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Exercise 1

(c) Multiplying out leads to

Q =

n∑

i=1

X2
i − 2µ̂Xi + µ̂2

σ2
i

=

n∑

i=1

X2
i

σ2
i

−Aµ̂2.

Note that

E µ̂ = µ̃ and Var µ̂ = 1/A.

Hence, using similar algebra,

EQ =

n∑

i=1

µ2
i + σ2

i

σ2
i

−A(µ̃2 + 1/A) = n− 1 +

n∑

i=1

µ2
i

σ2
i

−Aµ̃2 = n− 1 +

n∑

i=1

(µi − µ̃)2

σ2
i

.

(d) (i) With all σi = σ: Then µ̂ = X̄, and

Q =

n∑

i=1

(Xi − X̄)2

σ2
has mean n− 1 +

n∑

i=1

(µi − µ̄)2

σ2
.

This is more or less the result of (b). (ii) With all µi = µ: Then EQ = n − 1, a

generalisation of the classical result to the case of unequal σi.

Exercise 2

(a) This has to do with sufficiency – (x̄i, σ̂i) contains all of the essential information for

further analysis of data from student i. Given (x̄i, σ̂i), we can create an artificial

dataset, for student i, with these values, and the same information content.

(b) We find ρ̂ = 0.2833, via cor(xbarN,xbarE). On the scale of ζ = A(ρ), the 95% interval

is A(ρ̂)± 1.96/
√
n− 3, found to be [0.0403, 0.5422]. Transforming back, after having

found the inverse function to be

A−1(x) =
exp(2x)− 1

exp(2x) + 1
,

we find the 95% on the ρ scale to be

[A−1(0.0403), A−1(0.5422)] = [0.0403, 0.4947].

This concerns the correlation for observed pairs (x, y) – as partly opposed to the ‘real

underlying correlation’, say corr(x0, y0), where x0 is the average length of all words

in all Norwegian books owned by student i, and analogously for her or his English

books.

1



– We learn that a student having Norwegian books with long words tends to have English

books with long words too, and vice versa. The reasons for this interesting finding are

not clear, but it’s interesting to do a bit of speculation – some readers prefer longer-

worded books, others might like shorter-worded literature. We’re also reminded that

the students were not instructed to choose books from their bookshelves in a totally

random fashion, so there’s a limit to how far we should stretch our imagination here.

(c) Using the usual two-sample test for equality of means, we may compute

t1 =
x̄N − x̄E

(v̂2N/n+ v̂2E/n)
1/2

=
0.1134

0.0843
= 1.345,

where v̂N and v̂E are the empirical standard deviations for the word length averages

xi,N and xi.E , respectively. Under the null hypothesis H0 that the overall means

µN and µE are equal, the t1 is approximately normal. Observing t1 = 1.345 is not

clashing with that hypothesis.

– Since there is correlation present (somewhat surprisingly), one may argue that the

denominator used for t1 is not correct, and that it would be safer to go to the differences

zi = xi.N − xi,E , and test whether the population mean δ of these is equal to zero or

not. This leads to

t2 =
x̄N − x̄E

(v̂2/n)1/2
=

0.1134

0.0718
= 1.581,

where v̂ is the empirical standard deviation of the zi. Again, under H0 of no difference

in population means, which is the same as δ = 0, the t2 has an approximately standard

normal distribution. Observing t2 = 1.581 is not quite managing to push us away from

thinking that H0 is ok. With 35 more students in the course, and the variances and

covariance of xi,N and xi,E staying the same, the difference of 0.113 between x̄N and

x̄E would be significant at the 0.05 level.

(d) The observed empirical standard variances have distributions of the type

σ̂2
i,N ∼ σ2

i,N

χ2
m−1

m− 1
and σ̂2

i,E ∼ σ2
i,E

χ2
m−1

m− 1
,

where m = 100 is the number of words scrutinised for each case. As explained in the

exercise text, these distributions are approximately normal (since m − 1 is as big as

99). We may hence use the apparatus above, mutatis mutandis, to test the hypothesis

H ′

0 that the population parameters σN and σE are equal. Just as above we may form

t3 =
σ̄N − σ̄E

(ŵ2
N/n+ ŵ2

E/n)
1/2

=
0.3295

0.0849
= 3.879,

where σ̄N = (1/n)
∑n

i=1 σ̂i,N and similarly for σ̄E , and with ŵ2
N and ŵ2

E being the

empirical variances for these quantities. Under H ′

0, the distribution of t3 ought to be

approximately standard normal. But 3.879 is a far too big value for a N(0, 1). Hence

H ′

0 is to be rejected.
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– The same conclusion is arrived at if we compute t4, just as with t2, with a more

careful denominator, to take care of the possibility of correlation; indeed I find t4 =

0.3259/0.0772 = 4.267. So Norwegian prose have words with more spread in their

distribution than has English.

(e) We have

x̄i |µi ∼ N(µi, κ
2
i ) and µi ∼ N(µ0, τ

2),

which also may be written

x̄i = µ0 + δi + εi,

where δi ∼ N(0, τ2) and εi ∼ N(0, κ2
i ) (and where κ2

i = σ2
i /m). Hence

x̄i ∼ N(µ0, τ
2 + κ2

i ) for i = 1, . . . , n.

The variation in the x̄i is being decomposed into two parts; its variation as an estimator

of the given student’s µi, and the variation of the µi in the population of students

(and their bookshelves).

(i) Suppose the σi are equal (which they are, to a not unreasonable degree of approxima-

tion). For the Norwegian data, we find

S2 =
1

n− 1

n∑

i=1

(x̄i − x̄)2 = 0.2793,

estimating the variance of x̄i, i.e. τ
2 + κ2. But we may clearly estimate the κ part

separately, and then subtract, to find an estimate of τ . The natural estimate of a

common κ is via the average of the κ̂2
i = σ̂2

i /m:

κ̂2 = (1/n)
n∑

i=1

κ̂2
i = 0.0745 = 0.27292.

This leads by subtraction to

τ̂N = (S2 − κ̂2)1/2 = 0.4526,

the estimated standard deviation of the distribution of average word-lengths across

students. For the English dataset, entirely similar calculations lead to

τ̂E = (S2
E − κ̂2

E)
1/2 = (0.1758− 0.23702)1/2 = 0.3459.

Note that we actually managed to estimate τ , the standard deviation of a certain

distribution of some µi, without actually seeing these µi; it was sufficient to have

estimates of these µi, and then subtract κ̂2 from the observed estimate of τ2 + κ2.

– To put up a formal test for H0: τ = 0, we may use F = S2/κ̂2, computed to be 3.751

for the Norwegian dataset. Here

F =
S2

κ̂2
∼ τ2 + κ2

κ2

χ2
n−1/(n− 1)

χ2
n(m−1)/{n(m− 1)} = (1 + τ2/κ2)F63,6336.

Under τ = 0, the F has a Fisher distribution with degrees of freedom (63, 6336),

which, incidentally, is almost the same as a χ2
63/63. But the chance of having an F as

big as 3.751, for such a variable, is ridiculously small. Hence τ = 0 is soundly rejected.

The same goes for the English case, for which F = 3.130.
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– When the σi are taken common, across students, we may estimate this common value,

and hence κ = σ/
√
m, as above, with very high precision. Hence we may construct a

confidence interval for τ2+κ2, from S2 ∼ (τ2+κ2)χ2
63/63, and then subtract our way

to a confidence interval for τ . For the Norwegian set, we start from Pr(a ≤ χ2
n−1 ≤

b) = 0.95 and
a

n− 1
≤ S2

τ2 + κ2
≤ b

n− 1
,

where a and b are the 0.025 and 0.975 quantiles of the χ2
n−1, to find

S2n− 1

a
≥ τ2 + κ2 ≥ S2n− 1

b
,

with interval [0.2027, 0.4097] for τ2 + κ2. With κ̂ = 0.2729 we may subtract and find

[(0.2027− κ̂2)1/2, (0.4097− κ̂2)1/2] = [0.3588, 0.4790]

as the 95% confidence interval for τ = τN . For the English dataset, using entirely

analogous methods, I find [0.2672, 0.4491].

(ii) Assume next that the σi and hence the κi = κi/
√
m are not equal enough to be taken

common. Several options may then be pursued regarding constructing an estimate

of τ , partly using variations on the themes of Exercise 1. The simplest of these is to

stick to S2, and to show and then utilise the following result:

ES2 = E
1

n− 1

n∑

i=1

(x̄i − x̄)2 =
1

n

n∑

i=1

Var x̄i =
1

n

n∑

i=1

(τ2 + κ2
i ) = τ2 + κ̄2,

in which κ̄2 = (1/n)
∑n

i=1 κ
2
i . But this leads to precisely the same estimator τ̂ =

(S2 − κ̂2)1/2 as above, i.e. o.4526 for Norwegian and 0.3459 for English. The partly

cosmetic difference is that we now view κ̂2 = (1/n)
∑n

i=1 κ̂
2
i estimator as an estimator

of the average variance parameter κ̄2, rather than of a common κ2.

– Setting up a clear formal test for the hypothesis τ = 0 is now somewhat more com-

plicated, but one may again start with F = S/κ̂2, and reject when F is large enough

(and indeed F = 3.751 turns out to be more than large enough). The p-value is

Pr(F ≥ 3.751 | τ = 0), and this may be computed via simulation.

Exercise 3

(a) Integration gives

EX =
ba

Γ(a)

∫
∞

0

xa exp(−bx) dx =
ba

Γ(a)

Γ(a+ 1)

ba+1
=

a

b
,

and similarly

EX2 =
ba

Γ(a)

∫
∞

0

xa+1 exp(−bx) dx =
ba

Γ(a)

Γ(a+ 2)

ba+2
=

a(a+ 1)

b2
,

which leads to the desired variance formula a/b2.
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(b) Solving

X̄ =
â

b̂
og S2 =

â

b̂2
,

leads to the moment estimators

â =
X̄2

S2
and b̂ =

X̄

S2
.

Note that X̄ →pr a/b and S2 →pr a/b2, via the law of large numbers, etc., which

then implies â →pr a and b̂ →pr b, i.e. these are consistent estimators. – The general

aspect at work here is that if â, b̂, ĉ are consistent estimators for a, b, c (converging in

probability, to these three quantities), then h(â, b̂, ĉ) is also consistent for h(a, b, c),

provided the h transform is continuous.

(c) For the 26 women and 127 men, we compute empirical means and variances, use the

above, and find

(âm, b̂m) = (3.7827, 0.0967) and (âw, b̂w) = (2.3312, 0.0718).

(d) This also leads to parametric median estimates

qhatm = qgamma(0.50,ahatm,bhatm) # 35.719

qhatw = qgamma(0.50,ahatw,bhatw) # 27.956

(e) Bootstrapping, as more or less laid out in the exercise text, yields approximate 90%

confidence intervals

[32.695, 38.842] for men and [21.728, 34.995] for women.

These are fairly symmetrical around the associated point estimates (though the boot-

strapping method is meant to work also in more dire straits, sometimes with additional

tweaking; see e.g. Schweder and Hjort, Confidence, Likelihood, Probability, Cambridge

University Press, 2016). The interval for the men is rather tighter than that for the

women, since there is more data information for the men.

(f) Go confidently in the direction of your dreams.
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