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Congratulations, Nils!

Best wishes from the stats group at UiB!
Significant contributions in the field of statistics
Nils always shows interest and creates a pleasant environment,
being seminars/conferences/conversations.... → source of
inspiration!
Scientific connection:

I started out in nonparametric density/regression estimation1

This talk selected due to the inspiration from Nils’ work2

1Glad & Hjort (1995). Nonparametric density estimation with a
parametric start, AoS, inspiration for my PhD thesis

2Hjort & Jones (1996). Locally parametric nonparametric density estimation, AoS
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Goal
Investigate the possible time-varying nonlinear dependence
structures of a pair of stochastic variables (motivated by returns
from financial markets)
Combine a regime-switching model with the local Gaussian
correlation (LGC)

1 Describe the regimes by a Hidden Markov Model (HMM)
2 Test whether the dependence structure between the variables differs

across the regimes

Existing literature:
Regime-switching copulas e.g. Okimoto (2008), Chollete et al (2009)
and BenSaïda et al. (2018),...
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Empirical analysis S&P500 vs. FTSE100

Figure: Daily log-returns and GARCH-filtrated log-returns (lower two plots) of
S&P500 and FTSE100 (based on closing index prices) with classification in
two regimes using a Gaussian bivariate HMM.
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Local Gaussian Correlation (LGC)
Introduced by Tjøstheim & Hufthammer (2013). The central idea:

Approximate a bivariate density f of R = (R1,R2) at a point
x = (x1, y2) by a bivariate Gaussian density ψ(v ,μ(x),Σ(x)). We
take the correlation ρ(x) parameter of that Gaussian density as our
measure of local dependence, and we call it the local Gaussian
correlation.
As we move to another point x ′ = (x ′

1, y
′
2) of f , another Gaussian

ψ(v ,μ(x ′),Σ(x ′)) is required to approximate f in a neighbourhood
A′ of x ′.
In this way the dependence in f is described by the family of
Gaussian distributions {ψ(v ,μ(x),Σ(x))} and the associated
correlations {ρ(x)}.

Note: μ(x) = (μ1(x),μ2(x))T is the local mean vector and
Σ(x) = (σij(x)) is the local covariance matrix. The local
correlation at the point x is ρ(x) = σ12(x)

σ11(x)σ12(x)
.
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Local Gaussian approximation
Tjøstheim & Hufthammer (2013) demonstrated that for a given
neighbourhood characterized by a bandwidth parameter b the local
population parameters γ(x) = (μ1(x),μ2(x),σ2

1(x),σ2
2(x),ρ(x)) can be

defined by minimizing a likelihood related penalty function q given by

q =

∫
Kb(v − x) [ψ(v ,γ(x))− logψ(v ,γ(x))f (v)]dv , (1)

where Kb(v − x) = b−1K (b−1(v − x)) with K being a kernel function.
Such a penalty function was used in Hjort & Jones (1996) for density
estimation purposes.
Define the population value γ(x) = γb(x) as the the minimizers of this
penalty function, as it value depends on b.
Numerical maximization of the accompanying local likelihood, leads
to local likelihood estimates γT ,b(x).
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Example: Clayton copula
Simulated observations from a Clayton copula with parameter equal 2,
standard normal marginals, T=784

Figure: The observations (left) and estimated LGC map (right)
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Extensions
The point of using the local Gaussian approximation is that one can
move away from global Gaussian distributions and describe much more
general situations, also multivariate thick tailed distributions like those
met in finance. At the same time one can exploit much of the
multivariate Gaussian theory locally.

multivariate and conditional density estimation, Otneim & Tjøstheim
(2017,2018)
Various independence tests for iid and time series data, Berentsen
& Tjøstheim (2014), Lacal & Tjøstheim (2017, 2019)
Copula GOF tests, Berentsen, Støve, Tjøstheim and Nordbø (2014)
Nonlinear spectral analysis: A local Gaussian approach, Jordanger
& Tjøstheim (2022)
The local Gaussian Partial correlation, Otneim & Tjøstheim (2019)
Applications in finance, Støve & Tjøstheim (2014), Sleire et al
(2022)
R package: ’lg’, Otneim (2021)
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Hidden Markov Models
Observed time series {Rt : t = 1, . . . ,T}. A mixture of conditional
distributions is assumed to be driven by an unobserved (hidden)
homogeneous Markov chain, with regimes {Ct : t = 1, . . . ,T}.
m-regime Gaussian HMMs with conditional distribution specified by

pk (r) = P(Rt = r |Ct = k) =
1

σ
√

2π
e− 1

2

(
r−μk
σk

)2

,

with parameters (μk ,σk ), k = 1, . . . ,m.
Use the R-package TMB for the estimation of the HMM parameters:

Relies on Automatic Differentiation and Laplace approximation
Approximates log-likelihood and produces gradient and Hessian

See Bacri et al (2022,23) - avoid the commonly used EM-algorithm.
Use local decoding for determining the most probable regime at time
t , cfr. Zucchini et al (2016).
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Regime-switching and LGC
Two-step procedure:

1 Fit bivariate m (two)-regime Gaussian* HMM to the observations
Classify each pair of observations in one of the regimes by local
decoding

2 Estimate the LGC separately for the m (two) regimes
Estimate the LGC maps on a pre-defined grid using the
(GARCH-filtrated**) observations

Allows us to test whether the LGC maps are equal or not.

* or your favorite distribution
** if needed
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Test of equal dependence in two regimes
Let ρ1 and ρ2 be the LGC map from regime 1 and 2, respectively,
estimated in the gridpoints (xi , yj).

H0 : ρ1(xi , yj) = ρ2(xi , yj) for i , j = 1, · · · ,n
H1 : ρ1(xi , yj) ̸= ρ2(xi , yj) for i , j = 1, · · · ,n

Test statistic:

D2 =
1
n2

n∑
i=1

n∑
j=i

[
ρ̂1(xi , yj)− ρ̂2(xi , yj)

]2 w(xi , yj)

w is a weight function, which permits to screen off parts of the local
correlation or to concentrate on a certain region.
We approximate the sampling distribution of D2 by bootstrap
samples, as the asymptotic theory for similar test statistics (e.g.
Berentsen & Tjøstheim (2014)) is not very accurate unless
the number of observations is very large.

Modelling time-varying nonlinear dependence 1st December 2023 10 / 22



Level study of the proposed test
The same data generating process (DGP) is used for both regime 1
and 2, hence H0 is true.
For every DGP we use two Gaussian marginal distributions, each
with a mean equal to zero and a standard deviation equal to four,
but with a different copula.
Each table entry is based on 1000 replications, each with 400
observations.

Nominal level (α)
(r)1-4 Model 0.01 0.05 0.1
1. Clayton copula, θ = 1 0.017 0.056 0.102
2. Clayton copula, θ = 2 0.012 0.059 0.116
3. Gaussian copula, ρ = −0.5 0.011 0.045 0.094
4. Gaussian copula, ρ = 0.3 0.007 0.058 0.116
5. Gumbel copula, θ = 2 0.019 0.063 0.110
6. Gumbel copula, θ = 3 0.011 0.054 0.102
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Power study of the proposed test
Empirical power (times 100) of the bootstrap test in the Monte
Carlo study.
The DGP in the first regime is a Gaussian copula with ρ = 0.5 and
with Gaussian marginals.
Each table entry is based on 1000 replications, each with 400
observations.

Nominal level (α)
(r)1-4 Model under H1 0.01 0.05 0.1
1. Clayton copula, θ = 2 31.9 68 82.2
2. Clayton copula, θ = 3 82.1 97.8 99.7
3. Gaussian copula, ρ = −0.5 100 100 100
4. Gaussian copula, ρ = 0.8 73.6 93.5 96.8
5. Gumbel copula, θ = 2 24.1 53.7 68.9
6. Gumbel copula, θ = 3 96.3 99.4 99.9
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Study of power with HMM classification
Gaussian bivariate HMM model to classify observations into two
regimes.
Is the power still acceptable when we use a HMM model to
determine the regimes?

Figure: Confusion matrix of aggregated predictions of all the 500 HMM
classifiers
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Figure: True vs. predicted regimes for one realization
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Figure: LGC-map of true vs. predicted states

Resulting power for two models (500 realizations):
Nominal level (α)

True Prediction
Model under H1 0.01 0.05 0.1 0.01 0.05 0.1
1. Gaussian copula, ρ = −0.5 100 100 100 100 100 100
2. Clayton copula, θ = 3 96.2 99.4 99.8 64.6 81.8 87.2

Modelling time-varying nonlinear dependence 1st December 2023 15 / 22



Empirical analysis S&P500 vs. FTSE100

Figure: Daily log-returns and GARCH filtrated log-returns of S&P500 and
FTSE100 with classification in two regimes with a Gaussian bivariat hidden
Markov model.
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Empirical analysis S&P500 vs. FTSE100

Figure: LGC regime 1 (left plot) and regime 2 (right plot)

We performed the test with 1000 bootstrap replications →
p-value = 0.009 (null of equal dependence rejected)
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Concluding remarks
Proposed a new approach (RS-LGC + test) for studying
time-varying nonlinear dependence
Simulation study shows that test behaves well, and indicates validity
Several empirical examples reveals nonlinear and time-varying
relationships between financial returns (confirm previous studies)
Advantages:

intuitive
test - can be extended to many regimes (and in principle to higher
dimensions)
can be used to help select a parametric dependence model (say,
copula)

Disadvantage:
Two-step procedure. A simultaneous estimation of the HMM and the
LGC would be better, but currently not feasible due to the
semi-parametric nature of the LGC
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Local Gaussian approximation II
Tjøstheim & Hufthammer (2013) show that once a unique population
vector γb(x) exists, under weak regularity conditions one can let b → 0
to obtain a local population vector γ(x) defined at a point x . The
population vectors γb(x) and γ(x) are both consistent with a local
log-likelihood function defined by

L
(
R1, . . . ,RT ,γb(x)

)
= T−1

∑
i

Kb(Ri − x) logψ(Ri ,γb(x))

−
∫

Kb(v − x)ψ(v ,γb(x))v , (2)

for given pairwise observations R1, . . . ,RT iid or an ergodic time series.
The numerical maximization of the local likelihood (2) leads to local
likelihood estimates γT ,b(x), including estimates ρT ,b(x) of the local
correlation. Choice of bandwidths!!
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Example: bivariate t-distribution
Simulated observations from a bivariate t-distribution with 4 degrees of
freedom and global correlation equal to 0, T=784

-0.34 -0.46 +0.16+0.43+0.46+0.40+0.32+0.30+0.58+0.97

-0.44 -0.45 +0.07+0.32+0.36+0.30+0.16+0.03+0.25+0.57

+0.23 -0.01 +0.10+0.23+0.25+0.15 -0.04 -0.14 -0.02 +0.11

+0.46+0.14+0.06+0.13+0.14+0.00 -0.15 -0.20 -0.16 -0.06

+0.41+0.07 -0.05 -0.01 +0.00 -0.08 -0.13 -0.15 -0.17 -0.09

+0.11 -0.10 -0.17 -0.14 -0.11 -0.06 -0.02 -0.02 -0.15 -0.18

-0.36 -0.27 -0.23 -0.17 -0.09 -0.01 +0.06+0.12 -0.02 -0.31

-0.54 -0.33 -0.19 -0.11 -0.02 +0.04+0.10+0.25+0.37 -0.01

-0.64 -0.29 -0.03 -0.00 +0.04+0.09+0.12+0.34+0.68+0.73

-0.78 -0.32 +0.16+0.12+0.03+0.04+0.06+0.29+0.72+0.84

-2.5

0.0

2.5

-2.5 0.0 2.5

Figure: The estimated LGC map

Note: the bivariate t-distribution with correlation equal to 0, is in fact not
independent

Modelling time-varying nonlinear dependence 1st December 2023 21 / 22



Hidden Markov Models: local decoding
θθθ: distribution and Markov chain parameters
Ct : Markov chain regime at time t

Smoothing probabilities: the probability of being in regime k at time t for
k = 1, ...,m, t = 1, ...,T given all observations, i.e.

∀k = 1, . . . ,m,pkt(θθθ) = Pθθθ(Ct = k |R(T ) = r (T ))

The derived smoothing probabilities then serve for determining the
most probable regime at time t :

Ct = arg max
k

pkt(θθθ)

cfr. Zucchini et al (2016).
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