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Combination of information, then

Cunen, C. and Hjort, N.L. (2021). Combining information across diverse
sources: The II-CC-FF paradigm. Scandinavian Journal of Statistics.

−150 −100 −50 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

co
nf

id
en

ce
 c

ur
ve

4/23



Now, combination of predictions

This is joint work with people at NR, in particular Thea Roksv̊ag, Claudio
Heinrich-Mertsching and Alex Lenkoski.

Say we are interested in predicting the time to some event,
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The problem

Say we are in Hamar, on the 30th of September 2023: when will we have
the first frost?
We have access to two sources of information:

1. the seasonal forecast: issued on September 1st.

2. the subseasonal forecast: issued on September 30th.
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What we want

A combined probabilistic forecast Ŝcomb(t) (or F̂comb(t)) which is

1. calibrated! F̂comb(T ) ∼ Unif(0, 1)

2. as precise as possible.
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Four combination methods

1. LP – the linear pool

Fcomb(t) = ω̂F1(t) + (1− ω̂)F2(t).

2. HB – hazard blending

Scomb(t) =
∏
i :ti≤t

(1− λi ), with λi =
ω̂e1,i + (1− ω̂)e2,i
ω̂n1,i + (1− ω̂)n2,i

.

3. BP – the Beta pool

Fcomb(t) = Bα̂,β̂{ω̂F1(t) + (1− ω̂)F2(t)}.

with Bα,β{·} the cdf of the Beta distribution.

4. GFF - the Gaussian forecast filter

Fcomb(t) = Φ

{
ω̂Φ−1{F1(t)}+ (1− ω̂)Φ−1{F2(t)} − µ̂

σ̂

}
.

with Φ{·} the standard normal cdf.
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How do we estimate the combination parameters?

For example with the GFF method we have (ω, µ, σ).

We need data: realised times-to-frost and corresponding forecasts
from the two sources. Here we will use historical data.

We consider two options:

maximum likelihood;

minimising the integrated brier score.

In the following we will look at LP, GFF and BP with ML, and HB
with minIBS.
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Maximum likelihood

For the GFF method the log-likelihood looks like

ℓ(ω, µ, σ) =
n∑

i=1

log

(
ϕ

[
ωΦ−1{F1,i (ti )}+ (1− ω)Φ−1{F2,i (ti )} − µ

σ

]
1

σ
[ωΦ−1′{F1,i (ti )}f1,i (ti ) + (1− ω)Φ−1′{F2,i (ti )}f2,i (ti )]

)
,

where we have n years of data: with ti the realised time-to-frost
and

(F1,i (ti ),F2,i (ti ), f1,i (ti ), f2,i (ti )),

the predictive CDFs and densities from each source.
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Minimising IBS

Minimise

ibs(ω) =
∑
t

1

n

n∑
i=1

[I{ti > t} − Scomb,i (t)]
2,

where Scomb,i (t) is the combined predictive survival curve from
year i and ti is the realised time to frost in year i .
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Back to Hamar

We have 20 years of historical data:

the realised frost date in each year;

the forecasts that were made (seasonal + subseasonal).
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Back to Hamar

Within each year, we have to decide which predictive distributions
to use:
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Back to Hamar – combined forecasts on 30/09/2023
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We get ω̂LP = 0.73 (weight on seasonal)

ω̂HB = 0.32

ω̂BP = 0.45 α̂ = 1.48 β̂ = 1.01

ω̂GFF = 0.46 µ̂ = 0.36 σ̂ = 0.94
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Simulations

Truth: Ti |(x1,i , x2,i ) ∼ LogNormal(ξi , τ
2
0 )

with ξi = ξ0 + x1,i + x2,i ,

and X1,i ∼ N(0, τ21 ) X2,i ∼ N(0, τ22 ).

Source (1): Yi ,j |x1,i ∼ LogNormal(ξ0 + x1,i , τ
2
0 + τ22 ), n1 = 100,

Source (2): Zi ,j |x2,i ∼ LogNormal(ξ0 + x2,i+b, τ20 + τ21 ), n2 = 20.

with τ0 = τ1 = 0.4.

Simulation scenarios:

Both sources calibrated or source (2) biased:
b = 0 or b = −0.5

Balanced or unbalanced sources: τ2 = 0.5 or τ2 = 0.2

Loads or little training data: n = 1000 or n = 20
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Lessons from simulations

1. Extra combo parameters fix calibration, when both sources are
calibrated

2. Extra combo parameters fix calibration, when there is bias

3. More complex combo-methods are often best, but all
combination is bad when the sources are unbalanced and
there is little training data
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1. Extra combo parameters fix calibration, ...

when both sources are calibrated
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2. Extra combo parameters fix calibration, ...

when there is bias
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3. More complex combo-methods are often best, ...

but all combination is bad when the sources are unbalanced and
there is little training data.
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Real data
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Some real data results

0.00 0.05 0.10 0.150.
00

0.
05

0.
10

0.
15

IBS Sept seasonal (source 1)

IB
S

 c
om

bi
na

tio
n

0.00 0.05 0.10 0.150.
00

0.
05

0.
10

0.
15

IBS 30.09 subseasonal (source 2)

IB
S

 c
om

bi
na

tio
n

0.00 0.05 0.10 0.150.
00

0.
05

0.
10

0.
15

IBS October seasonal

IB
S

 c
om

bi
na

tio
n

Combination forecast beats each of the individual sources!

The hazard blending method has a similar predictive performance
as the seasonal forecast from October 1st, which will only be
available two weeks later.

Good start!
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Combination forecast on par with next 
seasonal forecast!

The hazard blending method has a similar predictive performance
as the seasonal forecast from October 1st, which will only be
available two weeks later.

Good start!
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A lot more to do

More complex estimation schemes for weights and
combination parameters:

Model for combo parameters in space; time-varying weights;
Covariates (elevation).

We have a lot more forecasts than two:

Seasonal forecasts on 01/09, 01/10,...
Subseasonal forecasts in 02/09, 09/05, 09/09, 12/09, 16/09,
19/09, 23/09, 26/09, ...

Other applications?
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Thank you!
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