Major concerns about late hypothermia study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Acta Paediatrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>SPAE-2018-0835.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>A Different View</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>28-Oct-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Walløe, Lars; University of Oslo, Physiology Hjort, Nils; University of Oslo, Department of Mathematics Thoresen, Marianne; St Michaels Hosp, Dept of Child Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>statistics, late hypothermia, no neuroprotection</td>
</tr>
</tbody>
</table>
Major concerns about late hypothermia study

Lars Walløe, MD, PhD
Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway

Nils Lid Hjort, PhD
Division of Statistics and Biostatistics, Department of Mathematics, University of Oslo, Oslo, Norway

Marianne Thoresen, MD, PhD*
Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom

*Corresponding author:
Neonatal Neuroscience, School of Clinical Sciences, St.Michael’s Hospital,
University of Bristol, Bristol, United Kingdom
e-mail: marianne.thoresen@bristol.ac.uk

An important neonatal hypothermia (HT) trial on hypoxic-ischemic-encephalopathy was published in November 2017 by Laptook and the NICHD group (1). One hundred and sixty-eight newborn term infants who failed the 6 hour time-window for HT were recruited by 21 centers over an 8 year period into a trial of HT versus normothermia (NT) if they were >6h and <24 hours old. The median postnatal age at start of HT was 16 hours. The infants were cooled for 96 hours, 24 hours longer than the standard 72 hour duration. Survivors were examined at 18-22 months using the Bayley Scales of Infant Development III and a neurological examination. Outcome data were available for 157 infants including 18 who died (78 HT - 19 with poor outcome, 79 NT - 22 with poor outcome). Clearly, any outcome difference between the HT and NT groups must be small, and not significant (p≈0.75). However, the authors conclude, based on Bayesian analyses, that “among term infants with hypoxic-ischemic encephalopathy hypothermia initiated at 6 to 24 hours after birth compared with noncooling resulted in a 76% probability of any reduction in death or disability”.

In an EBNEO commentary in Acta Paediatrica (2), Bourque and Dietz argue that the “potential benefit purported by this trial should prompt NICUs to consider initiation of TH beyond six hours of age.” However, our judgement is that the results from the JAMA paper do not support the strong conclusions presented by Bourque and Dietz. Recently, the suggestion to allow late cooling (>6 and <24 hours) was implemented in an ongoing randomised trial of treating mild HIE with cooling at 33.5˚C (3).

In Bayesian analyses, the probability of a treatment effect (the posterior probability distribution) is estimated after the trial has been carried out and incorporates the prior probability distribution estimated from data from previous studies if such data are available. In the present case there is no available data from trials or pilot studies in human infants with time of recruitment >6 hours post partum. Most of the results in the paper are presented from an analysis using a ‘neutral’ prior (assuming no treatment effect, relative risk (RR) = 1.0). However, even with an RR = 1.0, the authors have the possibility to choose freely both the shape and the width of the prior distribution. They have chosen a normal distribution on a log scale with SD = 0.35. This choice of distribution is not ‘non-informative’ in the Bayesian sense.
However in the present case there is additional relevant prior information from experimental studies in animals (fetal sheep (4) and 7 day neonatal rats (5)). The information obtained from these studies is very clear and similar in the two very different species. The therapeutic effect of cooling diminishes linearly with the time of start of cooling and is zero after 9 hours post insult. The results presented by Laptook et al (1) support that the findings from the two animal species of no effect of late cooling are also valid for newborn humans. In addition, an observational human cooling study (6) showed that starting cooling between 0-3 hours resulted in better motor outcome at 18 months than those who started cooling between 3-6 hours. There is also a concern that both human and experimental data suggest that longer cooling may be harmful (7,8). In the fetal sheep experiments cooling for 120 hours was less protective than cooling for 72 hours (8).

When Laptook et al. provide probabilities for the relative risk parameter $RR = p_1 / p_0$ being less than 1, or less than 0.98, etc., these are computed inside a Bayesian framework, and influenced by the prior. When using a standard non-informative Jeffreys prior, the 95% credibility interval for RR becomes $[0.53, 1.53]$, of course containing the null value $RR = 1$. With a non-Bayesian analysis, RR is an unknown parameter, and one cannot assign any clear probability to statements like $RR \leq 0.98$. We may, however, construct a full confidence curve, as in Schweder and Hjort (9). Figure 1 shows this curve, effectively providing confidence intervals at all RR (p_1/p_0) levels. The 95% interval is $[0.51, 1.48]$, agreeing well with the default Bayes. All intervals of level 38% or more contain the null hypothesis value $RR = 1.00$; there is hence no reason to reject that value. The main conclusion from the Laptook et al. study (1) ought to be that there is simply no real difference between the therapeutic probabilities for the two groups. In addition, with a normal prior as in Laptook et al (1) the posterior distribution should be skewed with a tail to high RR values, not normal as in their Fig 2.

It is our view that one of the main conclusions of the JAMA paper (1), that “The probability that death or disability in cooled infants was at least 1%, 2%, or 3% less than noncooled infants was 71%, 64% and 56%, respectively” when HT was initiated 6 to 24 hours after birth, is probably wrong, at least highly speculative and should not be used as an argument for change to current cooling regimens.

A potential danger connected to this paper is that the current strong requirement that babies should be cooled as soon as possible after birth will be relaxed.

CONFLICT OF INTERESTS

The authors have no conflict of interests

FUNDING

Funding supporting work on therapeutic hypothermia was received by the Norwegian Research Council and the Medical Research Council, UK.
References

Figure text. Figure 1

Confidence probability (y-axis) for the relative risk parameter $RR = (p_1/p_0)$ (x-axis) points to the estimate 0.875 and provides confidence intervals at all levels of confidence probability. The 95% confidence interval is [0.51, 1.48] (broken horizontal line).
Figure 1. Confidence probability (y-axis) for the relative risk parameter $RR = (p_1/p_0)$ (x-axis) points to the estimate 0.875 and provides confidence intervals at all levels of confidence probability. The 95% confidence interval is $[0.51, 1.48]$ (broken horizontal line).
27x35mm (300 x 300 DPI)