where again εi ∼ N(0, σ2). For small |γ, this is close to ordinary linear regression,

with larger discrepancy with larger |γ. Plot also the resulting curved regression line,

as in Figure 5, and compute the associated AIC value [I find −2396.210].

(d) In general terms, show that the ML estimates of (β0, β1, γ) are those minimising the

sum of squares

Q(β0, β1, γ) =

n∑

i=1

{yi − β0 − g(β1(xi − x̄n), γ)}2,

along with σ̂ = (Qmin/n)
1/2.

14



(e) Compute the log-derivatives of the model density function for yi, and represent these

as
∂ log fi/∂β0 = (1/σ)εi,

∂ log fi/∂β1 = (1/σ)εig
′(β1(xi − x̄n), γ)(xi − x̄n),

∂ log fi/∂σ = (1/σ)(ε2i − 1),

∂ log fi/∂γ = (1/σ)εig
∗(β1(xi − x̄n), γ),

where εi is as in (c), whereas g′(u, γ) and g∗(u, γ) are the derivatives of g(u, γ) with

respect to respectively u and γ. Show that for γ = 0, these two derivatives are

respectively 1 and g∗(u, 0) = 1
2u

2.

(f) Use the framework of Chapter 5 to find that the normalised information matrix of

the wider four-parameter model, computed under the narrow three-parameter model,

takes the form

Jn = Jn,wide = n−1
n∑

i=1

Var
1

σ




εi
εi(xi − x̄n)
ε2i − 1
εivi


 =

1

σ2




1 0 0 v̄n
0 s2n,x 0 0
0 0 2 0
vn 0 0 n−1

∑n
i=1 v

2
i


 ,

in terms of s2n,x = n−1
∑n

i=1(xi − x̄n)
2 and

vi = g∗(β1(xi − x̄n), 0) =
1
2β

2
1(xi − x̄n)

2.

(g) Deduce that

κ2 = J11
n =

4σ2

β4
1s

2
n,(x−x̄n)2

,

in the notation of Chapter 5, where

sn,(x−x̄n)2 = n−1
n∑

i=1

(xi − x̄n)
4 −

{
n−1

n∑

i=1

(xi − x̄n)
2
}2

is the empirical variance of the (xi − x̄n)
2; with consequent tolerance radius

κ/
√
n =

2σ

β2
1sn,(x−x̄)2

1√
n

for the linear regression model with respect to the nonlinear stretching departure.

(h) Estimate γ, as well as κ and the tolerance radius, for the speedskating data above.

Does it appear reasonable to use the wider model?

(i) Consider the parameter µ = E(Y |x0), the expected 10000-m time for a skater with

500-m time x0 = 35.00. Compute 90% confidence intervals for this µ, under the

narrow and the wide models. Which would you prefer?
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9. Stretching the tail of Gauß

The normal density model is and remains the most prominent of all, of course, for many

reasons including tradition and mathematical convenience. Consequently, almost too many

data sets are fitted to the normal, even data that exhibit non-normal features, like tails

that are fatter than Gauß. Here we shall study the three-parameter extended density

f(y) = f(y, ξ, σ, γ) =
1

σ

1

a(γ)
exp

{
− 1

2

∣∣∣y − ξ

σ

∣∣∣
γ}

for y ∈ R.

With γ = 2 we are back to Gauß, with a(2) =
√
2π; also, γ = 1 corresponds to the double

exponential model. Tails are fatter than Gauß for γ < 2 and slimmer than Gauß for γ > 2.
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Figure 6: Histogram of personal best times 10000-m, for the 250 best skaters of

the world (as per the Adelskalenderen, end-of-season 2006), along with two fitted

densities: the normal (dotted line) and the three-parameter tail-extension (full

line). Where is Lasse Sætre?

(a) Show that in fact

a(γ) =

∫
exp(− 1

2 |x|
γ) dx = 21+1/γΓ(1 + 1/γ).

(b) Access the Adelskalenderen data (cf. Exercises 6 and 8), and fit the n = 250 10000-m

personal best times to (i) the normal model and (ii) the three-parameter extension.

Plot the consequent estimated densities on top of the histogram (cf. Figure 6).
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(c) Compute AIC scores for the two models, and comment on these.

(d) Show that the Fisher information matrix of the wide three-parameter model, computed

at the narrow two-parameter normal model, takes the form

J = Var




ε/σ
(ε2 − 1)/σ

− 1
2ε

2 log |ε|+ b


 =




1/σ2 0 0
0 2/σ2 c/σ
0 c/σ k


 ,

where ε is standard normal. Here b is the constant making the score function compo-

nent have mean zero (one finds b = 0.1824), and

c = cov(ε2 − 1,− 1
2ε

2 log |ε|) = −0.8648, k = Var (− 1
2ε

2 log |ε|) = 0.4242

(using numerical integration, or simulation). Deduce that the tolerance radius around

the normal, in direction of tailstretching, is κ/
√
n, with κ = 4.4599.

(e) For the focus parameter µ = q0.90, the 0.90 quantile of the underlying distribution,

compute ML estimates based on (i) the normal and (ii) the extended model. Which

of the two estimates is to be preferred?

10. Gammaweibulling the exponential

Consider the three-parameter model density

f(y, a, b, c) = k(a, b, c)ya−1 exp(−byc) for y > 0,

as in Exercise 7. Presently we are to view this as a two-parameter ‘gammaweibull extension’

of the traditional one-parameter Exponential model b exp(−by), corresponding to (a, c) =

(1, 1). We may e.g. take an interest in comparing inference based on the narrow exponential

model vs. that using the three-parameter extended model in connection with the 799 nerve

impulse data of Exercise 7, where the ML estimate of b is 7.2877.

(a) Find the score function components U(y), V1(y), V2(y), in the notation of the book’s

Chapter 5 (i.e. the derivatives of the log-density w.r.t. the three parameters, but

evaluated at the null model), and find the associated Fisher information matrix J =

Jwide. Find also the 2× 2 matrix Q = J11. I find in fact

Q =

(
4.7616 −5.8327
−5.8327 10.5944

)

for this matrix (independent on the value of b); see point (d) below.
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Figure 7: Tolerance ellipse, displaying the inner sanctum inside which the ex-

ponential model yields better inference than the three-parameter gammaweibull

extension, in terms of δ1 =
√
n(a− 1) and δ3 =

√
n(c− 1). Also shown are three

tolerance strips, inside which exponential based inference is better, for estimands

sd(f) (horizontal like), the probability that y ≤ x0 with x0 = 0.10 (North-Western

to South-East direction), and the hazard rate at time xh = 0.25 (again horizontal

like). Calculations are carried out for b = 7.2877, the ML value for the nerve

impulse data of Exercise 7.

(b) Write a = 1 + δ1/
√
n and c = 1 + δ3/

√
n. Draw the ellipse of (δ1, δ3) inside which

inference based on the simple exponential model is better than using the wide model,

for all estimands µ = µ(a, b, c); cf. Figure 7.

(c) Consider now four different focus parameters, respectively the mean ξ = EY ; the

standard deviation σ = sdY ; the probability p = Pr{y ≤ x0} with x0 = 0.10; and

the hazard rate h = f(xh)/{1 − F (xh)} at time position xh = 0.25. For these, find

numerical values for the ω vectors

ω = J10J
−1
00

∂µ
∂θ − ∂µ

∂γ ,

in usual notation, where θ is b, the parameter of the narrow model, and γ = (a, c)

the extension parameters of the wider model. Draw the stripes of (δ1, δ3) values,

inside which inference based on the narrow exponential model is better than using the

broader three parameter model, for each of the four focus parameters.
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(d) In some more detail, relating to finding the required Q matrix, show in fact that

U(y) = −(1/b)W1,

V1(y) =W2,

V2(y) = (log b)W1 −W3,

in terms of
W1 = y − 1,

W2 = log y − ψ(1),

W3 = y log y − {1 + ψ(1)},
where y is standard exponential, and ψ is the digamma function (derivative of the

log-gamma function); in particular, ψ(1) = −γe, where γe = 0.5772... is the Euler

constant. Write


U
V1
V2


 =




−1/b 0 0
0 1 0

log b 0 −1






W1

W2

W3


 = AW,

with consequent formulae

J = VarAW = AKAt and J−1 = (At)−1K−1A−1

for J and its inverse. Then show that

Q = J11 =

(
k22 −k23
−k23 k33

)
=

(
4.7616 −5.8327
−5.8327 10.5944

)
,

in terms of the elements ki,j of K−1.

(e) Show that the ω vector in fact is equal to (0, 0)t for the special case of the focus

parameter being µ = EY , the mean. What are the consequences for inference for the

mean?

(f) For the n = 799 nerve impulse data, find the ML estimates of the three parameters,

and translate these to estimates of δ1 =
√
n(a−1) and δ3 =

√
n(c−1). Where are these

estimates positioned, in relation to Figure 7? What are the anticipated consequences

for model selection issues?

11. A variance heteroskedastic normal regression model

This exercise is concerned with a general version of the heteroskedastic regression model

used in Exercise 6. The widest model takes the form

yi = xtiβ + ztjγ + σ exp(κvi)εi for i = 1, . . . , n,

where the εi are i.i.d. and standard normal. Here xi, zi, vi are covariates: xi protected, of

dimension p; zi open or non-protected, of dimension q; and vi at the outset of dimension 1

(though the generalisation to more than one κ parameter is reasonably straightforward).
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Often vi would be one of the xis, possibly centred; see below. Thus the wide model

has p+ q + 2 parameters, and the natural narrow model

yi = xtiβ + σεi

has p+1 parameters. The statistician may wish to decide which of the γj parameters

need to be taken into the regression surface, and whether κ needs to be taken on board

or not.

(a) Explain that we may assume that v̄ = n−1
∑n

i=1 vi = 0, without loss of generality.

This yields a more easy interpretation of σ, as the standard deviation for yi ‘in the

middle’ of vi space. It also aids numerical precision.

(b) Show that the values of (β, γ) that maximise the wide models likelihood, for given κ,

are of the weighted least squares estimator form

(
β̂(κ)
γ̂(κ)

)
=

{
n−1

n∑

i=1

1

exp(2κvi)

(
xi
zi

)(
xi
zi

)t}
−1{

n−1
n∑

i=1

1

exp(2κvi)

(
xi
zi

)
yi

}

= {(XZ)tW (κ)−1(XZ)}−1(XZ)tW (κ)−1Y.

Here (XZ) is the cbind(X,Z) covariate matrix of size n × (p + q), and W (κ) is the

n× n diagonal matrix with elements exp(2κvi).
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Figure 8: Plot of Qmin(κ3) to find the ML estimate of κ3 in the 3plus3 model.

Note that κ3 = 0 corresponds to the usual linear regression model.
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(c) Show that the ML estimator of κ is the value minimising the function

Qmin(κ) =

n∑

i=1

1

exp(2κvi)
{yi − xtiβ̂(κ)− zti γ̂(κ)}2,

and that ML estimator formulae for the other parameters become

β̂ = β̂(κ̂), γ̂ = γ̂(κ̂), σ̂ = (Qmin/n)
1/2 = (Qmin(κ̂)/n)

1/2.

Usually the full log-likelihood function can be maximised directly, via e.g. nlm, but

in cases where this is meeting numerical problems the above gives a recipe that is

reduced to a one-dimensional search (finding the κ estimate, and then the others

directly), rather than by a search in (p+ q + 2)-dimensional space.

(d) Consider the Adelskalenderen data of Exercise 6, where y2 is to be modelled in terms

of y1, y3, y4, where we now take y1 protected (each candidate model needs to include

that variable). For numerical stability reasons with some of the models we take the

trouble to centre the three explanatory variables into

y∗1 = y1 − ȳ1, y∗3 = y3 − ȳ3, y∗4 = y4 − ȳ4

first (we may of course afterwards back-transform regression coefficients to the original

y1, y3, y4 scale, if deemed convenient). We contemplate using any of the six models

0, linear regression with only y∗1 ;

3, linear regression with y∗1 and y∗3 ;

4, linear regression with y∗1 and y∗4 ;

34, linear regression with y∗1 and y∗3 and y∗4 ;

3plus3, regression with y∗1 and y∗3 , with κ3;

34plus3, regression with y∗1 and y∗3 and y∗4 , with κ3;

where inclusion of the κ3 parameter means employing the heteroskedastic scheme of

σi = σ exp(κ3v3,i), and with v3,i = (yi,3ȳ3)/sd(y3). For model 3plus3, there are five

parameters β0, β1, β3, σ, κ3. (i) Programme the full logL function for direct maximisa-

tion, via the nlm routine; and (ii) find the ML estimates via the recipe above, which

only requires minimising the Qmin(κ3) function. The results are in essential numerical

agreement, and are as follows (ML estimates, with standard error in parenthesis, for

σ, β0, β1, β3, κ):

1.149 (0.109), −0.024 (6.826), 2.045 (0.073), 0.109 (0.013), 0.102 (0.041).

(e) In the situation just described, maximise likelihoods for the six models, and verify that

the following table results, where the fourth column is the σ estimate in question.
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model dim logLmax shat AIC BIC

0 3 -488.143 1.705 -982.286 -992.851

3 4 -393.326 1.167 -794.653 -808.739 good

4 4 -433.219 1.369 -874.439 -888.525

34 5 -392.630 1.164 -795.260 -812.868 good

3plus3 5 -389.566 1.149 -789.131 -806.738 best

34plus3 6 -388.765 1.146 -789.529 -810.658 good

(f) For the Adelskalenderen data we do find a numerical estimate of the 6 × 6 informa-

tion matrix Jn,wide directly from data, via the Hessian matrix associated with using

the nlm routine, but it is useful to find general mathematical expressions, also for

understanding the behaviour of ML estimators. Start from

log fi = − log σ − κvi − 1
2

1

σ2

1

exp(2κvi)
(yi − xtiβ − ztiγ)

2 − 1
2 log(2π),

take partial derivatives, and deduce that

∂ log fi/∂σ = (1/σ)(ε2i − 1),

∂ log fi/∂β = (1/σ)xiεi/ exp(κvi),

∂ log fi/∂γ = (1/σ)ziεi/ exp(κvi),

∂ log fi/∂κ = vi(ε
2
i − 1),

Writing Ui for the two first and Vi for the two last of these score vector components,

show from this that

Jn,wide = n−1
n∑

i=1

Var

(
Ui

Vi

)
=




2/σ2 0 0 0
0 Σn,00/σ

2 Σn,01/σ
2 0

0 Σn,10/σ
2 Σn,11/σ

2 0
0 0 0 2s2n,v


 ,

where

Σn = Σn(κ) = n−1
n∑

i=1

1

exp(2κvi)

(
xi
zi

)(
xi
zi

)t

and s2n,v = n−1
∑n

i=1 v
2
i is the empirical variance of the vi.

(g) Deduce from this that σ̂, κ̂ and (β̂, γ̂) are asymptotically independent, unbiased and

normal, with
Var σ̂

.
= σ2/(2n),

Var κ̂
.
= ( 12/s

2
n,v)(1/n),

Var

(
β̂
γ̂

)
.
=
σ2

n
Σn(κ)

−1.

Also, a useful and simple test for the hypothesisH0:κ = 0 of variance homoskedasticity

is to reject when
√
2|√nκ̂| ≥ 1.96. The variance constancy hypothesis is indeed

rejected for the speedskating data; modelling the standard deviation of the 1500-m

time as exponentially increasing (but slowly) with 5000-m time pays off. Check with

a plot that this looks reasonable.
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12. FIC analysis for the variance heteroskedastic normal regression model

We continue with the framework and illustration of Exercise 11, but now turn our attention

to FIC analysis.

(a) With a focus parameter µ = µ(σ, β, γ, κ), show that the crucial ω parameter (cf. the

book’s Chs. 5 and 6) takes the form

ω = Jn,10J
−1
n,00

(
∂µ/∂σ
∂µ/∂β

)
−
(
∂µ/∂γ
∂µ/∂κ

)

=

(
Sn,10Σ

−1
n,00∂µ/∂β
0

)
−
(
∂µ/∂γ
∂µ/∂κ

)
.

In this connection, note a couple of practical aspects:

(i) The FIC theory developed in Ch. 6 works as long as a consistent estimator is used

for the Jn,wide matrix, which means convergence in probability to the correct limit

in the local large-sample framework where γ and κ are both of size O(1/
√
n). We

often prefer using a model-robust estimate of Jn,wide, i.e. arrived at via estimation

in the wide model, which here corresponds to insert wide-model estimates σ̂ and

κ̂ in the formula reached in (f) above. We may however also use a narrow-

model based estimate, which corresponds to the simpler case of κ = 0 and the

corresponding σ̂narr.

(ii) The formula for ω above exploits the explicit form of Jn,wide found above. Some-

times we find a numerical estimate of this matrix via the Hessian matrix asso-

ciated with the nlm routine, which is consistent and hence fully satisfactory for

the FIC machinery to work, but which does not agree fully with the Jn,wide(σ̂, κ̂)

form, e.g. regarding some of the zeros. This is not a question of numerical accu-

racy, but of some statistics having certain mean values (resulting in certain zeros

in the Jn,wide formula), whereas the sample-based information matrix Jn,hessian

contains values of these statistics that may be close to zero, but not real zeros. In

particular, if such a Jn,hessian is used, then the numerical result for ω may agree

approximately, but not fully, with the formula above.

(b) Also show that the minimal standard deviation parameter τ0, in the notation of Ch. 6,

becomes

τ0 = σ{ 1
2 (

∂µ
∂σ )

2 + (∂µ∂β )
tΣ−1

n,00
∂µ
∂β }

1/2.

Also demonstrate that the Qn = J11
n,wide matrix takes the form

Qn =

(
σ2Σ11

n 0
0 1/(2s2n,v)

)
,

where Σ11
n is the appropriate lower right-hand q× q block of Σn(κ)

−1. There is again

a choice between the model-robust version, which uses κ̂ for this matrix, and the

narrow-based version, which simply uses κ = 0; both versions are satisfactory, though

we typically favour the model-robust scheme.
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13. A method for ‘stretching’ a given parametric model

Suppose f(y, θ) is a parametric model for a density of certain data y1, . . . , yn with asso-

ciated cumulative distribution function F (y, θ); here θ is some p-dimensional parameter.

Let furthermore h(x, γ) be any probability density on [0, 1], with cumulative H(x, γ), with

a certain inner parameter value γ = γ0 corresponding to the uniform, i.e.

H(x, γ0) = x and h(x, γ0) = 1 for x ∈ [0, 1].

We shall see how the start family can be ‘stretched’ via the h density, increasing the

dimension of the model from p to p+ 1.

(a) Explain why

G(y, θ, γ) = H(F (y, θ), γ)

defines a proper cumulative distribution function, and show that its density becomes

g(y, θ, γ) = f(y, θ)h(F (y, θ), γ).

Note that this is simply the old f(y, θ) for the case when γ = γ0.

(b) Show that the log-derivatives of g become

∂ log g/∂θ = u(y, θ) + ∂ log h(F (y, θ), γ)/∂θ,

∂ log g/∂γ = ∂ log h(F (y, θ), γ)/∂γ,

where u(y, θ) is the score function of the start model. Explain furthermore that at

the null model, where γ = γ0, then

∂ log g/∂θ = u(y, θ),

∂ log g/∂γ = v(F (y, θ)),

in terms of

v(x) = ∂ log h(x, γ0)/∂γ.

With notation and development as in the book’s Chs. 5 and 6, this defines

J = Var

(
u(Y, θ)

v(F (Y, θ))

)
=

(
J00 J01
J10 J11

)
,

computed at γ = γ0, with consequences e.g. for how much γ disturbance the start

model can tolerate. Note that the J00 here is the Fisher information matrix for the

start model.

(c) As an example, consider

H(x, γ) = 1− (1− x)γ with h(x, γ) = γ(1− x)γ−1 on [0, 1],
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with γ0 = 1 yielding uniformity. Show that v(x) = 1+ log(1−x). When coupled with

the normal, to create the ‘extended normal’ density

γ
{
1− Φ

(y − ξ

σ

)}γ−1

φ
(y − ξ

σ

) 1

σ
,

show that

J = Var




(ε2 − 1)/σ
ε/σ

v(Φ(ε))


 =




2/σ2 0 a/σ
0 1/σ2 b/σ
a/σ b/σ 1


 ,

with ε a standard normal and

a = cov{ε2 − 1, v(Φ(ε))} = −0.5956 and b = cov{ε, v(Φ(ε))} = −0.9032

(with numbers arrived at via numerical integration). Here I have taken the parameters

in order of σ, ξ, γ.

(d) Letting τ2 = Var v(Φ(ε)), show that the tolerance radius, in the terminology of Ch. 5,

is κ/
√
n, with

κ2 = 1/(τ2 − 1
2a

2 − b2) = 12.08792.

Note that X = Φ(ε) simply has a uniform distribution, and that in fact τ = 1.

(e) As a second example, consider

H(x, γ) =
x

γ − (γ − 1)x
with h(x, γ) =

γ

{γ − (γ − 1)x}2 .

Show that this leads to the extended density

g(y, θ, γ) =
γ

{γ − (γ − 1)F (y, θ)}2 f(y, θ),

where again γ = 1 gives back the start family, and that v(x) = 2x− 1. Show that this

leads to a J matrix as above (the information matrix, computed at the null model),

but now with a = 0 and b = 0.5642, resulting also in a lower tolerance radius, with

κ = 8.1596.

(f) A third example takes

H(x, γ) = Φ(γΦ−1(x)) with h(x, γ) =
γφ(γΦ−1(x))

φ(Φ−1(x))
.

Show that this properly defines a cumulative distribution function. This stretch mech-

anism has the property that H( 12 , γ) = 1
2 for each γ, which means that the median

remains invariant, i.e. does not change from its original value when the stretching is

applied. Show that v(x) = 1− Φ−1(x)2.
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(g) Explain why the third method above does not work for the case of starting with the

normal distribution – but it may work very well for other families. Show that this

strategy in general terms leads to

g(y, θ, γ) = f(y, θ)γ exp{ 1
2 (1− γ2)Φ−1(F (y, θ))2},

and demonstrate that indeed it integrates to 1. Try out the method by plotting the

densities for γ values close to 1, for some densities of a familiar model (see Figure 9).

Also compute the tolerance threshold for the case of such stretching of the gamma

distribution (where your answer will depend on the a parameter of the gamma).
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Figure 9: The gamma distribution density (full line, in the middle) along with four

gamma-stretched versions, following the method of (f) and (g), with γ equal to

0.80, 0.90 (dashed lines, lower maxima), 1.10, 1.20 (dotted lines, higher maxima).

Each of the densities have the same median. I have used (a, b) = (3.33, 1) for the

gamma density parameters.

(h) Generalise and modify the relevant results above to the situation where H(x, γ) has

a two-dimensional rather than merely a one-dimensional parameter.

14. Stretching the normal error distribution in regression models

We consider the linear regression model, of the familiar form

yi = xtiβ + σεi for i = 1, . . . , n,

but where we now intend to let the εi come from a model more general than the normal,

following the model stretching methodology of Exercise 13.
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(a) Specifically, assume that yi is drawn from a distribution with cumulative distribution

function

G(y, ξi, σ) = H(Φ((y − ξ)/σ), γ), with ξi = xtiβ,

with H(x, γ) being a distribution function on the unit interval, and with γ = γ0

corresponding to H(x, γ0) = x. Show that this also corresponds to yi having the

density

g(y, ξi, σ)φ
(y − ξi

σ

) 1

σ
h
(
Φ
(y − ξi

σ

)
, γ

)
.

(b) As far as information calculus in the wide model is concerned, under narrow model

conditions, show that

Jn = n−1
n∑

i=1

Var




(ε2i − 1)/σ
εixi/σ
v(Φ(εi))


 =




2/σ2 0 a/σ
0 Σn/σ

2 bx̄/σ
a/σ bx̄/σ τ2


 ,

in the notation of Exercise 13(c)–(d); also, Σn = n−1
∑n

i=1 xix
t
i and x̄ = n−1

∑n
i=1 xi.

Deduce that the tolerance radius is κ/
√
n, where

κ2 = (τ2 − 1
2a

2 − b2x̄tΣ−1
n x̄)−1.

(c) Explore the range of possible values of κ, as dictated by the covariate distribution and

its consequent size of x̄tΣ−1
n x̄ above. There are cases where the normal model has

large tolerance against such stretching, and other situations where it tolerates only

moderate amounts of stretching.

15. Log-linear expansion stretching of a parametric model

Another approach for ‘stretching’ a given start model is via a log-linear expansion in certain

basis functions. To exemplify, consider the functions

ψj(u) =
√
2 cos(jπu) for u ∈ [0, 1],

for j = 1, 2, 3, . . ., supplemented also with the unit function ψ0(u) = 1.

(a) Show that these are orthonormal with respect to the uniform distribution, i.e. that

∫ 1

0

ψj(u)
2 du = 1 and

∫ 1

0

ψj(u)ψk(u) du = 0 for j 6= k.

(b) For a given parametric model with density f(y, θ) and cumulative distribution F (y, θ),

define the mth order expansion as

fm(y, θ, a) = f(y, θ) exp
{ m∑

j=1

ajψj(F (y, θ))
}/

km(a),
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where the integration constant is

km(a) = km(a1, . . . , am) =

∫ 1

0

exp
{ m∑

j=1

ajψj(u)
}
du.

Show that this actually defines a proper density, with the same support as that of the

start model.

(c) Show by Taylor expansion that

km(a) = 1 + 1
2‖a‖

2 + o(‖a‖2),

giving a good approximation when the coefficients a1, . . . , am are small.

(d) Show that the information matrix of the extended model, computed under the narrow

null model where a = 0, takes the form

Jm = Var

(
u(y, θ)

ψ(F (y, θ))

)
=

(
J00 J01
J10 J11

)
,

with J01 containing the covariances between uj(y, θ) and ψk(F (y, θ)), computed under

the null model.

(e) Investigate the special case of a log-linear expansion of the normal model,

fm(y, ξ, σ, a) = φ
(y − ξ

σ

) 1

σ
exp

{ m∑

j=1

ajψj

(
Φ
(y − ξ

σ

))}/
km(a).

Find an expression for Jm and hence for the consequent Qm = J11
m matrix.

(f) Compare the model extension strategy of this exercise with those of Exercises 13 and

14.

16. FIC analysis for mothers and babies

For the 189 babies and mothers, let as before x1 = 1; x2 = mother’s weight (in kg) before

pregnancy; z1 = age; z2 indicator for race = 2; z3 indicator for race = 3, with race being 1

(white), or 2 (black), or 3 (other). Keep x1, x2 protected and z1, z2, z3 open, with 23 = 8

submodels.

For each focus parameter µ given below: compute all eight estimates; estimate the

mse; compute the FIC score; and give a FIC plot (with FIC or estimated mse on x axis

and estimates on y axis). For µ, take

(i) probability pwhite of low birthweight, for a white mother, of age 33, with weight 55;

(ii) probability pblack, for a black mother, also of age 33 and with weight 55;

(iii) the ratio pblack/pwhite.
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Figure 10: FIC plot for the ratio parameter pblack/pwhite, for the eight candidate

models.

FIC analysis should typically include both a table, as here, and a FIC plot, with FIC

score on the horizontal axis (possibly transformed, e.g. to the root mean squared error

scale, as here) and estimates on the vertical one; see Figure 10, pertaining to the third

focus parameter, the ratio pblack/pwhite. Here the four ‘bad’ estimates (as measured

by FIC) are those equal to 1, and the four good ones take values between 1.693 and

1.980.

model dim estim sd bias1 bias2 rmse1 rmse2
0 2 1.000 0.955 17.037 17.037 17.064 17.064
1 3 1.000 2.194 14.453 14.453 14.619 14.619
2 3 1.693 7.626 3.303 3.303 8.311 8.311 good
3 3 1.000 1.263 16.412 16.412 16.461 16.461

12 4 1.728 7.665 2.307 2.307 8.005 8.005 best
13 4 1.000 2.301 13.977 13.977 14.165 14.165
23 4 1.952 8.303 -0.236 0.000 8.300 8.303 good
123 5 1.980 8.311 0.000 0.000 8.311 8.311 good

The columns of the FIC table are respectively the model; its dimension; the parameter

estimate; the estimated standard deviation; the estimated bias (in two versions); and

the resulting root mean squared errors (in two version). Bias, standard deviation, root

mean squared error are here computed in the limit experiment (i.e. on the
√
n(µ̂− µ)

scale), and the two bias estimates stem from taking the signed squared root of the

unbiased and truncated estimate of squared bias.
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17. FIC analysis for predicting y2 from y1, y3, y4

For the n = 250 best speedskaters on the Adelskalenderen, with results y1, y2, y3, y4, we

study linear regressions of y2 with respect to y1, y3, y4, with y1 protected, with a total of

four candidate models (0, 3, 4, 34); cf. Nils Exercise 6.

(a) For each focus parameter µ of interest, compute the four estimates; estimate the root-

mse (root mean squared error); compute FIC score; and display a FIC plot. For µ,

take

(i) the expected y2, for a skater with 35.00, 6:20.00, 13:35.00;

(ii) the probability that Øystein Grødum will skate a 1500-m at 1:48.00 or better (his

personal bests, as we know, are 39.10, 6:15.50, 12:56.38).

(b) Extend your analyses to include the 13plus3 model of Exercise 6. Note that once a

bigger model is being introduced, like here, the full FIC analysis needs to be revised,

since FIC scores change (in interpretation and also in numerical values) also for the

smaller models.

18. FIC analysis for polynomial regression

Going back to Exercise 2, with n = 250 simulated points from a certain nonlinear regression

structure, let the list of candidate models be those corresponding to polynomial regressions

of order 2, 3, 4, 5, 6 (with narrow = order two and wide = order six). Carry out FIC

analysis for two estimands, (i) µ = E(Y |x0) for x0 = 0.75; (ii) µ = Pr{Y > y0 |x0} for

x0 = 0.75 and y0 = 3.0.

19. FIC and AFIC for logistic regressions of increasing order

The following relates to the ‘onset of menarche’ data set from the books webpage (see

Example 6.2), pertaining to 3918 Warszawa girls, and consisting of independent binomial

data of the form yj ∼ Bin(mj , p(xj)) for 25 age groups with mid-age numbers x1, . . . , x25

ranging from 9.21 to 17.58. The candidate models we shall consider are logistic regression

models of polynomial order 1, 2, 3, 4, i.e. from the narrow models p(x) = H(β0 + β1z) to

the wides model p(x) = H(β0 + β1z + β2z
2 + β3z

3 + β4z
4), with H the logistic transform

exp(u)/{1+ exp(u)}. Also, we transform from x to z = x− 13.0 for numerical stability, as

in the book.

(a) Plot the estimated onset distribution curves corresponding to models of order one and

four, along with the raw data estimates yj/mj at positions xj ; see Figure 11. Note

that the fourth order model appears to follow the raw data better for the lower age

range.

(b) Compute AIC and BIC scores.

(c) Carry out FIC analysis for focus parameter µ = p(x0), with x0 = 11 yr and x0 = 15

yr.
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Figure 11: Onset of menarche distribution for Polish girls, via raw data estimates

yj/mj and estimated logistic regressions of order one (full line) and four (dotted

line).

(d) Carry out AFIC analysis for µ = p(x0), with x0 taking on 25 values uniformly spread

from 11 yr 0 mnths to 13 yr 0 mnths, and with each such x0 having the same impor-

tance. This requires the computation of (i) each ωk vector, for k = 1, . . . , 25; and (ii)

the average weighted matrix

A =

∫
ω(u)ω(u)tW (du) =

25∑

k=1

wkωkω
t
k,

cf. Section 6.9 in the book. The first formula here is the generally valid one, which on

this occasion, with a finite number of foci and with equal weights ωk = 1/25, becomes

equal to the second expression.

(e) Then perform FIC analysis for µ being the 0.95 quantile of the onset distribution for

menarche. The technical difficulty here is to find a way of estimating the ω vector.

20. FIC and AFIC for Poisson regression models

Find the ‘birds on islands’ data set from the book’s web page, and let y be the number

of bird species, x = distance from Ecuador (in km), z1 = area (in thousands of sq km),

z2 = elevation (in thousands of m), z3 = distance to nearest island (in km). Consider the

eight Poisson regression models for y in terms of keeping x protected and z1, z2, z3 open

covariates.

31



(a) Construct a table with AIC and BIC values, and comment.

(b) Carry out FIC analysis for µ = E(y |x0) for xlow = 100 km and xhigh = 1300 km,

with z1, z2, z3 kept at their average values. See the plot and the table below, arrived

at for the xlow = 100 km case. Here I have used the root-mse scale of FIC1/2/
√
n,

i.e. estimating (sd2 + bias2)1/2 on the scale of the µ̂ estimates themselves. Thus the

best model for this xlow case is model 1 (including z1, discarding z2, z3), with estimated

sd 3.828 and estimated bias 0. The model ranking is different for other x0 values.

(c) Carry out AFIC analysis, averaged across say 100 x values spread from xlow to xhigh,

and weighted according to a weight function proportional to x. The focus is still

µ = E(Y |x), again with z1, z2, z3 kept at their average values.
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Figure 12: FIC for birds: All eight estimates of E(y |x0), for x0 = 100 km, plotted

with root-mse/
√
n scores (root mean squared error on the scale of estimates, also

equivalent to the FIC) along the horizontal axis. The more to the left in the

diagram, the better is the estimate. See the table.

model dim aic muhat sd bias1 bias2 rmse1 rmse2
0 2 -112.648 36.845 3.784 2.306 2.306 4.432 4.432
1 3 -96.834 34.910 3.828 -1.436 0.000 4.089 3.828 winner
2 3 -102.166 34.364 3.853 -1.389 0.000 4.096 3.853 very good
3 3 -113.619 38.497 4.000 3.844 3.844 5.548 5.548
12 4 -96.844 34.212 3.859 -1.334 0.000 4.083 3.859 also good
13 4 -98.817 34.731 4.099 0.142 0.142 4.102 4.102
23 4 -103.193 36.047 4.050 1.518 1.518 4.325 4.325

123 5 -98.768 34.593 4.101 0.000 0.000 4.101 4.101
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21. Simulation experiments with 50-50 AIC balance

To illustrate general issues pertaining to model selection, post-selection-estimation and

post-selection-inference, etc., it is often useful to conduct well-designed simulation experi-

ments.

(a) When there is only one extra parameter, from narrow to wide, show that AIC is

large-sample equivalent to including γ if |Dn/κ| ≥
√
2, in notation of Chs. 5 and 6.

(b) Show that

Pr{AIC selects wide} → pow(δ/κ),

where pow(u) = Pr{|N(u, 1)| ≥
√
2}, and that the 50-50 line, where AIC selects

narrow or wide with the same probability 1
2 , is at |δ| = κc0, with c0 = 1.408.

(c) Set up a simple simulation experiment as follows, intended at having about 50-50

balance between narrow and wide. The narrow model is y = β0 + β1x + noise, the

wide is y = β0 + β1x + β2x
2 + noise, with x taken random from N(0, 1) and noise

with standard deviation 1. Show that if β1 = (c0/
√
2/
√
n, then AIC is in the limit in

the 50-50 balance situation. Simulate situations from such a model, say with β0 = 3

and β1 = 1, and compute estimates and ‘quiet scandal’ type confidence intervals for

µ(x0) = E(Y |x0), with x0 = 2.0. Comment on your findings. Study also compromise

estimators using smooth AIC weights.

22. Estimating an onset distribution

For the problems studied in Exercise 19, concerned with the onset distribution for menar-

che, the information gathered was rather ‘indirect’ – rather than asking ‘precisely how old

were you, when event A first took place in your life’, one merely asks ‘how old are you now,

and has event A ever happened to you’. This is a practical though indirect way of learning

about such onset distributions, in broad terms. The present exercise looks at some theory

in this regard.

(a) Suppose there are independent event times y1, . . . , yn following some population distri-

bution f(y, θ). If one actually observes these yi, therefore, one has the usual likelihood

apparatus for such data, and arrives at a maximum likelihood estimator θ̃, with

√
n(θ̃ − θ0) →d Np(0, J

−1)

at the true parameter θ0; for simplicity of discussion we here take the model to be

correct. Here J = J(θ0) is the Fisher information matrix of the model. Explain

how you may compute J for the case of data yi following the logistic model, with

cumulative distribution function

F (y, β) = H(β0 + β1y), where H(u) =
exp(u)

1 + exp(u)
.
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(b) Now assume that one cannot observe the yi directly, with access only to indirect data

of the type (xi, ai), with

ai = I{yi ≤ xi} =

{
1 if yi ≤ xi,
0 if yi > xi.

This corresponds to the situation above, where one asks a girl of age xi whether the

event A has taken place in her life or not. Show that the log-likelihood function may

be expressed as

ℓn(θ) =

n∑

i=1

{ai log pi + (1− ai) log(1− pi)},

and that its derivative becomes

ℓ∗n(θ) =
n∑

i=1

ai − pi
pi(1− pi)

p∗i ,

with

pi = pi(θ) = F (xi, θ) and p∗i =
∂pi
∂θ

.

How the xi are generated depends on the study design; they may occur according

to a certain sampling plan, or occur ‘naturally’ and reflect the underlying population

density f(y).
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