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Illustration: The five factor model of personality.

Figure: Big Five Personality model
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Figure: Extract from a big five questionnaire
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Figure: Extract from a big five questionnaire

Usual to integer encode questions. The first three answers are
therefore:

X1 = 1, X2 = 3, X3 = 5, . . .

This is really Xi ,1,Xi ,2,Xi ,3, . . .. We only consider one person in the
notation.
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Ordinal methods exists, but they make strong distributional
assumptions which cannot easily be weakened (Moss & Grønneberg,
2023).

In practical work, two dominant ways:
1 Treat the integer encoded data as continuous.
2 Take sum scores (today’s topic)

The consensus appears to be that this works well, with few
assumptions and well-developed tools (e.g. goodness of fit tests).

However:

Under very special cases, (1) can work but often does not, and is
usually inconsistent (Foldnes & Grønneberg, 2021; Grønneberg &
Foldnes, 2022).

Today’s conclusion: Also (2) can work as intended in special cases,
but usually not.
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A question is called an item.

Each item is designed to measure just one of the five factors (e.g. ”I am
the life of the party” measures extraversion)

Some of the items measure Openness. Jointly, they form a scale for the
latent variable openness.

The sum of the integer encoded items is your openness-score.

When analyzing sum scores, their empirically standardized versions are
supposed to approximate the latent variable measured by the scale.
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Consider an ordinal scale X = (X1, . . . ,Xd)
′ influenced by a latent

variable ξ (e.g. openness). ξ is never observed, only X

For notational simplicity: Each item is binary (Outcome:
agree/disagree or right/wrong)

Assumption (A non-parametric (NP) factor structure): Conditional on
ξ, the items Xj are independent.

Theorem 1

For a binary scale with d items that follows a NP factor structure,

X̄ = π̄d(ξ) + Rd , Rd = oP(1) as d → ∞.

where π̄d(ξ) = d−1
∑d

j=1 P(Xj = 1|ξ)

Unless π̄ is linear (with positive slope), standardized sum scores will
not approximate the standardized ξ.

π̄d(ξ) need not even converge without more assumptions.

We now prove Theorem 1 through a simple probability argument.
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Lemma 1 (A stochastic representation)

Let U1, . . . ,Ud be IID U[0, 1] and independent of ξ.
For a binary scale X1, . . . ,Xd with a NP factor structure, we have that X
has the same distribution as if

Xj = I{Uj ≤ πj(ξ)}, πj(ξ) := P(Xj = 1}|ξ),

Proof.

Recall: Conditional on ξ, the binary items Xj are independent. For
x1, . . . , xd ∈ {0, 1} we have

P(∩d
j=1{Xj = xj}) = EP(∩d

j=1{Xj = xj}|ξ) = E
d∏

j=1

P(Xj = xj |ξ)

= E
d∏

j=1

πj(ξ)
xj (1− πj(ξ))

1−xj .

If Xj = I{Uj ≤ πj(ξ)} conditional independence holds, and
P({Xj = xj}|ξ) = πj(ξ)

xj (1− πj(ξ))
1−xj as required.



10/27

Lemma 1 (A stochastic representation)

Let U1, . . . ,Ud be IID U[0, 1] and independent of ξ.
For a binary scale X1, . . . ,Xd with a NP factor structure, we have that X
has the same distribution as if

Xj = I{Uj ≤ πj(ξ)}, πj(ξ) := P(Xj = 1}|ξ),

Proof.

Recall: Conditional on ξ, the binary items Xj are independent. For
x1, . . . , xd ∈ {0, 1} we have

P(∩d
j=1{Xj = xj}) = EP(∩d

j=1{Xj = xj}|ξ) = E
d∏

j=1

P(Xj = xj |ξ)

= E
d∏

j=1

πj(ξ)
xj (1− πj(ξ))

1−xj .

If Xj = I{Uj ≤ πj(ξ)} conditional independence holds, and
P({Xj = xj}|ξ) = πj(ξ)

xj (1− πj(ξ))
1−xj as required.



10/27

Lemma 1 (A stochastic representation)

Let U1, . . . ,Ud be IID U[0, 1] and independent of ξ.
For a binary scale X1, . . . ,Xd with a NP factor structure, we have that X
has the same distribution as if

Xj = I{Uj ≤ πj(ξ)}, πj(ξ) := P(Xj = 1}|ξ),

Proof.

Recall: Conditional on ξ, the binary items Xj are independent. For
x1, . . . , xd ∈ {0, 1} we have

P(∩d
j=1{Xj = xj}) = EP(∩d

j=1{Xj = xj}|ξ) = E
d∏

j=1

P(Xj = xj |ξ)

= E
d∏

j=1

πj(ξ)
xj (1− πj(ξ))

1−xj .

If Xj = I{Uj ≤ πj(ξ)} conditional independence holds, and
P({Xj = xj}|ξ) = πj(ξ)

xj (1− πj(ξ))
1−xj as required.



11/27

Now for the proof of Theorem 1: Recall

Xj = I{Uj ≤ πj(ξ)}, πj(ξ) = P(Xj = 1|ξ) i = 1, 2, . . . , d .

where U1, . . . ,Ud IID U[0, 1] and independent to ξ.

Then

X̄ =
1

d

d∑
j=1

I{Uj ≤ πj(ξ)}

is an average over independent variables except for the non-varying ξ.

The average over the independent variables ought to be less and less
random, and X̄ ought to approximate E[X̄ |ξ], where

E[X̄ |ξ] = 1

d

d∑
j=1

E[I{Uj ≤ πj(ξ)}|ξ] =
1

d

d∑
j=1

πj(ξ) = π̄d(ξ)

which also equals EU X̄ (expectation with respect only to U1, . . . ,Ud).
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For ϵ > 0, Chebyshev’s inequality gives

P(|X̄ − π̄d(ξ)| > ϵ) = EP(|X̄ − π̄d(ξ)| > ϵ|ξ)
(a)
= EξPU(P(|X̄ − π̄d(ξ)| > ϵ)

≤ Eξϵ
−2VarU X̄

(b)
= ϵ−2Eξd

−2
d∑

j=1

VarU I{Uj ≤ πj(ξ)}

≤ ϵ−2Eξd
−2

d∑
j=1

1/4

= ϵ−2d−1/4 → 0.

(a) U is independent to ξ. (b) U1, . . . ,Ud is IID

Therefore, X̄ = π̄d(ξ) + Rd where Rd = oP(1) as d increases.
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Work-horse model in psychometrics: Confirmatory factor models
(CFA). For p factors ξ = (ξ1, . . . , ξp)

′ (here: p = 5 for big five), and
d questions (d > p), we observe for each person

X = (X1, . . . ,Xd)
′ = µ+ Λ︸︷︷︸

d×p

ξ︸︷︷︸
p×1

+ϵ

Basic assumptions: ξ, ϵ are uncorrelated, Eϵ = 0.

Confirmatory factor models: Λ is an identified parameter from fixing
many elements to zero. Typically, each item Xj is influenced by just
one factor, say, Xj = µj + λjξ1 + ϵj

Some elements of ϵ may be correlated, but not ”too many”, as we
otherwise loose identification.
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CFAs were developed for continuous data.

Historically, sum scores were taken as a foundational data-point, and
inputted into CFAs.

This makes sense:
1 With ”enough” items (d), the sum scores are ”close to continuous”.
2 Sum scores were formulated using substantive knowledge in psychology.

The critique of this talk then does not apply.

Ordinal scales are now developed using CFAs on the item level (the
ordinal observations).

Under a CFA, sum scores are well behaved, as we shortly see.

But ordinal data, except very under limited circumstances, will not
follow a CFA, invalidating this argument.
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If X1, . . . ,XK follows a one-factor model (”unidimensional” factor
model), then

Xj = µj + λjξ1 + ϵj ,

where Eϵj = 0,Cov(ϵj , ξ1) = 0, and where Cov(ϵj , ϵk) = 0 for ”most”
pairs k ̸= j .

The mean score is

X̄ =
1

K

K∑
j=1

Xj = µ̄+ λ̄ξ + ϵ̄,

Therefore
X̄ ≈ µ̄+ λ̄ξ

given reasonable bounds on Cov(ϵj , ϵk).

In the ordinal case, we have in contrast seen X̄ ≈ π̄d(ξ). So what
goes wrong?
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Recall

Xj = I{Uj ≤ πj(ξ)}, πj(ξ) = P(Xj = 1|ξ) i = 1, 2, . . . , d ,

where U1, . . . ,Ud IID U[0, 1] and all independent to ξ.

Suppose ξ is univariate (one factor). Let λj = Cov(ξ,Xj)(Varξ)
−1

and µj = EXj − λjEξ. Then

ϵj := Xj − (µj + λjξ) fulfills Eϵ = 0,Cov(ϵ, ξ) = 0.

Hence Xj = µj + λjξ + ϵj fulfills a confirmatory factor model of sorts.
However, notice E[Xj |ξ] = πj(ξ) is not assumed to be linear.

Can show: ϵ1, . . . , ϵd can all be correlated. Then the confirmatory
factor model is not identified.

Ordinal variables will then not follow a confirmatory factor model
(except when πj is linear!).
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There are also factor models designed specifically for ordinal data.

For a one-factor model, all such models are equivalent to threshold
type models originating from Pearson (1900):

Xj = I{λjξ + ϵj ≥ τj}, τj a number, ϵj independent to ξ.

It follows a NP factor model.

Gives πj(ξ) = Pϵ(λjξ + ϵj ≥ τj) = 1− Fϵj (τj − λjξ).

If e.g. ϵj ∼ N(0, ψ2
j ), then

π̄d(x) = 1− d−1
d∑

j=1

Φ((τj − λjx)/ψj),

which is not linear.

If λj > 0, then π̄d is invertible. If the parameters are identified,
ˆ̄π−1
d (X̄ ) ≈ ξ. (Appears to be a new ordinal factor score)

To justify current empirical practice, we require linearity of π̄d .

This is implied by the linearity of πj(x) = P(Xj = 1|ξ).
(Notice πj(ξ) = 1− Fϵj (τj − λjξ) is linear if ϵj uniform.)
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If ξ is a random variable, and πj(x) = µj + λjx for λj > 0, let’s say the
NP factor structure is unidimensional and linear.

Lemma 2

Suppose given a binary scale X following a unidimensional linear NP factor
structure. Then P(ξ ∈ [maxj lj ,minj uj ]) = 1 where
lj = −µj/λj , uj = (1− µj)/λj ,and

Xj = I{Uj ≤ µj + λjξ}

where U1, . . . ,Ud are IID U[0, 1] and independent to ξ.

Proof.

Notice that µj + λjx = πj(x) = P(Xj = 1|ξ = x) ∈ [0, 1] for all x
attainable by ξ. Therefore, the support of ξ is contained in
∩d
j=1{x : 0 ≤ µj + λjx ≤ 1} = ∩d

j=1{x : −µj ≤ x ≤ (1− µj)/λj} =
[maxj(−µj),minj(1− µj)/λj ].

The stochastic representation then gives
Xj = I{Uj ≤ πj(ξ)} = I{Uj ≤ µj + λjξ}
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Theorem 2

A binary scale X following a unidimensional linear NP factor structure also
follows a unidimensional confirmatory factor structure.

Proof.

by Lemma 2, E[Xj |ξ] = E[I{Uj ≤ µj + λjξ}|ξ] = µj + λjξ. Therefore,

Xj = µj + λjξ + ϵj , ϵj := Xj − E[Xj |ξ].

Clearly Eϵj = 0,Cov(ϵj , ξ) = 0.

Let i ̸= j . Then ϵj = I{Uj ≤ µj + λjξ} − E[Xj |ξ] and
ϵj = I{Uj ≤ µj + λjξ} − E[Xj |ξ] are conditionally independent and
conditionally zero mean given ξ. Gives Cov(ϵi , ϵj) = 0 for i ̸= j .

From the ”continuous argument”: Sum scores of CFAs also follow a CFA:
X̄ = µ̄+ λ̄ξ + ϵ̄. So also sum scores of the whole or parts of the scale
follow a CFA.
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Corollary 1

Suppose X is a binary scale following a unidimensional linear NP factor
structure. Then X̄ = µ̄+ λ̄ξ + rd where for any c > 0,
P(|rd | > c) ≤ 4 exp(1− 2dc2).

Consistency follows from Theorem 1. Corollary 1 gives a concentration
bound with fixed constants.

Proof.

Notice rd = d−1
∑d

j=1 ϵj = d−1
∑d

j=1 I{Uj ≤ µj + λjξ} − E[Xj |ξ] =
d−1

∑d
j=1[I{(Uj−µj)/λj ≤ ξ}−PU((Uj−µj)/λj ≤ ξ)] = Fd(ξ)−F̄d(ξ)

where Fd is the empirical distribution of the independent sequence
((Uj − µj)/λj), and F̄d(x) = d−1

∑d
j=1 PU((Uj − µj)/λj ≤ x).

By independence, P(|rd | > c) = P(|Fd(ξ)− F̄d(ξ)| > c) =
EξPU(|Fd(ξ)− F̄d(ξ)| > c) ≤ EξPU(supx |Fd(x)− F̄d(x)| > c) =
PU(supx |Fd(x)− F̄d(x)| > c) ≤ 4 exp(1− 2dc2) by Inequality 2 in
Chapter 25 in Shorack & Wellner (2009) and Massart (1990).
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bound with fixed constants.

Proof.

Notice rd = d−1
∑d

j=1 ϵj = d−1
∑d

j=1 I{Uj ≤ µj + λjξ} − E[Xj |ξ] =
d−1

∑d
j=1[I{(Uj−µj)/λj ≤ ξ}−PU((Uj−µj)/λj ≤ ξ)] = Fd(ξ)−F̄d(ξ)

where Fd is the empirical distribution of the independent sequence
((Uj − µj)/λj), and F̄d(x) = d−1

∑d
j=1 PU((Uj − µj)/λj ≤ x).

By independence, P(|rd | > c) = P(|Fd(ξ)− F̄d(ξ)| > c) =
EξPU(|Fd(ξ)− F̄d(ξ)| > c) ≤ EξPU(supx |Fd(x)− F̄d(x)| > c) =
PU(supx |Fd(x)− F̄d(x)| > c) ≤ 4 exp(1− 2dc2) by Inequality 2 in
Chapter 25 in Shorack & Wellner (2009) and Massart (1990).
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A binary linear NP one-factor model:

Xj = I{Uj ≤ µj + λjξ}

is also a binary threshold one-factor model (with highly
non-traditional distributional assumptions): Xj = I{τj ≤ λjξ + ϵj}
with µ = −τj and ϵj = −Uj .

Traditionally, parameters of such models are identified only under very
strong assumptions, such as joint normality.

Here, parameter identification follows from Theorem 2 (a binary
one-factor NP linear model is a confirmatory factor model) using CFA
results, as long as d is at least 3.

Also if we have at least 3 variables measuring η such as

Yj = I{Vj ≤ νj + κjη}

these will jointly form a confirmatory factor model, enabling
estimating e.g. the correlation of ξ and η.

This is surprising, as identification is unusual under weak assumptions
in very similar models.
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Likely, the identified assumption set for linearity is never/rarely
fulfilled in practical settings, and likely, no test can be made to check
this against all alternatives.

A non-parametric and reasonable assumption is that
πj(x) = P(Xj = 1|ξ = x) are all strictly increasing.

Then, for two scales X ,Y that follows NP factor structures measuring
ξ and η respectively, we have

X̄ = π̄Xd (ξ) + oP(1), Ȳ = π̄Yd (η) + oP(1)

approximate strictly increasing marginal transformations of ξ, η.

Usually, π̄Xd , π̄
Y
d are not identified, meaning the marginals of ξ, η will

not be identified.

But copula of (π̄Xd (ξ), π̄
Y
d (η)) equals the copula of (ξ, η), and can

therefore be estimated non-parametrically.

This is asymptotic in d . For fixed d , we can investigate the partial
identification question: Which copulas are compatible with the
distributions of X ,Y ?
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