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Abstract

We introduce and develop a general paradigm for combining information across diverse data

sources. In broad terms, suppose φ is a parameter of interest, built up via components

ψ1, . . . , ψk from data sources 1, . . . , k. The proposed scheme has three steps. First, the Inde-

pendent Inspection (II) step amounts to investigating each separate data source, translating

statistical information to a confidence distribution Cj(ψj) for the relevant focus parameter

ψj associated with data source j. Second, Confidence Conversion (CC) techniques are used

to translate the confidence distributions to confidence log-likelihood functions, say `conv,j(ψj).

Finally, the Focused Fusion (FF) step uses relevant and context-driven techniques to construct

a confidence distribution for the primary focus parameter φ = φ(ψ1, . . . , ψk), acting on the

combined confidence log-likelihood. In simpler setups, the II-CC-FF strategy amounts to ver-

sions of meta-analysis, but its potential lies in applications to harder problems. Illustrations

are presented, related to actual applications.

Key words: combining information, confidence distributions, confidence likelihoods, focused fusion,

hard and soft data, meta-analysis.

1 Combining information and the II-CC-FF scheme

Our paper concerns the statistical task of combining information across different and perhaps very

diverse data sources. This is of course a long-standing theme in statistics, with papers going back to

Karl Pearson (cf. Simpson & Pearson (1904)); see Schweder & Hjort (2016, Ch. 13) for background,

a general discussion of themes traditionally sorted under the bag-word meta-analysis, along with

further basic references. The present paper aims at proposing and developing a certain paradigm,

which we call the II-CC-FF method, meant to be powerfully applicable for ranges of situations far

beyond the usual simpler setups. We will explain the role and nature of the Independent Inspection

(II), Confidence Conversion (CC), Focused Fusion (FF) steps below.

A special case worth considering first is the textbook setup where y1, . . . , yk are independent

estimators of the same quantity ψ, and where yj ∼ N(ψ, σ2
j ), with known standard deviations σj .

An easy exercise in minimising variances shows that the optimally balanced overall estimator is

ψ̂ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ2
j

∼ N
(
ψ,
( k∑
j=1

1/σ2
j

)−1)
. (1.1)
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A natural extension, though harder to analyse to full satisfaction, is when yj ∼ N(ψj , σ
2
j ), with the

individual means ψj differing according to a N(ψ0, τ
2) distribution. For this type of random effects

model, one wishes clear inference strategies for both the overall mean ψ0 and level of variation τ .

We return to this particular problem in Sections 6.1 and 7.2.

Many problems of modern statistics involving combining information are much more compli-

cated than the situations sketched above, however. Sometimes one needs to combine ‘hard’ data,

with clear measurements from controlled experiments, etc., with ‘soft’ data, associated with infor-

mation more loosely connected to the parameters of primary interest, perhaps via measurement

errors or surrogate variables. In addition there might be prior distributions available, via subject

matter experts, but only for some of the parameters at play, not enough to make it into a clear

Bayesian analysis. For our development of II-CC-FF we have attempted to think fundamentally

and generally about combination of information problems. Our framework encompasses known

meta-analysis methods, but we aim at tackling new and more challenging problems as well. Parts

of the meta-analysis literature are quite narrow, with specific methods for specific problems. In

that light we consider that our more general approach will be useful.

In reasonably general terms, assume there is a parameter φ of clear interest, related to param-

eters ψ1, . . . , ψk, either via a deterministic function φ = φ(ψ1, . . . , ψk) or via some type of random

effect distribution, where such a φ might be a parameter of a distribution of the ψj . Suppose fur-

ther that data source yj provides information pertaining to ψj . For the sake of clear presentation,

we let the ψj be one-dimensional here; more general cases are considered in Sections 5 and 7. Our

II-CC-FF approach for reaching inference statements for the overall focus parameter φ can then

be schematically set up as follows:

� II, Independent Inspection: Data source yj is used, via appropriate models and analyses, to

yield a confidence distribution Cj(ψj , yj) for the main interest parameter associated with

study j.

� CC, Confidence Conversion: The confidence distribution is converted into a log-likelihood

function for this main parameter of interest for study j, say `conv,j(ψj).

� FF, Focused Fusion: In the fixed effect case, the combined confidence log-likelihood func-

tion `fus(ψ1, . . . , ψk) =
∑k
j=1 `conv,j(ψj) is used to reach focused fusion inference for φ =

φ(ψ1, . . . , ψk). With random effects, the fusion involves the computation of an integral.

The extent to which some or all of these steps will be relatively straightforward or rather

complicated to carry out depends to a high degree on the special features of the given source

combination problem. The steps are not ‘isolated’ or fully separated, but often related. In Section

5 we provide a standardised version of II-CC-FF, with a generic recipe to follow, but we will see that

in many cases one could or should be more careful about the various steps. In situations where

the statistician has all the raw data and the particular models used for analysing the different

sources of information, the CC step is in a conceptual sense not difficult, as the required profile

log-likelihood parts may be worked out from first principles. In various situations confronting

the modern statistician this is rather more difficult, however, as one might have to be base one’s

analysis on summary measures, directly or indirectly given via other people’s work, reports and

publications. The II-CC-FF paradigm is meant to be powerfully applicable in such situations too.

A pertinent question to raise is whether or why there is a need for specific methods for com-

bination of information in the first place; in a suitable sense, all of statistics concerns combination
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of information. One might therefore ask why there even exist subfields such as meta-analysis, and

specific framework aimed at combination of information such as our own. So isn’t meta-analysis

just analysis? Two related responses are as follows. (i) Sometimes the full sets of data are not

available, with access only to summaries or partial summaries. Issues here are storage, the practi-

calities of other people’s files, privacy concerns, etc. (ii) Sometimes it might be easier, conceptually

or practically, to analyse the different sources or studies separately first, and then combine these

pieces of summarised information. Also, a statistical prediction is that modern statistics to an

increasing degree will be concerned with such issues and challenges, finding and organising bits

and pieces of information across different sources, with a need to reach conclusions based on these

pieces.

After a motivating illustration, below, we start in Section 2 with a brief review of confidence

distributions, which are essential for the Independent Inspection (II) part of the programme. We

then proceed with giving details related to the basics of Confidence Conversion (CC) in Section 3

and Focused Fusion (FF) in Section 4. In Section 5 we discuss the performance of the combination

framework and provide some general guidelines. In Section 6 we explore connections with other

approaches, notably well-established meta-analysis methods, and also other methods based on

confidence distributions. The three step II-CC-FF machinery is then seen in action through four

applications laid out in Section 7.

Motivating illustration

For concreteness we will start off with a meta-analysis example, and present the three steps of

the II-CC-FF paradigm at work, but with a minimum amount of details. A non-standard feature

of this example is that different studies of the same statistical question have reported different

summary measures. Six studies have reported summary statistics based on continuous outcomes,

while five other studies reported summaries based on a binary outcome. Also note that the full

data of all the studies was not available. The data employed here were first analysed in Whitehead

et al. (1999); related problems have been treated in Dominici & Parmigiani (2000) and Liu et al.

(2015).

We have 11 randomised trials investigating the use of oxytocic drugs during labour and its

potential effect on postpartum blood loss. Each study has two groups of patients, a treatment

group receiving oxytocic drug and a control group receiving no drugs of that type. Taking yi,j to

be the blood loss for patient i in study j, we may use the simple model yi,j = αj + βzi,j + εi,j ,

with the εi,j independent and N(0, σ2), and with zi,j an indicator variable, equal to 0 for patients

in the control group and 1 for patients in the treatment group. Here β is the treatment effect and

the parameter of main interest.

There are six trials of type A, say, reporting continuous outcomes, and five trials of type B,

reporting only binary outcomes relative to a threshold. For the six type A trials, we have the mean

and the empirical standard deviation of the blood loss in the two groups of patients. With the

simple normal model above, these four summary statistics are sufficient for each trial, and we thus

have access to the full log-likelihood `A,j(β, αj , σ) for each continuous trial j. For the five type B

trials, however, we merely have counts of the number of patients in each group having a blood loss

of more or less than 500 ml. These numbers constitute a non-sufficient summary, we thus have

less information in these studies compared to the continuous ones, and log-likelihood functions not

able to inform on β directly, only β/σ. More specifically, based on the normal model above, we
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obtain a probit-type log-likelihood for these binary trials, say `B,j(θ, γj), with γj = (500 − αj)/σ
and θ = β/σ.

Having made these modelling assumptions, the steps in the II-CC-FF recipe follow straight-

forwardly. Using the log-likelihood functions described above, we can, by methods described in

the next section, construct confidence curves for the parameter of interest for each of the studies.

From the type A studies we construct CA,j(β), and from the type B studies CB,j(θ); see the dotted

and dashed curves in Figure 1.1. There, we have plugged in the estimated σ from the continuous

studies, in order to be able to display the inference from the binary studies on the β scale (rather

than on the θ = β/σ scale).
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Figure 1.1: Confidence curves for the treatment effect in the 11 trials (dashed lines: continuous studies, dotted

lines: binary studies), along with two different combined confidence curve. In red, the confidence curve

combining all the 11 studies. The horizontal red line marks the 95% confidence level. The median

confidence estimate is −83.7 ml, with 95% interval [−94.4,−73.1].

The CC step is simple in this case, with no extra work required, since the log-likelihood

functions were used in the construction of the confidence curves for each study. In other situations

we might have to carry out the conversion from confidence statements to log-likelihood functions

in ways described in Section 3. Here we have `conv,j = `A,prof,j(β, σ) for the continuous studies,

and `conv,j = `B,prof,j(β/σ) for the binary studies. These profile log-likelihood functions will be

explained in the next section. In the FF step we sum the log-likelihood contributions,

FF: `fus(β, σ) =

6∑
j=1

`A,prof,j(β, σ) +

5∑
j=1

`B,prof,j(β/σ).

Further, we profile out σ and obtain the final combined confidence curve by

cc∗(β, all data) = Γ1

(
2{max `fus(β, σ̂(β))− `fus(β, σ̂(β))}

)
,

with Γ1(·) the c.d.f. of a χ2
1. In Figure 1.1, the thick red curve is this combined confidence curve.
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It is clearly narrower than all the individuals curves and placed roughly in the middle of them, as

we would expect.

The combined inference clearly indicates that oxytocic drugs reduce postpartum bloodloss,

which is in agreement with the conclusions in Whitehead et al. (1999). Here we have zoomed in on

β as the focus parameter, to pinpoint precisely how much the two groups differ in blood loss. For

clinicians it might be of more direct interest to consider the probabilities for having a postpartum

blood loss greater than a threshold, like 500 ml, for the two groups, and then focus on the odds

ratio, say ρ. Our approach can easily accomodate such an analysis too, with ρ rather than β in

the FF step, yielding a figure similar to Figure 1.1, but now for ρ.

2 Independent Inspection: confidence distributions

Suppose Y denotes a set of random observations, stemming from a model with parameter θ,

typically multidimensional, and with ψ = ψ(θ). For the ease of presentation, we let ψj be a one-

dimensional focus parameter for now, but in general combination situations it will typically be

multidimensional. A confidence distribution C(ψ, y) for this focus parameter has the properties

(i) it is a cumulative distribution function (c.d.f.) in ψ, for each y, and (ii) at the true value θ0,

with associated true value ψ0 = ψ(θ0), the distribution of C(ψ0, Y ) is uniform on the unit interval.

From this follows, under the standard continuity and monotonicity assumptions, that

Pθ0{C−1(0.05, Y ) ≤ ψ0 ≤ C−1(0.95, Y )} = 0.90,

etc., i.e. [C−1(0.05, yobs), C
−1(0.95, yobs)] is a 90% confidence interval for ψ, where yobs denotes

the observed dataset. Thus the confidence distribution C(ψ, yobs), qua random c.d.f., is a compact

and convenient representation of confidence intervals at all levels, and indeed a powerful inference

summary. A close relative is the confidence curve, which we tend to prefer as a post-data graphical

summary of information for focus parameters, defined as

cc(ψ, yobs) = |1− 2C(ψ, yobs)|. (2.1)

It points to its cusp point, the median confidence point estimate ψ̂0.50 = C−1( 1
2 , yobs), and the two

roots of the equation C(ψ, yobs) = α form a confidence interval with this confidence level. Degrees

of asymmetry are easier to spot and to convey using the confidence curve than with the cumulative

confidence distribution itself; cf. illustrations in Section 7. We also note that the random cc(ψ, Y )

has a uniform distribution, at the true position in the parameter space, since |1− 2U | is uniform

when U is. Indeed

Pθ0{cc(ψ0, Y ) ≤ α} = α, for each α, (2.2)

at the true parameters of the model. The confidence curve is arguably a more fundamental concept

than the confidence distribution, as there are cases where a natural cc(ψ, Y ) may be constructed,

with a valid (2.2), even when confidence regions are formed by disjoint intervals (as with multimodal

log-likelihood functions).

For an extensive treatment of confidence distributions, their constructions in different types of

setup, properties and uses, see Schweder & Hjort (2016), and the review paper Xie & Singh (2013),

with ensuing discussion contributions. The scope and broad applicability of confidence distribu-

tions are also demonstrated in a collection of papers published in the special issue Inference With
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Confidence of the journal Journal of Statistical Planning and Inference, 2018 (Hjort & Schweder,

2018). Here we shall merely point to two important and broadly useful ways of constructing a

confidence distribution, for a focus parameter ψ, based on data from a model with a multidimen-

sional parameter θ. The first is to rely on an approximately normally distributed estimator, if

available, say ψ̂ ∼ N(ψ, κ2), and with standard deviation well estimated with an appropriate κ̂.

Then, with Φ(·) as usual denoting the c.d.f. of the standard normal, C(ψ, y) = Φ((ψ − ψ̂)/κ̂)

is an approximately correct confidence distribution, first-order large-sample correct under weak

regularity conditions. In particular the estimator used can be the maximum likelihood one (ML),

say ψ̂ml, but other estimators are allowed too in this simple construction. The second is based on

the profiled log-likelihood function `prof(ψ) = max{`(θ) : ψ(θ) = ψ}, which leads to the deviance

function

D(ψ) = 2{`prof(ψ̂ml)− `prof(ψ)} = 2{`prof,max − `prof(ψ)}. (2.3)

As laid out in Schweder & Hjort (2016, Chs. 2, 3), the Wilks theorem with variations then lead

naturally to

cc(ψ, y) = Γ1(D(ψ)), (2.4)

with Γν(·) denoting the c.d.f. of a χ2 with degrees of freedom ν. Typically, the second method

(2.4) leads to a better calibrated confidence curve than the the simpler method mentioned first.

Further fine-tuning methods are developed, illustrated and discussed in Schweder & Hjort (2016,

Chs. 7, 8); see also Section 5.3 below.

3 Confidence Conversion: from confidence to likelihoods

Several well-explored methods, with appropriate variations and amendments, lead from likelihood

functions to confidence distributions and confidence curves; cf. again several chapters of Schweder

& Hjort (2016). Sometimes the CC step comes almost for free, in cases where the statistician can

compute say log-likelihood profiles from raw data and given models. But in general the CC step of

the II-CC-FF paradigm requires methods for going the other way, from confidence distributions or

confidence curves to log-likelihood information, and this is more involved. Among the complications

is that different experimental protocols, with ensuing different confidence distributions, might be

having the same log-likelihood functions, so the link between confidence and likelihood is not

one-to-one.

Schweder & Hjort (2016, Ch. 10) develop and discuss this topic at some length. For the present

purposes we shall be content with what we call the chi-squared inversion, associated with (2.4)

above. It consists in using

`conv(ψ) = − 1
2Γ−1

1 (cc(ψ, y)) (3.1)

as the profiled confidence log-likelihood contribution associated with a given confidence curve.

When the confidence curve is constructed via cc(ψ, y) = |1 − 2C(ψ, y)|, this is also equivalent to

the normal conversion `conv(ψ) = − 1
2{Φ

−1(C(ψ, y))}2. A relevant point here is that one often

constructs a confidence curve cc(ψ, y) directly, not always via (2.1), making (3.1) a more versatile

tool. The normal conversion confidence likelihood is also what Efron (1993) proposed, for coming
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from confidence to likelihood, via different arguments and for different purposes; see also Efron &

Hastie (2016, Ch. 11).

One may work through various examples, to see how well the chi-squared inversion method

(3.1) manages to approximate the real profiled log-likelihood. Both are guaranteed to be close

to the negative quadratic − 1
2 (ψ − ψ̂ml)

2/κ̂2, for the appropriate κ̂, by arguments associated with

large-sample calculus – including asymptotic normality of the ML estimator and indeed the Wilks

theorem, see Schweder & Hjort (2016, Ch. 2 and Appendix). The results are typically good and

promising also when the data information volume is small, as long as the underlying models are

smooth in their parameters.

For confidence distributions constructed via a one-dimensional statistics T , one may use exact

conversion to obtain the confidence log-likelihood. When the statistic has a continuous distribution,

the exact conversion of the confidence distribution C(ψ, T ), see Schweder & Hjort (2016, Ch. 10),

is `conv(ψ) = log|∂C(ψ, t)/∂t|.

4 Focused Fusion: from full likelihood to focus parameter

Suppose now that the II and CC steps have been successfully carried out, leading to confidence

log-likelihood contributions `conv,j(ψj) from information sources j = 1, . . . , k. Depending on the

application and its context we might then be interested in either a fixed effect approach, with the

main focus parameter φ is a function of the ψj , or a random effect approach, where we introduce an

additional layer of heterogeneity through a model for the ψj . We will treat the fixed effect case first.

The Focused Fusion step will then typically be carried out via profiling of the combined confidence

log-likelihood. In Section 4.2 we present the II-CC-FF solution for random effect situations.

4.1 Fixed effects fusion

Assuming the information sources to be independent, the overall confidence log-likelihood function

is `fus(ψ1, . . . , ψk) =
∑k
j=1 `conv,j(ψj). When focused inference is wished for, for a focus parameter

φ = φ(ψ1, . . . , ψk), the natural way forward is, again, via profiling:

`fus,prof(φ) = max{`fus(ψ1, . . . , ψk) : φ(ψ1, . . . , ψk) = φ}.

By the Wilks theorem directly, or by variations of the arguments and details used to prove such

theorems (cf. Schweder & Hjort (2016, Appendix)), the overall deviance function

D∗(φ) = 2{`fus,prof(φ̂)− `fus,prof(φ)}

tends, at the true parameter position and with increasing information volume, to a χ2
1. Here φ̂ is

the ML, maximising the profiled log-likelihood. Hence

cc∗(φ, all data) = Γ1(D∗(φ))

is the outcome of the three step II-CC-FF machine, a confidence curve for the focus parameter.

In Section 5 we will come back to some discussion on the meaning of “increasing information

volume” in a combination context. Various fine-tuning techniques may be applied to improve on

this first-order approximation method; cf. Schweder & Hjort (2016, Chs. 7, 8) and Section 5.3. In

situations where the ψj represent the same focus parameter, common across sources, the scheme

above simplifies.
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4.2 Random effects fusion

In our II-CC-FF setting, we use the term ‘random effects’ when we wish to introduce an extra layer

of heterogeneity in the fusion step. This is more easily presented when assuming that ψ1, . . . , ψk

are scalars. In the random effects case we do not assume that all ψj are equal but rather that

they come from some underlying distribution. In the most canonical case, this distribution will

be governed by some overall mean parameter ψ0 and some spread parameter τ ; specifically we

could have ψj ∼ N(ψ0, τ
2). The parameter of main interest may be either the overall mean, or the

spread, or perhaps a quantile, depending on the context.

We propose the following general solution for II-CC-FF with random effects. Suppose the ψj

are modelled as coming from a background density f(ψj , κ), say, where the κ could be a centre and

a spread parameter, as for (ψ0, τ) in the normal case. Then, using the confidence log-likelihoods

`conv,j(ψj), we define the fusion log-likelihood for source j to be

`fus,j(κ) = log
[∫

exp{`conv,j(ψj)}f(ψj , κ) dψj

]
. (4.1)

The likelihood contributions from each source are then summed, `fus(κ) =
∑k
j=1 `fus,j(κ). We

would usually need to profile again, depending on what we are interested in, say the centre ψ0 or

spread τ for the case of a normal model for the ψj . To produce our final confidence curve we will

often use the Wilks approximation. This II-CC-FF solution requires the computation of integrals.

Sometimes numerical integration routines in R work well enough, other times we will make use

the so-called Template Model Builder package (TMB) and its Laplace approximations in order to

compute the integral (Kristensen et al., 2016).

5 General guidelines

The overall objective of the II-CC-FF is to construct a valid confidence curve for each parameter φ of

particular interest, typically of the form φ = φ(ψ1, . . . , ψk), incorporating the relevant information

in all the sources. Below we first present a reasonably standardised version of the II-CC-FF scheme.

This framework has limitations and should be used with care, however, which we then discuss in

the following subsections. These discussions also highlight various important general issues with

methods for combination of information. Our default method is based on profiling, and much on

the discussion below relates to that tool, including certain modifications.

5.1 Standard II-CC-FF

Our framework opens up many possibilities for tailored and fine-tuned solutions where these might

exist, as demonstrated in the four applications of Section 7. We are however promoting one versatile

version of II-CC-FF, which could be called ‘standard’, and will work for a range of situations. This

version may be developed into an R-package. Here we will describe the steps of this II-CC-FF

scheme, when we have the full data available, or sufficient summaries, from all sources. The

statistical work starts by finessing the statistical issues into one or more parameters of particular

interest, involving relevant parameters ψ1, . . . , ψk from the k sources. These might be parameter

vectors (i.e. need not be one-dimensional), they might differ from source to source, but may also

contain common parameters across sources.
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� II, Independent Inspection: analyse each source j separately. Assume a parametric model for

the observations and put up the likelihood function. Profile out the source-specific parame-

ters, and obtain `prof,j(ψj).

� CC, Confidence Conversion: in this case we already have the log-likelihood profiles from each

source, so the confidence coversion is simple, with `conv,j(ψj) = `prof,j(ψj).

� FF, Focused Fusion: here we want to obtain a confidence curve for the parameter of overall

interest φ. Depending on the situation, (i) if φ is assumed to be the same across sources

or a function of some source-specific parameters, sum the `conv,j and then profile again

if necessary; (ii) if some component of the ψj are assumed to come from some common

distribution, use the random effects solution presented above, and then profile again if needed.

We then obtain `fus,prof(φ), and in both cases we use the Wilks approximation to produce

the final, combined confidence curve cc∗(φ, data).

5.2 Nuisance parameters

The standard scheme described above is often applicable, but there are situations where it will

not work well. As for confidence curves in general, we consider the method to work if the final

combined confidence curve cc∗(φ) has the right coverage properties, either exactly or approximately

(see (2.2)).

Assume we have k sources of information and nj observations in each source. In combination

situations, it is sometimes fruitful to differentiate between two types of nuisance parameters: source-

specific and common nuisance parameters. Our default tool for constructing confidence curves,

both in the II step and in the FF step, is based on profiling and application of Wilks’s theorem.

In many situations, we can have two rounds of profiling: first in the II step where we might profile

out the source-specific nuisance parameters, and sometimes in the FF step where we might profile

out potential common nuisance parameters. The profile log-likelihood is a practical tool, but

unfortunately its performance can be poor in some situations, and it is important to be aware of

its limitations. We will discuss problematic aspects of the profile likelihood in the next subsection,

along with some potential remedies. First, we will briefly describe two different general situations

with nuisance parameters.

Often we may find ourselves in the situation where all the nuisance parameters are source-

specific. If we have ‘large sources’, i.e. the sample size nj of each source is large, we can safely

profile in the II step, and we can also safely apply Wilks theorem in the FF step to produce the

final confidence curve, at least in regular models. If some or all the sources are small, however,

one should be more careful. Specifically, the profiling might go wrong and one might need certain

corrections, as we discuss in the Section 5.3. There are also alternatives to the default profile

solution in some cases, see for example subsection 5.4 where we describe a somewhat general

setting where small-sample exact CDs are available.

We can also have situations with common nuisance parameters. These common parameters

can be of different kinds, and here we will particularly concern ourselves with nuisance parameters

arising from the random effect distribution in the FF step. For example, if we have ψj ∼ N(ψ0, τ
2)

and our focus parameter is ψ0, then τ is a common nuisance parameter of that type. Then, we

need to be careful with the profiling in the FF step: if the number of sources k is large we can

safely profile and use Wilks theorem in regular models. If k is small we may need to resort to
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some of the corrections described in Section 5.3, or seek exact (but case-by-case) solutions. Often

we may have both source-specific parameters, and common nuisance parameters arising from the

random effect distribution in the FF step. In that case, we ideally need to have a large number

of large sources in order to produce (close to) valid CDs with the default profiling-based method.

Again corrections may be needed, in both the II and FF steps. Note that in these cases, if k is too

small, large sources will not necessarily help. Conversely, if the nj are too small, a large k will not

in general be able to remedy the mistakes coming from profiling in the II step.

5.3 Corrections to the log-likelihood profile

In situations with nuisance parameters using the profile log-likelihood can lead to “inefficient and

even inconsistent estimates” (McCullagh & Tibshirani, 1990). There is a large literature on this

topic, concerning second-order approximations and corrections or modifications of the profile like-

lihood. Cox & Reid (1993) state that there are two related reasons for modifying the profile

log-likelihood: coming closer to the χ2
1 distribution, and avoiding ‘failure’ due to nuisance param-

eters.

The different corrections appearing in the literature have varying performance and complexity;

see for instance Barndorff-Nielsen (1986), Cox & Reid (1993), Diciccio & Efron (1992), Stern (1997),

DiCiccio et al. (1996), Schweder & Hjort (2016, Ch. 7). There is also a whole subfield of integrated

likelihood methods with partly similar aims, see Berger, Liseo & Wolpert (1999). A thorough

investigation of all these methods is outside the scope of this article, and we will therefore only

present one rather simple, somewhat limited solution. Alternative methods might work better, or

at least in a more general setting, but these are often quite complicated to compute.

In Cox & Reid (1987), the authors present what we will term the simple Cox–Reid correc-

tion. This is possibly the easiest correction to compute among those suggested above. It can be

considered a special case of the correction in the general modified profile likelihood of Barndorff-

Nielsen, but the simple Cox–Reid correction is limited to situations with orthogonal parameters

(i.e. that the off-diagonal terms in the expected information matrix are equal to zero). Assume

we have a scalar parameter of interest ψ and some vector of nuisance parameters λ. As usual, the

profile log-likelihood for ψ is defined as `prof(ψ) = `(ψ, λ̂ψ), where λ̂ψ is the ML estimate of λ for

each fixed ψ value. The simple Cox–Reid correction gives the following modification of the profile

log-likelihood,

`cprof(ψ) = `prof(ψ)− 1
2 log{det Jλλ(ψ, λ̂ψ)} (5.1)

where Jλλ(ψ, λ̂ψ) is the observed information for the λ components. The simple Cox–Reid cor-

rection can be used both in the II and FF steps, for models with orthogonal parameters. We will

start by illustrating its use in the II step.

5.3.1 Using the Cox–Reid correction in the II step

In the II step the correction is particularly necessary when the sample sizes nj within each source are

small. The Neyman–Scott problem is an extreme example of such a situation. It can be presented

of as a meta-analysis problem. We have a large number of studies/sources k, but each study has

only 2 observations (so n1 = · · · = nk = n = 2). In each source j we observe yi,j ∼ N(µj , σ
2)

where i = 1, 2 and j = 1, . . . , k. Each sources has a specific mean parameter, but the variance,

which is the parameter of main interest, is common across sources. This problem is popular in the
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literature concerning corrections to the profile likelihood (see e.g. Schweder & Hjort (2016, Ch. 7)),

since there exists a simple and exact solution, which serves as a gold standard against which to

compare different corrections. We will compare this gold standard solution, as found in Schweder &

Hjort (2016, Ch. 4), against the ‘standard’ II-CC-FF solution and the corrected II-CC-FF solution

using the simple Cox–Reid correction.

The pivot σ̂2/σ2 can be seen to have a χ2
k/(2k) distribution, which gives the exact confidence

distribution,

Cgold(σ) = 1− Γk(2kσ̂2/σ2),

where Γk(·) is the c.d.f. of the χ2
k distribution and σ̂2 =

∑k
j=1 S

2
j /(2k) =

∑k
j=1

1
2 (y1,j−y2,j)2/(2k)

is the ML estimate (we note that this is a famous case where the ML estimator is inconsistent).

The gold standard CD may be turned into a confidence curve using (2.1) and is displayed in black

in Figure 5.1. For the sake of comparisons, we can write out the confidence likelihood implied by

this confidence distribution,

`conv,gold(σ) = −k log σ − 1
2 (1/σ2)

k∑
j=1

S2
j . (5.2)

With the standard II-CC-FF solution we start with the II step where we deal with each

source separately: we profile out µj and we get `prof,j(σ) = −2 log σ − 1
2 (1/σ2)S2

j , where S2
j =

(y1,j − y2,j)2/2. All the sources inform on exactly the same focus parameter and we can just sum

the log-likelihood contributions in the fusion step,

`prof(σ) = −2k log σ − 1
2 (1/σ2)

k∑
j=1

S2
j . (5.3)

Comparing this to the confidence log-likelihood for the gold standard in (5.2) we see that they

differ by an extra ‘2’ in the first term, which causes the inconsistency of the ML estimator. We

may nevertheless construct our confidence curve in the general II-CC-FF manner, cc∗1(σ, data) =

Γ1

(
2{`prof(σ̂)− `prof(σ)}

)
.

For this model, the simple Cox–Reid correction term for each source is log σ. The corrected

profile log-likelihood for each source is then `prof,j(σ) + log σ, and for the full data we obtain a

corrected profile log-likelihood identical to (5.2). Following the II-CC-FF recipe we construct the

confidence curve with the Wilks approximation, cc∗2(σ, data) = Γ1{2(`conv,gold(σ̂)− `conv,gold(σ))}.
Figure 5.1 gives the three confidence curves in a specific example with k = 20 sources. The

standard II-CC-FF solution in red is clearly far from the exact black curve. With k increasing, it

converges to the wrong value, σ/
√

2. The blue curve, on the other hand, corresponding to the II-

CC-FF solution with Cox–Reid correction, is close to the exact curve, even though it is constructed

using the Wilks approximation. When k increases, for instance to 50, the blue and black curves

are virtually identical.

5.3.2 Using the Cox–Reid correction in the FF step

Corrections of the type discussed here may be necessary in the FF step when there are common

nuisance parameters arising from the random effect distribution in the Fusion step. In particular,

we propose that this correction should readily be applied when then random effect distribution is

assumed to be normal. Here, the correction would be notable with small k. First, we will present

an example of the Cox–Reid correction in a classic model for random effect meta-analysis. We may
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Figure 5.1: Neyman–Scott example with k = 20 sources/studies, the parameter of main interest σ = 2, and the

source specific means drawn from a uniform between −3 and 3. The exact confidence curve in black,

the standard uncorrected II-CC-FF solution in red, and the corrected II-CC-FF solution in blue.

call that model normal-normal, since both the model for the observations and the model for the

random effects is normal. Next, we will discuss a situation where the observations are non-normal.

The most canonical type of random effect meta-analysis, what we term the basic random effect

model, starts with k independent estimators y1, . . . , yk aiming at the parameters ψ1, . . . , ψk, with

yj |ψj ∼ N(ψj , σ
2
j ) and ψj ∼ N(ψ0, τ

2). We can investigate the standard II-CC-FF solution, along

with the simple Cox–Reid correction. When the σj are assumed known, the integral in (4.1) has

an explicit solution and the full combined profile likelihood from the FF step becomes

`fus,cprof(ψ0) =

k∑
j=1

{
− 1

2 log(τ̂2ψ + σ2
i )− 1

2

(yi − ψ0)2

τ̂2ψ + σ2
i

}

− 1
2 log

 k∑
j=1

{∣∣∣∣∣− 1
2

1

(τ̂2ψ + σ2
i )2

+
(yi − ψ0)2

(τ̂2ψ + σ2
i )3

∣∣∣∣∣
} .

The first part of the formula is the ordinary profile log-likelihood, the second part the simple

Cox–Reid correction. Brief simulation studies indicate that confidence curves produced with this

corrected profile log-likelihood and the Wilks approximation have good coverage properties. The

correction is especially important when there are few studies and the heterogeneity between them

is large.

In the normal-normal set-up above, the parameters are orthogonal, but we suggest that one

could use the simple Cox–Reid correction even if the model for the observations in each source is

non-normal. Say we are in a setting like in (4.1), and assume that the random effect distribution

is normal, with the parameter of main interest being the overall mean ψ0. Inside each source we

can have any (regular) model. In a simple normal model, the Cox–Reid correction when profiling
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out the variance τ2 would be equal to − log(τ̂2(ψ)). We propose to routinely use the following

corrected likelihood profile construction in this type of random effect setting,

`fus,cprof(ψ0) =

k∑
j=1

{
log
[∫

exp{`conv,j(ψj)}
1

τ̂(ψ0)
ϕ

(
ψj − ψ0

τ̂(ψ0)

)
dψj

]}
+ log{τ̂(ψ0)2}, (5.4)

where τ̂(ψ0) is the ML estimate of τ for each fixed ψ0 value and ϕ is the standard normal density.

The orthogonality of ψ0 and τ in the full (integrated) distribution does not necessarily hold, but it

would hold if the sources were large, since then `conv,j(ψj) above will approach a normal likelihood.

We therefore consider the proposition in (5.4) to be an approximate correction for the situation

when k is small, but the nj are sufficiently large. This idea seems to work well, for instance in the

situation of meta-analysis 2× 2 tables which is mentioned in Section 6.1.

5.4 Confidence power and optimal methods

Profiling the log-likelihood is a general method for elimination of nuisance parameters, and as

we have seen it may have unsatisfying performance in some situations. For some parameters

in exponential families, there is an alternative method which is much more powerful, producing

optimal confidence distributions. In our II-CC-FF setting, this method might come into play both

in the II step and the FF step, see the application in Section 7.1.

For ease of presentation, we present the optimal confidence method in the case where all the

k sources inform on a common focus parameter ψ = ψ1 = · · · = ψk. This constitutes a situation

where the method is used in the final FF step. Suppose again that ψ is the focus parameter, and

that we have m nuisance parameters γ1, . . . , γm, which may be both source-specific or common to

all k sources. Suppose also that the log-likelihood function at work, based on information sources

y1, . . . , yk, can be written in the form

`(ψ, γ1, . . . , γm) = ψA+ γ1B1 + · · ·+ γmBm − d(ψ, γ1, . . . , γm) + h(y1, . . . , yk), (5.5)

where A and B1, . . . , Bm are statistics, i.e. functions of the data collection, with observed val-

ues Aobs and B1,obs, . . . , Bm,obs, and with m often bigger than k. Then, under mild regularity

conditions, there is an overall most powerful confidence distribution, namely

C∗(ψ, y) = Pψ{A ≥ Aobs |B1 = B1,obs, . . . , Bm = Bm,obs}.

That this C∗(ψ, y) indeed depends on ψ but not on the γj parameters is part of the result and the

construction.

To illuminate the exact meaning of ‘most powerful’ in this setting, one needs to consider the

theory for loss and risk functions for confidence distribution developed in Schweder & Hjort (2016,

Ch. 5). Confidence power is measured via the risk function

r(C,ψ, γ) = Eψ,γ

∫
Γ(ψcd − ψ) dC(ψcd, Y ), (5.6)

for any convex nonnegative Γ(·) with Γ(0) = 0. The random mechanism involved in the expectation

here is a two-stage operation – first data y, governed by the (ψ, γ) held fixed, are used to generate

the confidence distribution C(ψ, y), and then ψcd is a random draw from this distribution.
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6 Connections with other approaches

II-CC-FF provides a general framework for combination problems. These problems have been

studied in the statistics field for a long time, and II-CC-FF naturally has many connections to

that literature. In this section we will review related methods, and offer some comparisons with

II-CC-FF. We start by describing parts of the meta-analysis literature, before treating two groups

of CD-based methods for combination of information.

6.1 Meta-analysis methods

As mentioned in the small start example (1.1), some common meta-analysis methods fall more or

less directly out of the II-CC-FF framework. In addition, the framework also invites more general,

principled and non-standard solutions. The meta-analysis literature is vast, and we have only

investigated the connections between II-CC-FF and a couple of widely encountered meta-analysis

methods. We will start with a short discussion of the basic random effect model, before we go

on to discuss the famous case of meta-analysis of 2 × 2 tables. While II-CC-FF certainly can

handle these common cases, the framework naturally opens the door to non-standard analyses, for

example using other distributions than the normal (see Section 7.1) or situations where different

studies have reported different summaries (as with our start illustration in Section 1).

The basic random effect model was discussed in Section 5.3. Again, we have k independent

estimators y1, . . . , yk aiming at the parameters ψ1, . . . , ψk, with yj |ψj ∼ N(ψj , σ
2
j ) and ψj ∼

N(ψ0, τ
2). Usually the source-specific standard deviations σj are assumed known, and the most

commonly used method for inference on the overall mean ψ is the DerSimonian-Laird method.

Several simulation studies have revealed that this method can have poor performance and often

produces too narrow confidence intervals, see Partlett & Riley (2017) and references therein. There

are several possible solutions that fall out of the general CD-methodology and II-CC-FF, see

Schweder & Hjort (2016, Ch. 13). Specifically, we investigated the standard II-CC-FF solution,

along with the simple Cox–Reid correction in Section 5.3. Likelihood-based method for the basic

random effect model, even exploring higher order corrections, have been investigated earlier, see

for instance Hardy & Thompson (1996) and Noma (2011). For a more general likelihood approach

see O’Rourke (2008).

If the sources are small, the assumption of known σj does not hold and II-CC-FF can provide

more sophisticated solutions. In the II step, we have exact CDs for each ψj based on the Student’s

t distribution, which we can convert to a confidence log-likelihood by exact conversion in the CC

step. For the FF step, we use the general random effect method from (4.1), either with numerical

integration or using the TMB package. Corrections in both the II and FF step may be considered.

In meta-analyses of 2 × 2 tables, each study is usually modelled with a pair of binomially

distributed variables, one for the control group and another for the treatment group; Y0,j ∼
binom(m0,j , p0,j) and Y1,j ∼ binom(m1,j , p1,j) with p0,j = exp(θj)/(1 + exp(θj)) and p1,j =

exp(θj + ψj)/(1 + exp(θj + ψj)). Each source has a specific nuisance parameter θj , governing

the event probability in the control group, and ψj the log odds ratio. We will first treat the fixed

effect case where the log odds ratios are assumed common across all sources, ψ1 = · · · = ψk = ψ,

before we come to the random effect case in the next paragraph. The information available in each

source depends on the size of the binomial sample sizes m0,j and m1,j (and on the event probabil-

ities). If the number of studies increases while the size of each study stays constant, it is known
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that the ML estimator is inconsistent (Breslow, 1981). We are therefore in a Neyman–Scott type

situation and using the standard II-CC-FF will not be good when the sources are small (especially

if the event probabilities are low). Also, the simple Cox–Reid correction to the profile in each

source is not immediately available because ψj and θj are not orthogonal. However, there exists

an optimal CD for the common ψ based on the theory from Section 5.4,

Copt(ψ,data) = P (Bk > b | z1, . . . , zk) + 1
2P (Bk = b | z1, . . . , zk). (6.1)

Here, zj = y0,j + y1,j and Bk =
∑k
j=1 Y1,j . The CD is obtained by simulating the distribution of

Bk given Z1, . . . , Zk. Note also that we similarly have an optimal CD for ψj within each source,

Copt,j(ψj , y0,j , y1,j) = P (Y1,j > y1,j | zj) + 1
2P (Y1,j = y1,j | zj). (6.2)

This CD is simple to compute as Y1,j |Zj has an eccentric hypergeometric distribution. Starting

from (6.2) for each source in the II step, we can obtain an approximation to the optimal solution

in (6.1) which is faster to compute and also lends itself to a natural random effect extension,

as we will see. In the CC step, we use exact conversion to obtain the confidence log-likelihoods

`conv,j(ψj) = log gj(y1,j , ψj), where

gj(y1,j , ψj) =

(
m0,j

zj−y1,j

)(
m1,j

y1,j

)
exp(ψjy1,j)∑zj

u=0

(
m0,j

zj−u
)(
m1,j

u

)
exp(ψu)

for y1,j = 0, 1, . . . ,min(zj ,m1,j) (6.3)

is the density function of the eccentric hypergeometric distribution. We sum these confidence log-

likelihoods to get `fus(ψ) =
∑k
j=1 `conv,j(ψj), find the ML estimate ψ̂ and the deviance, and use

the Wilks approximation:

cc∗(ψ,data) = Γ1(2{`fus(ψ̂)− `fus(ψ)}) (6.4)

Even though there is some level of approximation in this solution, it tends to work very well even

for small k.

From this approximate fixed effect approach we find a natural extension to random effects. As-

suming that the log-odd ratios from the different sources come from a common normal distribution,

we have the following log-likelihood contribution from each source to the overall parameters,

`fus,j(ψ, τ) = log

∫
gj(y1,j , ψj)

1

τ
ϕ

(
ψj − ψ
τ

)
dψj , (6.5)

where gj(y1,j , ψj) is the density function of the eccentric hypergeometric distribution, pointed to

above. We sum the contributions from each source, profile out τ , and use the Wilks approximation.

If the number of sources is small we add the approximate Cox–Reid correction log τ̂2(ψ) from (5.4)

to the profile log-likelihood. In applications, we computed the integral using the TMB package.

This approach seems promising with good coverage properties in simulations. The uncorrected

version is similar to the hypergeometric–normal model in Stijnen et al. (2010), but we find the

correction to be important when k is not very large.

6.2 Other combination methods based on CDs

There are other authors working on combination of information with confidence distributions. Here

we will briefly discuss methods by Singh et al. (2005) and Liu et al. (2015). These CD approaches

are sometimes collected under the same umbrella, called Fusion Learning (Cheng et al., 2017).
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We start by discussing the approach of Singh et al. (2005), valid when all confidence com-

ponents relate to a common focus parameter. Suppose that independent information sources

y1, . . . , yk give rise to confidence distributions for the same parameter, say C1(ψ, y1), . . . , Ck(ψ, yk).

A general way of combining these into a single overall confidence distribution has been proposed

and worked with by Singh et al. (2005), later on applied in various contexts by Xie et al. (2011),

Xie & Singh (2013), Liu et al. (2014), and others. The starting point is that under the true

state of affairs, the Φ−1(Cj(ψ, Yj)) are independent standard normals, from the basic properties

of confidence distributions; here Φ(·) again denotes the c.d.f. for the standard normal. Hence∑k
j=1 wjΦ

−1(Cj(ψ, Yj)) is also standard normal, when the weights wj are such that
∑k
j=1 w

2
j = 1.

This again implies that

C̄(ψ, y) = Φ
( k∑
j=1

wjΦ
−1(Cj(ψ, yj))

)
(6.6)

is a confidence distribution for ψ, using the combined dataset y = (y1, . . . , yk). The idea generalises

to other basic distributions than the normal, but then the required convolutions become less

tractable.

For the prototype situation associated with (1.1), the individual confidence distributions take

the form Cj(ψ, yj) = Φ((ψ − yj)/σj), and the general (6.6) recipe yields

C̄(ψ, y) = Φ
( k∑
j=1

wj(ψ − yj)/σj
)
.

Some considerations then lead to the best of these linear combinations, with weights wj proportional

to 1/σj and
∑k
j=1 w

2
j = 1. This indeed agrees with the standard method (6.6).

Recipe (6.6) requires nonrandom weights wj , and these could in various cases be fruitfully

taken as proportional to 1/
√
mj , with mj the sample size associated with data source yj . In many

other situations the balance is more delicate, however, perhaps demanding nonrandom weights, of

the type ŵj estimating an underlying optimal but not observable wj,0. Problems worked with in

Liu et al. (2014) are of this type. In such cases recipe (6.6) is not entirely appropriate and is rather

to be seen as an approximation, associated with confidence intervals with approximate levels of

confidence. A better strategy would often be to work with the actual distribution, say H, of

Z∗ =

k∑
j=1

ŵjZj , with Zj = Φ−1(Cj(ψ, Yj)).

The appropriate generalisation of the recipe above is then

C̄(ψ, y) = H
( k∑
j=1

ŵjΦ
−1(Cj(ψ, yj))

)
, (6.7)

perhaps with H evaluated or estimated via simulations. In situations with increasing data volume

the estimated weights ŵj would come close in probability to the underlying wj,0, and H would

tend in distribution to Φ, hence with (6.7) leading back to (6.6). In yet other words, method (6.6)

remains correct to the first-order large-sample degree, even though more careful versions of (6.7)

would tend to work better for smaller samples.

The approach described above yields approximative solutions for the basic normal-normal

random effect model, partly helped by the fact that the unconditional density in that case has an
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explicit normal form, yj ∼ N(ψ0, σ
2
j + τ2). It is not clear how the method in Xie et al. (2011) can

incorporate more general random effect models, however.

Under the ‘Fusion learning’ umbrella there are other methods. The method in Liu et al. (2015)

may be termed a ‘confidence density method’ and can be considered as a special case of II-CC-

FF, as we will see. The method is proposed for a fixed effect setting, but where the studies may

differ in reported outcomes, in measured covariates or have source-specific nuisance parameters.

Thus, some of the studies may only contain indirect information about the parameter of interest.

Let θ be the full parameter vector for all the studies and γj = Mj(θ) the parameters in study

j, with Mj denoting a known mapping function. Liu et al. (2015) summarise the information

in each source with multivariate normal CDs, Cj(γj , yj), transform these to confidence densities

cj(γj , yj) = ∂Cj(γj , yj)/∂γj , which are then multiplied into a combined confidence density, which

inform on the full θ. The authors stress that the approach is general in the sense that it can be

used with a wide range of parametric models for the sources. This generality is achieved because

the authors assume that the number of observations in each source increases to infinity.

The normal CDs for each study only requires the estimated parameter vector γ̂j and estimated

covariance matrix Σ̂j for γ̂j , and the authors therefore highlight that the approach only needs

summary statistics rather than the full data. Also, they prove that their approach is asymptotically

equally efficient as a traditional likelihood approach using the full data.

For location parameters in normal models the confidence density and confidence log-likelihood

are proportional. The approach in Liu et al. (2015) can therefore be considered a special case of

II-CC-FF. Sometimes the confidence density might be easier to obtain than the exact confidence

log-likelihood, and could be used also in connection with II-CC-FF. However, one might need

to be careful, as this approach could introduce mistakes. The confidence density is equal to

∂C(ψ, T )/∂ψ, while the exact confidence likelihood takes the derivative with respect to T , as we

saw in Section 3. The difference between the confidence density and confidence likelihood will

be the most pronounced when the sample sizes are small, with the difference going away with

increasing sample sizes.

7 Applications

Below we illustrate the capacity for the II-CC-FF paradigm to solve problems in rather different

application settings. The first application concerns a meta-analysis of 2 × 2 tables, where we

consider both fixed and random effect approaches. Besides demonstrating the use of II-CC-FF in

a typical meta-analysis setting, we also aim at investigating the effect of the CC step, particularly

the difference between exact conversion and the approximate chi-squared inversion method.

In the second application we analyse an interesting archaeological dataset. Here we use the

so-called basic random effect model which was discussed in Sections 5.3 and 6.1, but atypically our

parameter of main interest is the spread parameter τ . For this parameter there exists an exact

confidence distribution in the FF step.

The annual growth rate of humpback whales is the focus of the third application. There, we

illustrate how to construct confidence curves based on non-sufficient summary statistics; we only

have access to a point-estimate and a highly non-symmetric confidence interval. In this example we

also demonstrate how partial prior information can be incorporated into our II-CC-FF framework.

Finally, the last application illustrates the combination of ‘hard’ with ‘soft’ data. Here ‘hard’
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designates data sources of high quality which inform directly on the focus parameter. ‘Soft’ data,

on the other hand, may be of lower quality, with more noise and biases, or simply containing less

direct information on the focus parameter. Such large, noisy datasets are increasingly available

in a number of fields, for example from webscraping or text-mining, but lead to challenges when

attempting to fuse the sources. We illustrate the combination of ‘hard’ and‘soft’ data with a

question from the field of peace research; is there evidence for The long peace, and in that case,

when did it start?

7.1 Meta-analysis of 2× 2 tables: do corticosteroids increase the risk of

gastrointestinal bleeding?

As mentioned earlier, the II-CC-FF paradigm covers many existing meta-analysis methods as

special cases. In the case of meta-analysis of 2 × 2 tables, Schweder & Hjort (2016, Chs. 5, 13)

provides optimal confidence distribution for inference about a fixed odds ratio parameter, both

when the event counts are modelled as binomial pairs and as Poisson pairs. This partly involves

the use of (5.5), via appropriate conditional distributions; see also Schweder & Hjort (2013a) and

Cunen & Hjort (2015) for more details and further discussion. These optimal solutions can indeed

be presented within the II-CC-FF framework.

Table 7.1: Corticosteroids and gastrointestinal bleeding: Number of bleeding ulcer events in two groups of patients,

one receiving corticosteroids and the other not receiving them, in five independent studies; see Section

7.1 and Figure 7.1.

m1 m0 y1 y0

49 50 5 0

101 99 0 1

41 40 1 2

63 63 1 0

198 202 1 0

Narum, Westergren & Klemp (2014) provide a medical dataset with five studies investigating

gastrointestinal bleeding for a certain subgroup of patients, those that are in ambulatory care

(they have other data for hospitalised patients). The treatment group received corticosteroids

and the control group did not, and the number of bleeding events were recorded in each group.

We will use this example to illustrate the use of II-CC-FF in a typical, but somewhat difficult

meta-analysis setting. The difficulty here comes from the low event probability, which translates

to several studies with zero bleeding events in one of the two groups; in particular, this implies that

the ML estimators are far away from the usually assumed approximate normality. The different

studies also exhibit very different treatment effects, as we will see. This example will also serve as

an illustration of the effect of the confidence conversion step in particular.

As discussed in Section 6, each study is usually modelled with a pair of binomially distributed

variables,

Y0,j ∼ binom(m0,j , p0,j) and Y1,j ∼ binom(m1,j , p1,j),

with subscript ‘1’ indicating treatment and ‘0’ control, with p0,j = exp(θj)/{1 + exp(θj)} and

p1,j = exp(θj + ψj)/{1 + exp(θj + ψj)}. The focus parameter is the treatment effect; here we will
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consider γj = exp(ψj), the odds ratios. First, we will treat the fixed effect case, where the odds

ratios are assumed common across all sources, γ1 = · · · = γk = γ; afterwards we come to the

random effect case where the γj are assumed to come from some common distribution.
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Figure 7.1: The coloured dashed curves are the confidence curves for the odds ratio from each of the five studies.

The thick black curve is the optimal combined confidence curve, assuming fixed effects, while the grey

curve corresponds to a random effect model. The light blue curve is cc∗1(γ) and the orange curve is

cc∗2(γ). The horizontal red line marks the 95% confidence level and the vertical grey line corresponds to

an odds ratio equal to one. See Section 7.1 and Table 7.1.

In the first step, II, we use (6.2); providing the optimal CD for the odds ratio from each of

the five studies. These confidence curves are shown in Figure 7.1 as dashed coloured lines. We

see that the studies indicate wildly different odds ratios; two studies have a point estimate smaller

than one, while three studies have point estimates larger than one, suggesting that corticosteroids

increase the risk of bleeding. These three studies actually have a point estimate equal to infinity,

due to the control group having zero events. Note however that two of these studies have extremely

wide confidence intervals, in fact spanning the entire positive line for most confidence levels.

For the CC step we will investigate two possibilities, (1) using exact conversion, and (2)

using the more automatic and approximate normal conversion (chi-squared inversion method, as

per Section 3), which corresponds to a situation where we would have access to the individual

confidence curves, but did not know how they were constructed. The two alternatives lead to

CC: `conv,1,j(γ) = log gj(y1,j , γ), `conv,2,j(γ) = − 1
2Γ−1

1 (ccj(γ,dataj)) for j = 1, . . . , k,

where gj(·) is the density function of the eccentric hypergeometric distribution in (6.3), ccj(γ,dataj)

is the confidence curve from study j and Γ−1
1 is the quantile function of the χ2

1 distribution. For

both choices of confidence likelihood the FF step is the same, we sum the log-likelihoods, find the
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combined deviance function, and apply the Wilks’ theorem, as per Section 4:

FF: `fus,1(γ) =

6∑
j=1

`conv,1,j(γ), cc∗1(γ,data) = Γ1(2{`fus,1(γ̂)− `fus,1(γ)}),

or `fus,2(γ,data) =

6∑
j=1

`conv,2,j(γ), cc∗2(γ) = Γ1(2{`fus,2(γ̂)− `fus,2(γ)}).

We will compare these two confidence curves with the confidence curve for γ which is given in (6.1)

and is based on simulating the distribution of a sum of eccentric hypergeometricly distributed

variables. This curve is optimal in the sense of Section 5.4, but can be quite heavy to compute. As

seen in Figure 7.1, the curve resulting from the exact conversion, cc∗1(γ,data), perfectly matches the

optimal confidence curve for γ, even though we use the Wilks approximation. The curve resulting

from normal conversion does not match the optimal curve completely, indicating that the normal

conversion introduces some errors in this case. In other meta-analyses of 2×2 tables, we have seen

that the normal conversion works very well, and the success of that approximation depends on the

size of the tables, the event probabilities and crucially on whether we have some studies with zero

events in one or both groups.

We can use a random effect approach as well, assuming that the log odds ratios ψj come

from a normal distribution and using (6.5) and the TMB package for computation of the integral.

The simple Cox–Reid correction does not work well here because each of the tables have very

little information in them (and g(·) is therefore far from a normal density). We find considerable

heterogeneity between the studies, with τ̂ = 2.16 being the estimated standard deviation of the ψj .

This results in the grey confidence curve in Figure 7.1, which is considerably wider than the other

combined confidence curves. At any rate none of the curves indicate a significant effect on the 95%

level, so there is little evidence for corticosteroids causing gastrointestinal bleeding for patients in

ambulatory care.

7.2 Skullometrics

In their fascinating anthropometrical study of the inhabitants of Upper Egypt, from the earliest

prehistoric times to the Mohammedan Conquest, Thomson & Randall-Maciver (1905) report on

skull measurements for more than a thousand crania. A subset of their data is reported on and

analysed in Claeskens & Hjort (2008, Chs. 1 and 9), see in particular their Figures 1.1 and 9.1.

This pertains to four cranium measurements, say y = (y1, y2, y3, y4)t, for 30 skulls, from each of

five time Egyptian epochs, corresponding to −4000,−3300,−1850,−200, 150 on our A.D. scale.

We model these vectors as

Yj,i ∼ N4(ξj ,Σj) for i = 1, . . . , 30,

for each of the five epochs j. There is a variety of parameters worth recording and analysing,

where the emphasis is on identifying the necessarily small changes over time; see also Schweder &

Hjort (2016, Example 3.10). One might add that such questions, pertaining to the anthropometric

evolution over millennia, also touching the demographic history of emigration and immigration

in ancient Egypt, do not touch the first or second waves of controversy in the wake of Gould

(1981). For the present illustration we choose to focus on the variance matrices, not the means,

and consider

ψ = {max eigen(Σ)}1/2/{min eigen(Σ)}1/2,
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the ratio of the largest root-eigenvalue to the smallest root-eigenvalue of the variance matrix of

the four skull measurements. This is the ratio of the largest to the smallest standard deviations of

linear combinations atY of the four skull measurements, normalised to have coefficient vector length

‖a‖ = 1. This parameter is one of several natural measures of degree to which the skull distribution

is ‘stretched’. The question is whether the ψ parameter has changed over time. We assess the degree

of change, if any, via the spread parameter τ in the natural model taking ψ1, . . . , ψ5 ∼ N(ψ0, τ
2).

Rather than merely providing a test of the implied hypothesis H0 : ψ1 = · · · = ψ5, which is

equivalent to τ = 0, with its inevitable p-value and a yes-no answer as with a traditional one-way

layout type test, we aim at giving a full confidence distribution for τ , again applying the II-CC-FF

scheme.

Table 7.2: Skulls: For each of the five time epochs, the table gives the estimate ψ̂ and its estimated standard

deviation σ̂. See Section 7.2 and Figure 7.2.

epoch ψ̂ σ̂

−4000 2.652 0.561

−3300 2.117 0.444

−1850 1.564 0.331

−200 2.914 0.620

150 1.764 0.373

Table 7.2 gives point estimates

ψ̂j = {max eigen(Σ̂j)}1/2/{min eigen(Σ̂j)}1/2

for the five time epochs, along with estimated standard deviations σj for these estimators, the

latter obtained via bootstrapping from the estimated multinormal distributions. For our present

purposes the underlying distributions for the estimators are approximately normal, with the stan-

dard deviations σj approximately known. Figure 7.2 displays point estimates with 0.90 confidence

intervals (left panel), for the five epochs. The log-likelihood for these five estimates, under the

implied N(ψ0, σ
2
j + τ2) model, writing k for the number of data sources involved, is

`(ψ0, τ) = − 1
2

k∑
j=1

{
log(σ2

j + τ2) +
(ψ̂j − ψ0)2

σ2
j + τ2

}
.

The ensuing profiled log-likelihood is

`prof(τ) = − 1
2

k∑
j=1

[
log(σ2

j + τ2) +
{ψ̂j − ψ̃0(τ)}2

σ2
j + τ2

]
, with ψ̃0(τ) =

∑k
j=1 ψ̂j/(σ

2
j + τ2)∑k

j=1 1/(σ2
j + τ2)

. (7.1)

A confidence distribution for τ can be based on this, but a simpler and powerful alternative is to

use

Q(τ) =

k∑
t=1

{ψ̂j − ψ̃0(τ)}2

σ2
j + τ2

and C(τ,data) = 1− Γk−1(Q(τ)),

the point being that Q(τ) for a given true value of τ has the χ2
k−1 distribution; see Schweder &

Hjort (2016, Ch. 13). This confidence distribution has a confidence point mass C(0,data) = 0.222

at zero, and is shown in the right panel of Figure 7.2. The confidence point-mass is actually
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also a p-value for the hypothesis of equal means, and here not small enough to warrant a claim

that this particular ψ parameter has changed over the four thousand years of Egyptian history –

other skullometric parameters have however changed; see Claeskens & Hjort (2008, Section 9.1)

and Schweder & Hjort (2016, Example 3.5). A 0.95 interval for τ , also indicated in the figure, is

[0, 1.266], and the median confidence estimate is 0.389.
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Figure 7.2: Left panel: Point estimates ψ̂j with 90% confidence intervals, for the skull stretch parameter ψ, across

five time epochs (see Table 7.2). Right panel: Confidence distribution for the variability parameter τ .

In this specific example we had access to a tailored and exact recipe, which we might want to

compare with the performance of the standard II-CC-FF method of Section 5.1. The standard II-

CC-FF makes use of the log-likelihood profile in (7.1) and the Wilks theorem. Short investigations

reveal that the standard II-CC-FF recipe is not working well in this case. This is partly due to

the relatively small number of groups k = 5, but primarily to problems related to τ lying close to

the boundary of its parameter space (the ML estimate is 0.061). Corrections related to boundary

problems, as suggested in Schweder & Hjort (2016, Ch. 4), can be considered.

In other applications of this type of extended meta-analysis machinery the centre value ψ0 of

the background distribution of the ψj might be of high importance, and methods in Schweder &

Hjort (2016, Ch. 13) may be used to produce an accurate cc(ψ0,data). For the skulls analysis the

primary question is whether the ψj parameter, or other similar parameters associated with the Σj

matrices, have changed over the course of four thousand years, and the precise value of ψ0 is of
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secondary importance. We report, though, that its point estimate is 2.067, with an accurate 90%

interval stretching from 1.713 to 2.522 (see left panel of Figure 7.2).

7.3 Abundance of humpback whales

The II-CC-FF paradigm readily lends itself to combination of information from published sources,

where we may not have access to the full data, but only summary measures. Paxton et al. (2009)

provide estimates of the abundance of humpback whales in the North Atlantic in the years 1995

and 2001. The two estimates are based on different surveys and can be considered independent.

The authors also provide 95% confidence intervals, via a somewhat complicated model involving

aggregation of line transect data from different areas via spatial smoothing, and also involves

bootstrapping. The available information is as presented in Table 7.3; note here that the natural

95% confidence interval is not at all symmetric around the point estimate, with an implied skewness

to the right.

Table 7.3: Abundance assessment of a humpback population, from 1995 and 2001, summarised as 2.5%, 50%, 97.5%

confidence quantiles; from Paxton et al. (2009). See Section 7.3 and Figure 7.3.

2.5% 50% 97.5%

1995 3439 9810 21457

2001 6651 11319 21214

For this illustration we are interested in the underlying true abundances underlying these two

studies. Let ψ1 be the population size in 1995 and ψ2 be the size in 2001. Our main interest may

lie in the annual growth rate underlying these two population sizes. We define ρ = (ψ2−ψ1)/(6ψ1);

a simple (and in some sense approximate) definition of annual growth rate.

The first step, Independent Inspection, requires us to construct confidence distributions for ψ1

and ψ2 from the two surveys. In Schweder & Hjort (2016, Ch. 10), certain methods are proposed

and developed for constructing confidence distributions based only on an estimate and a confidence

interval. With a positive parameter, like abundance, one may use

II : C(ψj , y) = Φ
(h(ψj)− h(ψ̂j)

s

)
with a power transformation h(ψ, a) = sgn(a)ψa; see also Schweder & Hjort (2013b) for some more

discussion of this approach (along with a different application, essentially also using the II-CC-FF

paradigm). In order to estimate the power a and the scale s the following two equations must be

solved,

ψaL − ψ̂a = −1.96 s and ψaR − ψ̂a = 1.96 s,

where [ψL, ψR] is the 95% confidence interval and ψ̂ the median confidence point estimate. For the

whale abundance, we find (a, s) equal to (0.321, 2.798) for 1995 and (0.019, 0.007) for 2001 (a small

value of a indicates that the transformation is nearly logarithmic). The corresponding confidence

curves are shown in the left panel of Figure 7.3. In this case the confidence log-likelihoods in the

Confidence Conversion step are easily obtained. For year j,

CC: `conv,j(ψj) = − 1
2{hj(ψj)− hj(ψ̂j)}

2/s2j .
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In the final Focused Fusion step, we sum the two confidence log-likelihoods, profile with respect to

ρ find the combined deviance function, and construct an approximative combined confidence curve

by the Wilks theorem, as per Section 2:

FF: `fus,prof(ρ) = max{`conv,1(ψ1) + `conv,2(ψ2) : (ψ2 − ψ1)/(6ψ1) = ρ},

cc∗(ρ) = Γ1(2{`fus(ρ̂)− `fus(ρ)}).

Here we obtain the blue curve in the right panel of Figure 7.3, with ρ̂ = 0.026 and a 95% confidence

interval [−0.094, 0.454].
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Figure 7.3: Left panel: confidence curves for ψ1 and ψ2, the abundance of humpback whales in the North Atlantic in

1995 (fully drawn line) and 2001 (dashed line). Right panel: the confidence curve for ρ = (ψ2−ψ1)/(6ψ1)

based on the two surveys (blue curve); the confidence curve based on prior information alone (orange

curve); and the confidence curve combining the studies and the prior information (green curve). See

Section 7.3 and Table 7.3.

In some cases there may exist some expert knowledge pertaining to at least the focus parameter

under study, here the annual growth rate ρ, though not necessarily for the full parameter vector of

the combined models, here (ψ1, ψ2) the two population sizes. A proper Bayesian analysis requires

the statistician to have such a prior for (ψ1, ψ2) – without this ingredient, there is no Bayes

theorem leading to a posterior distribution for the model parameters, or indeed for ρ. The II-CC-

FF scheme allows however incorporation of such partial prior information, i.e. a prior for ρ without

a prior for (ψ1, ψ2). For this illustration we assume that whale biologist provide a normal prior

with expectation equal to 0.07 and variance 0.122. This prior may come from knowledge of other

humpback whale populations or simulation-based life-history models (see for example Zerbini et al.

(2010), giving a similar point estimate as we have used).

The prior can be represented as a confidence curve, supplementing the confidence curve based

on the two studies. In order to fuse the prior knowledge and the data we simply add the prior
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log-likelihood `B(ρ) to the confidence log-likelihoods, in the following way,

FF: `fus,prof,B(ρ) = max{`conv,1(ψ1) + `conv,2(ψ2) + `B(ρ) : (ψ2 − ψ1)/(6ψ1) = ρ}

= max
σ1

{`conv,1(ψ1) + `conv,2(ψ2) : (ψ2 − ψ1)/(6ψ1) = ρ}+ `B(ρ)

= `fus,prof(ρ) + `B(ρ).

We use ‘B’ as subscript to indicate the in this instance partial and perhaps lazy Bayesian, who

does not give a full prior for the model parameters, but contributes a component, namely where it

matters the most, about the focus parameter. Of course the log-prior `B(ρ) employed here could

have been obtained in the more careful and proper Bayesian way of having started with a full

prior for (ψ1, ψ2), and then a transformation, but we do suggest that expert knowledge concerning

focus parameters is more often put forward directly, not via the full parameter vector in the fullest

model.

Importantly, this extended deviance function does still have an approximate χ2
1 distribution,

by the general approximation arguments involved in the Wilks’ theorem, unless the log-prior `B(ρ)

is sharp and distinctly non-normal. One may conceptually and sometimes practically interpret the

log-prior as having resulted from real data in previous experiences, in which case the `B(ρ) would

be a genuine profiled log-profile likelihood function from such an information source. Also, as the

sample sizes of the studies increase the information from the two studies will dominate the prior and

we can safely continue to use the Wilks theorem. As expected, the confidence curve fusing the prior

information and the information from the two studies lies between the original confidence curve

and the prior confidence curve (see the right panel of Figure 7.3). It is also somewhat narrower

than both.

7.4 Combining hard and soft data: battle deaths and ngrams

In this last illustration, we will examine the use of the II-CC-FF framework in a highly non-

standard setting, where one wishes to combine hard data, sources that inform directly on the focus

parameter, with softer data sources, which only contain indirect or noisier information about the

focus parameter. This kind of combination has a lot of potential in various fields where ‘soft’ data

could be based on webscraping, using twitter accounts or other social media, but raises specific

issues and challenges.

The question we investigate here is the extent of statistical evidence for The long peace, the

period of relative peace and stability following the second world war (and still lasting, presumably).

Specifically, do we find evidence of a change-point τ when analysing the sequence of battle deaths

in interstate wars between 1823 and today? This question has been investigated in Cunen, Hjort

& Nyg̊ard (2018b) using the Correlates of War (CoW) datatset (Sarkees & Wayman, 2010). The

authors found evidence of an abrupt change in the battle death distribution at some point after

the second world war, from a distribution with a high median battle death to a distribution with

a lower median (and also a less heavy tail). Here, we want to extend the analysis in Cunen, Hjort

& Nyg̊ard (2018b) and investigate whether there might be benefits in combining the battle death

data with other sources assumed to be informing on τ .

Some political scientists consider the afore-mentioned decrease in battle deaths to reflect a

moral and political shift within a large portion of the world’s population. At some point in the

20th century, the perception of war changed, from being seen as something natural and inevitable,
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sometimes even positive, to being perceived as highly negative, evil and unacceptable; cf. Pinker

(2011, Ch. 5). This change in norms has likely manifested itself in various ways, including cultural,

artistic and political expressions, for example through text. We will therefore collect sequences

representing the usage of certain relevant words, and then attempt to combine the change-point

inference from such an ngram analysis (suggested to us by Steven Pinker, personal communication),

with the change-point inference from the battle deaths data.

We might provide a more thorough analysis of this question in future publications, but for the

sake of this illustration we limit ourselves to analysing one word; ‘anti-war’. We collected the rate

of usage of ‘anti-war’ for each year between 1823 and 2003 from the Google Books Ngram viewer

(Michel et al., 2010), see Figure 7.4. The rate of usage is the number of times that word appears

in each year divided by the total number of words in the Google Books corpus from each year. For

a more thorough analysis we would possibly build a score based on several ngrams, or even a joint

model for several ngrams, but those efforts are outside the scope of this illustration. Naturally, the

whole analysis rests upon a strong assumption: that the change-point parameter underlying the

sequence of battle-deaths and the (potential) change-point parameter underlying the ngram are

somehow the same parameter. We thus assume that changes in the battle death distribution and

in the ‘anti-war’ distribution are two different manifestations of the same underlying process.
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Figure 7.4: The points represent the battle deaths, on log scale, for 95 wars between 1823 and 2003. Note that

the CoW dataset only includes wars with at least 1000 battle deaths. The vertical grey line gives the

point estimate for the change-point based on the battle deaths data. The red line shows the ngram for

‘anti-war’, i.e. the number of times that word appears in each year divided by the total number of words

in the corpus from each year. The counts between 1823 and 1913 were not used in the change-point

analysis (and hence dashed). The vertical red line gives the point estimate for the change-point based

on the ngram.

We modelled the battle deaths with a fat-tailed inverse Burr distribution and used the methods

in Cunen, Hermansen & Hjort (2018a) to compute a full-confidence curve for the change-point
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parameter τ . More details on the method can be found in Cunen, Hermansen & Hjort (2018a)

and Cunen, Hjort & Nyg̊ard (2018b), but the important part is that it is based on the profile

log-likelihood `B,prof(τ), and then using simulations in order to compute the distributions of the

deviance at each potential change-point (which is far from χ2
1 for a change-point parameter). The

confidence curve for a change-point is a bit unusual looking since it often will provide disjoint

confidence sets; see the red curve based on the battle deaths in Figure 7.5. The curve reveals a

point estimate for the change-point in 1950, but with considerable uncertainty; the years 1939 and

1965 are also considered likely candidates for the change.

We model the ‘anti-war’ ngram with a simple normal model with an autoregressive correlation

structure of order 1. We allow the change-point to influence both the expectation and variance

parameters of the model, but it turns out that it is primarily the expectation that changes across

the change-point (it increases). The correlation between consecutive years is high (0.80). From

Figure 7.4 it is clear that there are at least one very clear change-point in the sequence of usage

rates: from 1823 to 1914 ‘anti-war’ is hardly used at all (dashed line in the figure), and then the

use increases. This increase might reflect a genuine increase in usage, or simply that the Google

Books corpus is less complete for older texts. At any rate, we will assume that the change-point

around 1914 (from no use to some use) is not the one we are interested in, but rather that the

change in norms we are searching for must be reflected in a potential later change-point (from

some use to more use). We will therefore only use the ngram data for the years after 1914; and one

must bear in mind that this entails that the ngram can only influence the change-point inference

for the latter part of the full sequence of war years.

Using the autoregressive model and the method from Cunen, Hermansen & Hjort (2018a),

we obtain another log-likelihood profile `N,prof(τ) and also the full confidence curve based on the

ngram information (in blue in the left panel of 7.5). This curve has a point estimate at 1962, but

with considerable confidence for the change rather taking place in 1927 or in 1971.

In the fusion step, the most straightforward solution is simply to sum the two log-likelihood

profiles, calculate the deviance, and run the simulations to find the distribution of the deviance at

each potential change-point (in the way as described in Cunen, Hermansen & Hjort (2018a)). This

raises the question on whether it is appropriate to treat the two sources of information equally,

however. There could be good reasons to consider the battle death data to be more directly

informative for τ than the ‘anti-war’ data. These arguments might invite a combined confidence

log-likelihood of the form

FF: `fus(τ) = `B,prof(τ) + ω`N,prof(τ) with ω ∈ [0, 1].

The down-weighting parameter ω should reflect the degree of relevance of the soft data source. In

most situations, there will be no information available (or even existing) that can help us estimate

ω, and the parameter must therefore be chosen by the analyst – and the effect of the choice should

be communicated clearly and openly. In the right panel of Figure 7.5 we display the confidence

curve with ω = 0.2 (in light violet), along with the curve without down-weighting (ω = 1, in dark

violet). Both combined curve indicate a point-estimate of 1965; this was not the point-estimate in

any of the two sources, but that year had a high confidence in both. The combined curve with no

downweighting gives the appearance of higher precision than the light violet curve, but this might

be misleading if we do not trust the ‘soft data’ fully. Then we might prefer the combined curve

with ω = 0.2, which is more similar to the original curve based on the battle death information

only.
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Figure 7.5: Left panel: in red the confidence curve based on the battle death data (point estimate 1950), in blue the

one based on the ngram (point estimate 1962). Right panel: combined confidence curves, dark violet

with no down-weighting, light violet with down-weighting of the ngram information. Both these two

curves give a point estimate equal to 1965.

We must emphasise that we do not recommend the use of this subjective down-weighting

in most combination settings. In usual settings, the ‘degree of informativeness’ of each source

is already sufficiently well represented by the likelihood component from that source. However,

down-weighting can be considered in situations like the present one, with combination of soft and

hard data, where there might be stark differences in quality or relevance between the sources.

In this application we have illustrated a situation where one information source was considered

to be of higher quality and relevance than the other; a combination of hard and soft data. Note

that such combination attempts often require the users to make strong assumptions, for example

that very different sources inform on the exact same parameter. Low-quality, large-data sources

are expected to play an increasingly important role in statistics in years to come (especially via

scraping of the internet). The combination of such data sources with more high-quality sources

raises various issues, and we will end with a note of caution. In a best case scenario, the analyst

manages to be benefit from a large, low-quality source and can obtain more precise statements

than those from the smaller, high-quality sources alone. In the worst case scenario, the analyst is

contaminating good data with irrelevant noise, and does not learn anything of value.
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