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@ Motivation, and the main convergence result



@ lllustration: The five factor model of personality.
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Figure: Big Five Personality model



Disagree Neutral
T am the life of the party.
1 feel little concern for others.
I am always prepared.
1 get stressed out easily.
I have a rich vocabulary.
I don't talk a lot.
I am interested in people.
I leave my belongings around.
I am relaxed most of the time.
I have difficulty understanding abstract ideas.
I feel comfortable around people.
1 insult people.
T pav atteption to det~ls.

Figure: Extract from a big five questionnaire
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X1=1, Xo =3, X3 =5,
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@ Usual to integer encode questions. The first three answers are
therefore:
X1=1, Xo =3, X3 =5,

@ This is really Xj 1, Xi2,Xi3,.... We only consider one person in the
notation.



@ Ordinal methods exists, but they make strong distributional
assumptions which cannot easily be weakened (Moss & Grgnneberg,
2023).

@ In practical work, two dominant ways:

@ Treat the integer encoded data as continuous.
@ Take sum scores (today's topic)

@ The consensus appears to be that this works well, with few

assumptions and well-developed tools (e.g. goodness of fit tests).



Ordinal methods exists, but they make strong distributional
assumptions which cannot easily be weakened (Moss & Grgnneberg,
2023).
In practical work, two dominant ways:

@ Treat the integer encoded data as continuous.

@ Take sum scores (today's topic)
The consensus appears to be that this works well, with few
assumptions and well-developed tools (e.g. goodness of fit tests).

However:

Under very special cases, (1) can work but often does not, and is
usually inconsistent (Foldnes & Grgnneberg, 2021; Grgnneberg &
Foldnes, 2022).

Today's conclusion: Also (2) can work as intended in special cases,
but usually not.



A question is called an item.

Each item is designed to measure just one of the five factors (e.g. "I am
the life of the party” measures extraversion)

Some of the items measure Openness. Jointly, they form a scale for the
latent variable openness.



A question is called an item.

Each item is designed to measure just one of the five factors (e.g. "I am
the life of the party” measures extraversion)

Some of the items measure Openness. Jointly, they form a scale for the
latent variable openness.

The sum of the integer encoded items is your openness-score.

When analyzing sum scores, their empirically standardized versions are
supposed to approximate the latent variable measured by the scale.



o Consider an ordinal scale X = (Xi,...,Xy) influenced by a latent
variable ¢ (e.g. openness). & is never observed, only X

e For notational simplicity: Each item is binary (Outcome:
agree/disagree or right/wrong)

@ Assumption (A non-parametric (NP) factor structure): Conditional on
&, the items X are independent.
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o Consider an ordinal scale X = (Xi,...,Xy) influenced by a latent
variable ¢ (e.g. openness). & is never observed, only X

e For notational simplicity: Each item is binary (Outcome:
agree/disagree or right/wrong)

@ Assumption (A non-parametric (NP) factor structure): Conditional on
&, the items X are independent.

For a binary scale with d items that follows a NP factor structure,
X = 7_Td(§) + Ry, Ry = Op(l) as d — oo.

where T4(&) = d 1 7:1 P(X; = 1/¢)

@ Unless 7 is linear (with positive slope), standardized sum scores will
not approximate the standardized &.

e T4(&) need not even converge without more assumptions.
@ We now prove Theorem 1 through a simple probability argument.



Lemma 1 (A stochastic representation)

Let Us,..., Uy be IID U[0, 1] and independent of §.
For a binary scale Xy, ..., Xy with a NP factor structure, we have that X
has the same distribution as if

Xj=NHU; <m(6)},  m(€) = P(X; = 1}[£),
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Lemma 1 (A stochastic representation)

Let Us,..., Uy be IID U[0, 1] and independent of §.
For a binary scale Xy, ..., Xy with a NP factor structure, we have that X
has the same distribution as if

Xj=NHU; <m(6)},  m(€) = P(X; = 1}[£),

@ Recall: Conditional on &, the binary items X; are independent. For

X1,...,X4 € {0,1} we have )
PNy (X = x}) = EP(NLy {X; = x}1€) = E] P(X; = x[¢)
j=1
J J
=E][ (7 = m(€)' .
=1

o If Xj = I{U; < 7j(&)} conditional independence holds, and
P({X; = x;}|€) = mj(£)9(1 — 7;(£))}™ as required.




@ Now for the proof of Theorem 1: Recall
)<JZI{UJ'§7TJ'(§)}7 Wj(é):P()g’:l‘g) i=12,...,d
where Uy, ..., Uq IID UJ[0,1] and independent to &.

@ Then
d
Z {U < m(¢
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is an average over independent variables except for the non-varying &.



Now for the proof of Theorem 1: Recall
)<JZI{UJ'§7TJ'(§)}7 Wj(é):P()g’:l‘g) i=12,...,d

where Uy, ..., Uq IID UJ[0,1] and independent to &.
Then

d
Z {U < m(¢
=1

is an average over independent variables except for the non-varying &.

The average over the independent variables ought to be less and less
random, and X ought to approximate E[X|{], where

”MQ

d
BIX|E] = & D EIHU; < m(€)}e] =
j=1

which also equals Ey X (expectation with respect only to Uy, ..., Uy).



@ For € > 0, Chebyshev's inequality gives

P(IX = 74(€)| > €) = EP(|X — 7a(&)| > €l¢)

D g py(P(X - 74(8)] > ¢)

~

d
< Efe_2VarU)_( (i) 6_2E5d_2 ZVaFU/{Uj < 771(5)}

j=1

d
<€ ’EBed ) 1/4
j=1

=c2d7l/4 0.

(a) U is independent to £. (b) Ui, ..., Uy is IID
o Therefore, X = 74(&) + Ry where Ry = op(1) as d increases.



© Sum scores in the continuous case



@ Work-horse model in psychometrics: Confirmatory factor models
(CFA). For p factors § = (&1, ..,&p)" (here: p =5 for big five), and
d questions (d > p), we observe for each person

_ I __
X=Xt Xa) =t N € +e

dxp px1

@ Basic assumptions: &, € are uncorrelated, Ee = 0.



@ Work-horse model in psychometrics: Confirmatory factor models
(CFA). For p factors § = (&1, ..,&p)" (here: p =5 for big five), and
d questions (d > p), we observe for each person

_ I __
X=Xt Xa) =t N € +e

dxp px1
@ Basic assumptions: &, € are uncorrelated, Ee = 0.
@ Confirmatory factor models: A is an identified parameter from fixing

many elements to zero. Typically, each item X; is influenced by just
one factor, say, Xj = pj + A\jé1 +¢j

Confirmatory Factor Analysis Exploratory Factor Analysis

.,7,. B L
v(F ctor A\\ FaclorE ) ( Factor A\ /Factor s \

e T o7 N

ltem uem l!em Ikem ltem ttem || ttem || tem || ttem Item || Item || Item
1 2 3 4 5 6 7

@ Some elements of € may be correlated, but not "too many”, as we
otherwise loose identification.

|Iem ltem




@ CFAs were developed for continuous data.

@ Historically, sum scores were taken as a foundational data-point, and
inputted into CFAs.

@ This makes sense:

@ With "enough” items (d), the sum scores are "close to continuous”.
© Sum scores were formulated using substantive knowledge in psychology.
The critique of this talk then does not apply.



CFAs were developed for continuous data.

Historically, sum scores were taken as a foundational data-point, and
inputted into CFAs.

This makes sense:

@ With "enough” items (d), the sum scores are "close to continuous”.
© Sum scores were formulated using substantive knowledge in psychology.
The critique of this talk then does not apply.

Ordinal scales are now developed using CFAs on the item level (the
ordinal observations).

Under a CFA, sum scores are well behaved, as we shortly see.

But ordinal data, except very under limited circumstances, will not
follow a CFA, invalidating this argument.
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o If Xi,..., Xk follows a one-factor model (" unidimensional” factor
model), then
Xi=pj+Aié1 + ¢,
where Ee; = 0, Cov(ej,&1) = 0, and where Cov(ej, ) = 0 for " most”
pairs k # j.



If X1,...,Xk follows a one-factor model (" unidimensional” factor
model), then

Xi=pj+Aié1 + ¢,
where Ee; = 0, Cov(ej, £1) = 0, and where Cov(ej, €4) = 0 for " most”
pairs k # j.
The mean score is

_ 1 _ _ _
X = RZX,:MA&H,
j=1
Therefore B B
X=~p+ X

given reasonable bounds on Cov(e;, e).

In the ordinal case, we have in contrast seen X ~ 7T4(£). So what
goes wrong?



@ Recall
X = HU <m&)),  mE)=PXG=1l¢) i=12....4,

where Uy, ..., Uy 11D U]0,1] and all independent to &.



Recall
X = HU <m&)),  mE)=PXG=1l¢) i=12....4,

where Uy, ..., Uy 11D U]0,1] and all independent to &.

Suppose € is univariate (one factor). Let A; = Cov(¢, X;)(Varé) ™!
and pj = EX; — \;ES. Then

e = X; — (n; + N€)  fulfills Ee = 0, Cov(e, £) = 0.

Hence X; = uj + ;€ + ¢ fulfills a confirmatory factor model of sorts.
However, notice E[X;|{] = 7;(§) is not assumed to be linear.

Can show: €1,...,€e4 can all be correlated. Then the confirmatory
factor model is not identified.

Ordinal variables will then not follow a confirmatory factor model
(except when 7j is linear!).



© The (strong) assumption that justifies empirical practice



@ There are also factor models designed specifically for ordinal data.

@ For a one-factor model, all such models are equivalent to threshold
type models originating from Pearson (1900):

Xi = {\& + ¢ > 75}, 7j a number, €; independent to &.

It follows a NP factor model.
o Gives mj(§) = Pe(MN€ + ¢ > 1) = 1 — Fe (15 — \j€).
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@ There are also factor models designed specifically for ordinal data.

@ For a one-factor model, all such models are equivalent to threshold
type models originating from Pearson (1900):

Xi = {\& + ¢ > 75}, 7j a number, €; independent to &.

It follows a NP factor model.
o Gives mj(§) = Pe(N\é +¢ > 1)) =1—F, (Tj—/\jf).
o Ifeg. €~ N(O,wjz), then

Td(x)=1-d 1Z¢ x)/¥j)

which is not linear.

If A\; > 0, then 74 is invertible. If the parameters are identified,
fr;l(X) ~ {. (Appears to be a new ordinal factor score)

To justify current empirical practice, we require linearity of 4.
e This is implied by the linearity of m;(x) = P(X; = 1|§).

(Notice (&) = 1 — F., (77 — Aj€) is linear if €; uniform.)

J



If £ is a random variable, and mj(x) = u; + Ajx for A\; > 0, let's say the
NP factor structure is unidimensional and linear.

Suppose given a binary scale X following a unidimensional linear NP factor
structure. Then P(§ € [max; [;, minj uj]) = 1 where
li = =i/ Ay 4 = (1= )/ Aj,and

Xi=HUj < pj + Mg}

where Uy, ..., Uy are IID U[0, 1] and independent to &.

e Notice that pj + Ajx = mj(x) = P(X; = 1|{ = x) € [0, 1] for all x
attainable by &. Therefore, the support of £ is contained in
Ny {x 0 < i+ Nix < 1 =0y {x: —py < x < (1= py)/Aj} =
[max;(—p;), min;(1 — 1)/ Ajl.

@ The stochastic representation then gives
Xj=HU; < (&)} = HUj < pj + A&}




A binary scale X following a unidimensional linear NP factor structure also
follows a unidimensional confirmatory factor structure.

e by Lemma 2, E[Xj|{] = E[/{U; < pj + N\j&}HE] = pj + Aj€. Therefore,
Xi=nj+ A& +e, 6 =X —EXE]

o Clearly Ee; = 0, Cov(ej, &) = 0.

o Let i #j. Then ¢j = I{U; < pj + \i&} — E[Xj|¢] and
ej = H{U; < pj + A&} — E[Xj[€] are conditionally independent and
conditionally zero mean given £. Gives Cov(ej, €j) = 0 for i # j.

Ol

From the " continuous argument”: Sum scores of CFAs also follow a CFA:
X = [i + A6 + & So also sum scores of the whole or parts of the scale
follow a CFA.



Suppose X is a binary scale following a unidimensional linear NP factor
structure. Then X = i + A¢ + rq where for any ¢ > 0,
P(|ra| > c) < 4exp(l — 2dc?).

Consistency follows from Theorem 1. Corollary 1 gives a concentration
bound with fixed constants.

o Notice ry = d! J'-j:l e =d7! Z}j:l HU; < pj+ M€} = E[Xj[€] =

= S (U= /A < E=Pu((Uj—p)/%j < )] = Fa(€)~Fa(€)
where F4 is the empirical distribution of the independent sequence

(U = 1)/ N), and Fy(x) = d=1 050 Pu((Uj — 1)/ < x).
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Suppose X is a binary scale following a unidimensional linear NP factor
structure. Then X = i + A¢ + rq where for any ¢ > 0,
P(|ra| > c) < 4exp(l — 2dc?).

Consistency follows from Theorem 1. Corollary 1 gives a concentration
bound with fixed constants.

o Notice rd— d—! Jd &= ZJ 1 H{U; < pj+ X2€} — E[Xl€] =
a7V H(U=w)/% < E=Pu((Ui—i1)/ A < €)] = Fa(€)—Fa(€)
where Fy is the empirical distribution of the independent sequence
((Uj = )/ A7), and Fy(x) = d=1 320 Pu((Uj — 1)/ Aj < x).

e By independence P(|ra] > ¢) = P(|Fq(€) — Fq(&)| > ¢) =
EcPy([Fa(€) — ( )| =)= s P (S, [ () = Fa(x)| > c) =
Py(sup, [Fg(x) — Fg(x)| > c) < 4exp(1 — 2dc?) by Inequality 2 in
Chapter 25 in Shorack & Wellner (2009) and Massart (1990).




@ A binary linear NP one-factor model:
X; = I{U; < 1 + A€}

is also a binary threshold one-factor model (with highly
non-traditional distributional assumptions): X; = I{7; < A\;§ + ¢}
with 4 = —7; and ¢; = —U;.



A binary linear NP one-factor model:
X; = I{U; < 1 + A€}

is also a binary threshold one-factor model (with highly
non-traditional distributional assumptions): X; = I{7; < A\;§ + ¢}
with 4 = —7; and ¢; = —U;.

Traditionally, parameters of such models are identified only under very
strong assumptions, such as joint normality.

Here, parameter identification follows from Theorem 2 (a binary
one-factor NP linear model is a confirmatory factor model) using CFA
results, as long as d is at least 3.

Also if we have at least 3 variables measuring 1 such as
Yi = H{V; <vj+ Kjn}

these will jointly form a confirmatory factor model, enabling
estimating e.g. the correlation of £ and 7.

This is surprising, as identification is unusual under weak assumptions
in very similar models.



e A copula perspective



o Likely, the identified assumption set for linearity is never/rarely
fulfilled in practical settings, and likely, no test can be made to check

this against all alternatives.

@ A non-parametric and reasonable assumption is that
mj(x) = P(X; = 1|{ = x) are all strictly increasing.



Likely, the identified assumption set for linearity is never/rarely
fulfilled in practical settings, and likely, no test can be made to check
this against all alternatives.

A non-parametric and reasonable assumption is that

mj(x) = P(X; = 1|{ = x) are all strictly increasing.

Then, for two scales X,Y that follows NP factor structures measuring
& and 7 respectively, we have

X=m5(€) +op(1), Y =75(n)+op(1)

approximate strictly increasing marginal transformations of &, 7.
Usually, 7'rff,7‘rc‘,/ are not identified, meaning the marginals of £, will
not be identified.

But copula of (75 (€), 7Y (1)) equals the copula of (£,7), and can
therefore be estimated non-parametrically.

This is asymptotic in d. For fixed d, we can investigate the partial

identification question: Which copulas are compatible with the
distributions of X, Y7
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