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Why am | invited ?

NLH employment :

Uni Tromsg Academia ‘Verna arbeidsplass’ Support personell
Norwegian Computing Center Applied research Research Consulting Bosses

Uni Oslo Academia ‘Verna arbeidsplass’ Support personell



My experiences as NLH-Boss !
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NLH is a Champion in a Noble Art !!!
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NLH is a Champion in a Noble Art !!!

The Noble Art of making Simple Things
— very, very Complicated !!!

Quizzz !!




ich Problem is NLH solving here ???

Consequently

maxL(z,z) = (2me)~(N+VI2|E |- (N+1)/2,
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where f(h is the adjusted maximum likelihood estimator of £ obtained by including z as
an observation from class k, i.e.
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which can be seen to follow from (8.4.11) in Box and Tiao (1973),
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Next consider maXa priori L(2,2). f is now free to vary in JR? and makes L(z,z)
maximal when it is set equal to z. Hence
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Notes on the Theory of
R VS —— Statistical Symbol Recognition
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By the identity Report no. 778/1986
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Automatic

Segmentation and
Symbol recognition
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which can be seen to follow from (8.4.11) in Box and Tiao (1973),
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Which Problem is NLH solving here ???
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To obtain explicit formulae we will consider the situation where the
pixel crosses are chosen so far apart that their spectral vectors can be
| considered uncorrelated. The central pixels of the crosses can for example
be chosen as every 4th pixel in the training set. As estimator for vy Wwe
will use the mean of the vectors from only the crosses belonging to class j,
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Which Problem is NLH solving here ???

is an unbiased estimator of B. Using the fact that H'l'v‘;,' = Sk.,., we see that the first term
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where 57,( is the SBIL based estimator of the accumulated thickness of the whole section.
Hence
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In order to find the variance of B we first express its four components via the noise
terms ¥, Using (7.11) and (7.12) we find
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Here the various ¢ '’s are independent, Gaussian variables with mean value zero and
s : Ky o S

variance A\? /R, and are also independent of the 5: 's. Futhermore, Var 5‘, ) = a2 /R.

Being linear functions of independent Gaussian varables, the four components of B
have a multinormal distribution, and a standard calculation shows that the covariance
matrix is =
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Estimating Compaction Using the
Formation Subsidence Monitoring Tool:

De

P of New Models and Methods

Estimates of Compaction




NLH was a BIG success at NR because:

 Heis a very likeable person — friendly to us all
* Heis interested in everything — absolutely everything

* His reports worked — and better than everything else.
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Topics in Spatial Statistics”

NILS LID HIORT
University of Oslo

HENNING OMRE
Norwegian Institute of Technology

ABSTRACT. An overview is given over a fair range of topics within spatial and spatial-tempo-
ral statistics. The theory presented is motivated by and illustrated with actual applications to real
world problems. We describe and discuss models for three basic types of spatial processes:
continuous random surfaces, mosaic phenomena, and events-against-background processes. Vari-
ous combinations of these sometimes occur naturally in applications, like Gaussian noise on top
of a Markov random field in image restoration problems. Some of these combinations are also
discussed. The applications we discuss are drawn from the areas of medical image amalysis,
pollution monitoring, characterisation of oil reservoirs, estimation of fish and whale stock,
forestry surveillance via satellite, statistical meteorology, and symbol recognition.

Key words: Bayesian methods, covariance function, event processes, hidden Markov fields,
image restoration, Kriging, marked point processes, Markov random fields, parameter estima-
tion, pseudo-likelihood, quasi-likelihood, semi-Markov random fields, spatial classification,
spatial sampling strategy, stochastic simulation



Grid-free Spatial Modelling
by

Henning Omre
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Department of Mathematical Sciences,
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A Mickey Mouse Study !!!



2D area: [ 1,100 ]2 Stationary Gaussian RF model: U o ’ yop (X — X')

. + Grid-representations: r: {r (X) ‘XelLeDc R?’}
* + M Predictors:
+ . . .
Kriging predictor:
b m
-~ 19 XA X i
. f=T,Z;d=w'd=> w'd  -GroD
=1
* + Gaussian Markov predictor:
m
* =W '"H, ¥,d=w"d =) w'd, -Gri
=1
Observations: m = 10 Basis-function predictor:
' n
o Tv-14
Grid: n=10072 = 1074 r=22Fx, d= Z'uaild fxi (X) - GRID
i=1

Journel and Huijbregts (1978); Rue and Held (2005); Cressie and Johannesson (2008)



The Kernel Predictor

" Stationary Gaussian RF model: {r(x);x c D}
®
* u, =00 o/=10 p, (x-X)
+
m
Kriging predictor:  f = w'd = Z:Wixdi w* = ng231 Grid-repr
i—
Predictor: . T <1 /
[y = Opa2q d infill | asymp
m
Kernel predictor: fo = ng w = ZWid yop (X0 — X ) we = Zald Functional repr
i=
Parameters: m
° _ d :
Coy g {r(x)_ZWi pr(X—Xi),XED}
i=

Prediction variance: Ok !!
Dual Kriging predictor! Matheron (1971)



Example: {r(x);x €[-10,10] IR{}

=
Normalized Gaussian RF model:
L p for L‘? —
pe(T) =1+ BUZ- 4 5/377] {*:-:1:{—5]-"31'}: = |z’ —2"|/mn. o
Kernel spatial predictor: S
3 n
{f(x)zzm"vi(x) ;Xe[—lo,lo]cIR{} S -
i=1

-10 -5 0 5 10
Observations: Kernel functions: X
., (1) = T — {1
dy; = r(0) n(z) = pr(lz —0|/mm)
! o _
dy = d/dz r(z)|—_5 12(z) =d/du p(|z — u|/Tas)|u=—s o
.
i
dg = / ru)du. . S
va(x) = pel |z — ul /ar )du
N 0
S -
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Example: {r(X);xe[-10,10] c R}

Kernel predictor:

{100= o (0

w! =3 'd

[0.71, -0.47, 1.9]

- v1§x)

-10 -5 0 5 10

[-5.48, 57.02, 2.62]

1.5 20

1.0

0.0 0.5

0

-5

=)
I

10

02p(")

02p(")

0.8

0.4

0.0

0.8

0.4

0.0

IS /
\J/ \ JI/




3D volume: [ 1, 1000 ]*3

& L
* + o
+
+
+
* *
+

Observations: m = 1000

Grid: n=1000"3 =10"9

Rel. eff. = 1076 — and func repr

Grid-representations: r. {r (X) 'XebLeDc R?’}

Predictor

Kriging predictor:

fF=r_,>,d

Gaussian Markov predictor:

s wp-lyT
r=¥Y H,¥,d
Basis-function predictor:
A Tyv-1
r=%F 2,d
Kernel predictor:

A —1
r=1I,24d
Loc-Kriging predictor:

Loc-Kernel predictor:

Comp.eff.

2D-Comp
Sparse

3/2
m

3/2

3/2

3/2

3D-Comp
Sparse



Example:

{F(X);XE Dc RZ}
Stationary Gaussian RF model - finite range:
2
H, O, P (X o X,)

Localized kernel predictor:
1330

Observations: m =1330

F(X) =g + D W p, (X=X );xeD
i=1

wh =] % ]_1* d

Algorithm 1 (Observation inter-correlation matrix approximation)

Initiate,

Localization range: A € R,

Support matriz: W = 01, - dim (m x m)

FO?‘X?;? =1,...,m

ﬁ

Define neighborhood set: M = {yly € M |x? —y| < A} - dim mZ

Construct matriz: Esﬂd = Sub-matriz {E5; J‘ﬁ?} - dim (mis X mif)
Compute: [E:Ad]_l - dim (m::, X m::,)

_']x?y - for corresponding j and y € M)‘?d entries

Copy: [‘I’]\'j = [[254“]
End For

Define: [B57"* = 1/2 x [¥ + @7

=]

=

38 40

36

32

30

Gneiting (2002); Omre and Spremic (2023)

Correlation function:

4 — 2000

i - 1500
1000
500

il 0

| | [ | | [
-100 -98 -96 -94 -92 -90
Xh
° 0.0 0.‘2 0‘.4 0.‘6 0[8 1!0 1T2 1!4

To



Example: Prediction:s,r

2000
Localized Kernel predictor: Q
1500
1330 d 8
{r ()= +iZ_1:W‘ pr(X=x)ixe D}f 1000 Cross-plot in obs loc:
<
d —1x @ § —
W = [Zg] 500 3"
& g
Display grid:  [1101, 1101] s 0 g |
™ =
100 -98 -96 -94 -92 -90 R
n=1212 201 8
Variance: 2000( o |
Rel. eff. =911 1500( o | | | ‘ |
0 500 1000 1500 2000 2500
Loc Kernel pred: 1 min 2 1000 &
Loc Kriging pred: 15 hours 50000
0

NOTE: Better in 3D and [3+1]D !!!




FINAL QUESTION :

Why have | not seen this before ????

Omre and Spremic (2023); arXiv
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