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This is The Oblig, the mandatory assignment, for STK 4011-9011, Statistical Inference

Theory, Autumn 2023. It is made available at the course website Monday October 9, and

the submission deadline is Monday October 23, 13:58, via the Canvas system. Reports

may be written in nynorsk, bokmål, riksmål, English, or Latin, should preferably be text-

processed (for instance with TeX or LaTeX), and must be submitted as a single pdf file.

The submission must contain your name, the course, and assignment number.

The Oblig set contains four exercises and comprises five pages (in addition to the present

introduction page, ‘page 0’).

Importantly, the PhD candidates taking the STK 9011 version of the court, need to work

also with one more exercise, namely 3.9 in Hjort & Stoltenberg’s PartOne.pdf, using the

smallbabies dataset on the course website.

It is expected that you give a clear presentation with all necessary explanations, but

write concisely (in der Beschränkung zeigt sich erst der Meister; brevity is the soul of wit;

kratkostь – sestra talanta). Remember to include all relevant plots and figures. These

should preferably be placed inside the text, close to the relevant subquestion.

For a few of the questions setting up an appropriate computer programme might be part

of your solution. The code ought to be handed in along with the rest of the written

assignment; you might place the code in an appendix.

All aids, including collaboration, are allowed, but the submission must be written by you

and reflect your understanding of the subject. If we doubt that you have understood the

content you have handed in, we may request that you give an oral account.

Application for postponed delivery: If you need to apply for a postponement of

the submission deadline due to illness or other reasons, you have to contact the Student

Administration at the Department of Mathematics (email: studieinfo@math.uio.no) well

before the deadline.

The mandatory assignment in this course must be approved, in the same semester, before

you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments, along with a ‘log

on to Canvas’, can be found here:

www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

Enjoy [imperative pluralis].

Nils Lid Hjort
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1. Quartiles & range

For a distribution with continuous and increasing cumulative distribution func-

tion F , the lower and upper quartiles are q0.25 = F−1(0.25) and q0.75 = F−1(0.75).

Their empirical cousins Qn,0.25 and Qn,0.75, for a sample Y1, . . . , Yn, are the correspond-

ing 0.25 and 0.75 sample quantiles, which one finds via quantile(yy,0.25) and quan-

tile(yy,0.75) in R (here with yy being the data vector).

(a) For F being the uniform distribution on the unit interval, and with n = 100, write

down the explicit density of Qn,0.75 = U(75), order statistic no. 75, along with a

few arguments. For a general n, give similarly the density gn,0.75(u) for Qn,0.75 =

U([0.75n]). Derive an expression for the density hn,0.75(z) of the transformed variable

Zn,0.75 =
√
n(Un,0.75 − 0.75). Attempt to show that this density converges to the

density of a N(0, 0.25 · 0.75).
(b) Consider now i.i.d. data Y1, . . . , Yn from the normal N(ξ, σ2). Show that the lower

and upper quartiles for this distribution are ξ − cσ and ξ + cσ, with c = 0.674. Use

results from Hjort & Stoltenberg, Ch. 2, to show that

√
n(Qn,0.75 − (ξ + cσ)) →d Z0.75 ∼ N(0, τ20.75), with τ20.75 = 0.25 · 0.75σ2/φ(c)2,

with φ(c) = exp(− 1
2c

2)/(2π)1/2 the usual standard normal density.

(c) There is similarly convergence
√
n(Qn,0.25−(ξ−cσ)) →d Z0.25 ∼ N(0, τ20.25), say. Show

that τ0.25 is the same as τ0.75. Then use results from the book-to-be’s Exercise 2.20

to show that (√
n(Qn,0.25 − (ξ − cσ))√
n(Qn,0.75 − (ξ + cσ))

)
→d

(
Z0.25

Z0.75

)
,

a binormal limit with zero means and covariance matric

Σ =
σ2

φ(c)2

(
0.25 · 0.75, 0.252

0.252, 0.25 · 0.75

)
).

(There is a misprint in the PartOne pdf, for this exercise: in (g) the covariance should

be qj(1− qℓ)/{f(µi)f(µℓ)} for j < ℓ.)

(d) Now consider the so-called interquartile range, iqn = Qn,0.75 −Qn,0.25. Explain from

the above that

√
n(iqn − 2cσ) →d N(0, κ2), with κ = 1

2σ/φ(c).

(e) The standard estimator for σ in such a normal sample is σ̂, the empirical standard

deviation. From results in Hjort & Stoltenberg, we have
√
n(σ̂ − σ) →d N(0, 1

2σ
2).

Now argue that the above considerations invite another estimator for σ, namely σ∗ =

iqn/(2c) = iqn/1.349. Find the limit variance for
√
n(σ∗ − σ). How much does σ∗

lose, to σ̂, if the normal model holds? Are there arguments in support of sometimes

using σ∗, in spite of the fact that it is less precise under normality?
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(f) Now attempt to generalise that above, which is about F−1(0.75) − F−1(0.25), to

F−1(1 − q) − F−1(q), for other suitable q ∈ (0, 1). Form a good estimator of σ, say

σ∗

q , by scaling Qn,1−q − Qn,q. Which, of all such symmetric quantile difference type

estimators for σ, has the smallest limiting variance?

2. Estimation in the geometric model

“If that dice has a ‘one’ face up, I thought, I’m going downstairs to rape Arlene”

(says the main character in Luke Rhineheart’s Dice Man to himself). But what it the dice

are rigged?

(a) Let Y be the number of independent dice throws required to have ‘one’ the first time.

With p = Pr(‘one’), explain that the point-mass probabilities are

f(y, p) = Pr(Y = y) = (1− p)y−1p for y = 1, 2, . . . .

Show that EY = 1/p and VarY = (1− p)/p2.

(b) Find an expression for Pr(Y ≥ y0 + y |Y ≥ y0), and give an interpretation of this.

(c) Suppose you repeatedly carry out this simple experiment many times, leading to

counts Y1, . . . , Yn, each with the f(y, p) probabilities. With Ȳn the sample average,

use the central limit theorem to find the approximate distribution of
√
n(Ȳn − 1/p).

(d) Show that the moment estimator for p is p̂ = 1/Ȳn. Find the limit distribution of√
n(p̂− p).

(e) I did this (with my admittedly artificial die), getting

1 2 7 1 20 3 7 17 6 8 2 13 8 9 17 1 26 2 13 4 1 3 9 5 24

for 25 experiments. Find a 90 percent confidence interval for p, and test the null

hypothesis that my die is fair, i.e. has Pr(‘one’) = 1/6.

(f) Changing gears a little, suppose you throw a fair coin 5 times, getting your little

sequence of ‘kron’ and ‘mynt’. How many times do you expect to need to do this

5-in-a-row operation, until you finally have kron-kron-kron-kron-kron? (Jo Røislien,

tv person and professor of statistics, once proclaimed for his millions of viewers, in

one of the Siffer episodes, ‘I will now throw my coin ten times and have the same

outcome in each’. And proceeded, rather impressively, to do so. He looked tired,

though – since he had done it a very high number of times, and only showed us that

final successful clip.)

3. Transformers (and back-transformers)

The true transformation takes place within, my local psychologist claims – in

the present exercise we shall transform from one thing to another but then perhaps trans-

form partly back the other way again. We start with (X,Y ) being independent standard

normals, so that their joint density may be written

f0(x, y) =
1

2π
exp{− 1

2 (x
2 + y2)} for x, y on the real line.
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(a) We then transform to so-called polar coordinates,

X = R cos θ and Y = R sin θ,

with θ ∈ [−π, π]. Show that (R, θ) has the density

g0(r, θ) = h0(r)
1

2π
= r exp(− 1

2r
2)

1

2π
for r > 0 and θ ∈ [−π, π].

– The density h0(r) = r exp(− 1
2r

2) reached above is sometimes called the Raleigh distri-

bution (after Lord Raleigh, who won the Nobel in physics in 1904), though a separate

name might not really be needed in that it is simply a χ2 = (χ2
2)

1/2 – the density of

the square-root of a chi-squared with two degrees of freedom. But the representation

above opens the door for generalising the binormal distribution we started out with,

by inventing a more general density than h0(r).

(b) Suppose the random radius R has density h(r), rather than the h0(r), and keep θ

uniform on [−π, π], independent of R. Show that (X,Y ) = (R cos θ,R sin θ) then

must have density

f(x, y) = h(
√

x2 + y2)
1√

x2 + y2
1

2π
.

You may find a need for the mathematical fact that the derivative of A(u) = arctanu

is A′(u) = 1/(1 + u2).
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Simulated pairs (xi, yi) from the generalised binormal density, where I used h(r) =
1
2γr

γ−1 exp(− 1
2r

γ) rather than h0(r) = r exp(− 1
2r

2), for a secret value of γ.
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(c) Consider one such generalisation, namely

h(r) = 1
2γr

γ−1 exp(− 1
2r

γ) for r > 0,

where γ > 0 is such an extra parameter. We let this be the new distribution for

the random radius R, and again keep the random angle θ distributed independently

and uniform on [−π, π]. In the figure above I have simulated n = 400 pairs from the

associated distribution f(x, y), with a certain value of γ known so far only to me.

Explain how you can assess whether the data are from the simple binormal density,

i.e. from the f0(x, y) of (a), or not.

4. Lifelengths in Roman Era Egypt, 2100 years ago

Intriguingly, archeologists have been able to learn the ages at death of 141

mummified individuals living in Roman Era Egypt, some 2100 years ago, see Spiegelberg

(1901). These lifelengths, varying from 1 to 96 years, for 82 men and 59 women, were

discussed and analysed by Karl Pearson in the very first volume of Biometrika, see Pearson

(1902). We treat them here as a random sample of lifelengths from the upper social class of

Roman Era Egypt, during a period of relative societal stability; more details are in Hjort

& Stoltenberg (2024, Story xxxiii).

Despite Pearson’s not unreasonable comment that “in dealing with [these data] I have

not ventured to separate the men from the women mortality, the numbers are far too

insignificant” we shall work with parametric modelling for their survival.
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Survival curves S(t) = Pr(T ≥ t) for old Egypt, for men (black curves) and
women (red curves); the ragged curves are the direct empirical ones, and the
smooth curves are based on Gamma distributions. The horizontal 0.50 line is
there to help us read off the medians.
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(a) Read the data into your computers, via the egypt-data file on the course website.

Writing nm and nw for the sample sizes, and Tm,i and Tw,i for the lifelengths, consider

the empirical distribution functions

F̂m(t) = (1/nm)

nm∑

i=1

I(Tm,i ≤ t), F̂w(t) = (1/nw)

nw∑

i=1

I(Tw,i ≤ t).

Show that these are unbiased for the underlying cumulative distribution functions Fm

and Fw. Compute them, along with their nonparametric survival curves Ŝm = 1− F̂n,

Ŝw = 1− F̂w, and display these in a diagram.

(b) Suppose in general terms that T1, . . . , Tn are i.i.d. from the Gamma(a, b) distribution,

with density {ba/Γ(a)}ta−1 exp(−bt) for t ≥ 0. Show that the mean and variance

are a/b and a/b2. Explain that the moment estimators are the solutions to the two

equations

Ȳ = a/b and V = a/b2,

in which Ȳ and V are the sample mean and empirical variance of the data. Solve

these, to find

â = Ȳ 2/V and b̂ = Ȳ /V.

Show that these are consistent, i.e. converging to the corect values when sample size

grows (if the model holds).

(c) Compute these parameter estimates, for the men and women of Old Egypt, and use

these to construct a version of the figure above.

(d) Consider d = µm − µw, the difference between median life times for men and women.

Compute first the direct nonparametric estimate d∗, the difference between the em-

pirical medians. Use methods as for the Quantile Story in Hjort & Stoltenberg, on

Oslo girls and boys, to construct a confidence interval for d.

(e) Then we attempt to estimate the d difference parametrically – when it works, it will

often be more precise than the nonparametric procedure. Compute therefore the

estimate

d̂ = µm(âm, b̂m)− µw(âw, b̂w),

using the estimated Gamma distributions. Comment on d∗ and d̂.

(f) It’s a bit laborious, and even if you do not succeed in following your ideas and argu-

ments to the finish, try to explain how you can compute an estimated variance for d̂,

and how this may be used to find a parametrically based confidence interval for the

median difference.
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