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Combination of information, then

Cunen, C. and Hjort, N.L. (2021). Combining information across diverse
sources: The II-CC-FF paradigm. Scandinavian Journal of Statistics.
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Now, combination of predictions

This is joint work with people at NR, in particular Thea Roksvag, Claudio
Heinrich-Mertsching and Alex Lenkoski.

Say we are interested in predicting the time to some event,
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The problem

Say we are in Hamar, on the 30th of September 2023: when will we have
the first frost?
We have access to two sources of information:

1. the seasonal forecast: issued on September 1st.

2. the subseasonal forecast: issued on September 30th.
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The problem

Say we are in Hamar, on the 30th of September 2023: when will we have

the first frost?
We have access to two sources of information:

1. the seasonal forecast: issued on September 1st.

2. the subseasonal forecast: issued on September 30th.
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What we want

A combined probabilistic forecast §comb(t) (or I?comb(t)) which is

1. calibrated! Feomp(T) ~ Unif(0,1)

2. as precise as possible.
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Four combination methods

1. LP — the linear pool
Fcomb(t) = C‘\)Fl(t) + (1 - C‘\J)F2(t)'
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Four combination methods

1. LP — the linear pool
Feomb(t) = @F1(t) + (1 — &) Fa(t).
2. HB — hazard blending

Deri+(1—d)ey;
c?)nl,,- + (1 — d\})nz’,'.

Scomb(t) = H (1 - )\,‘), with \; =

it <t
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Four combination methods

1. LP — the linear pool
Fcomb(t) = @Fl(t) + (1 — (2')/‘_2(1?).
2. HB — hazard blending

e+ (1 —&)ep;

5<:omb(t) = H (1 — )\,‘)./ with \; = —

it <t
3. BP — the Beta pool
Feomb(t) = By s {0F1(t) + (1 — @)Fa()}.

with Ba, g{-} the cdf of the Beta distribution.
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Four combination methods

1. LP — the linear pool
Feomb(t) = @F1(t) + (1 — @) F2(t).
2. HB — hazard blending
Seomb(t) = [ (1= Ni), with \; = f)el"i (1= 0)er
it <t
3. BP — the Beta pool
Feomb(t) = By s {0F1(t) + (1 — &) Fa(t)}.

with Ba,g{-} the cdf of the Beta distribution.

4. GFF - the Gaussian forecast filter
OO HF () 4+ (1 = )P HF(t)} — &
Falt) =0 { 20RO} £ 0 D0 A0) 5}

g
with ®{-} the standard normal cdf.
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How do we estimate the combination parameters?

For example with the GFF method we have (w, i, o).

We need data: realised times-to-frost and corresponding forecasts
from the two sources. Here we will use historical data.

We consider two options:
m maximum likelihood;

®m minimising the integrated brier score.

In the following we will look at LP, GFF and BP with ML, and HB
with minlIBS.
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Maximum likelihood

For the GFF method the log-likelihood looks like
-1 (+: _ 1 e
Uw, p, o) = Z'°g< [wb {FLi(t)} + (1 — w)d Y Foi(t)} M}

;[w¢’1’{F1,,-(t,-)}ﬁ,,-(t,-) +(1- w)q’*l'{F2,i(fi)}f2,i(ti)]) ;

where we have n years of data: with t; the realised time-to-frost
and

(Fu,i(ti), F2,i(ti), f1,i(t;), f2,i( i),

the predictive CDFs and densities from each source.
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Minimising IBS

Minimise
le Z Z[H{t’ > t} Scombl( )]2a

where Scomb,i(t) is the combined predictive survival curve from
year i and t; is the realised time to frost in year i.
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Back to Hamar

We have 20 years of historical data:

m the realised frost date in each year;

m the forecasts that were made (seasonal + subseasonal).
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Back to Hamar

Within each year, we have to decide which predictive distributions

to use:
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Back to Hamar — combined forecasts on 30/09/2023

Probability that hard freeze is yet to occur
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Back to Hamar — combined forecasts on 30/09/2023
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Simulations
Truth: T;|(xy,i, x2,;) ~ LogNormal(¢;, %)

with & = &o + x1,i + x2,,
and X1; ~ N(0,77) Xo,; ~ N(0,73).
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Simulations

Truth: T;|(x1,, X2,/) ~ LogNormal(¢;, 73)
with & = &o + x1,i + x2,,
and Xj; ~ N(O,7‘12) Xoi~ N(0>7'22)-

Source (1): Y;j|x1; ~ LogNormal(& + x1.;, 76 +73), n1 = 100,

Source (2): Z; j|x2,; ~ LogNormal(&o + xp,i+b, 7§ + %), n2 = 20.

with 7o = 1 = 0.4.
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Simulations

Truth: T;|(x1,, X2,/) ~ LogNormal(¢;, 73)
with & = &o + x1,i + x2,,
and Xj; ~ N(O,7‘12) Xoi~ N(0>7'22)-

Source (1): Y;j|x1; ~ LogNormal(& + x1.;, 76 +73), n1 = 100,
Source (2): Z; j|xp,; ~ LogNormal(&g + x,i+b, Tg + 712), ny = 20.

with 7o = 11 = 0.4.

Simulation scenarios:
m Both sources calibrated or source (2) biased:
b=0or b=-05
m Balanced or unbalanced sources: 7 = 0.5 or , = 0.2
m Loads or little training data: n = 1000 or n = 20
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Lessons from simulations

1. Extra combo parameters fix calibration, when both sources are
calibrated

2. Extra combo parameters fix calibration, when there is bias

3. More complex combo-methods are often best, but all
combination is bad when the sources are unbalanced and
there is little training data
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1. Extra combo parameters fix calibration, ...

When bOth sources are Calibrated source 1 (seasonal) source 2 (subseasonal)

LP, linear HB, hazard BP, beta GFF, gaussian

@ =032  @us =0.13
Osp =043 &=143 S=153

Qcrr = 0.45 fi=—0.05 & =0.89
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2. Extra combo parameters fix calibration, ...

when there is bias source 1 (seasonal)

source 2 (subseasonal)

=

LP, linear B} HB, hazard BP, beta

GFF, gaussian

wp =0.73 whg = 0.26

Dep =042 &=232 =133
Gorr = 0.46 =050 & =0.87
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More complex combo-methods are often best, ...

but all combination is bad when the sources are unbalanced and
there is little training data.
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Real data
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Some real data results

Combination forecast beats each of the individual sources!
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Some real data results

Combination forecast on par with next
seasonal forecast!
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The hazard blending method has a similar predictive performance
as the seasonal forecast from October 1st, which will only be
available two weeks later.

Good start!
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A lot more to do

m More complex estimation schemes for weights and
combination parameters:

Model for combo parameters in space; time-varying weights;
Covariates (elevation).

m We have a lot more forecasts than two:

Seasonal forecasts on 01/09, 01/10,...
Subseasonal forecasts in 02/09, 09/05, 09/09, 12/09, 16/09,
19/09, 23/09, 26/09, ...

m Other applications?
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Thank you!

m Aastveit, K. A., Mitchell, J., Ravazzolo, F., & Van Dijk, H. K.
(2018). The evolution of forecast density combinations in
economics. Tinbergen Institute Discussion Paper.

m Gneiting, T., & Ranjan, R. (2013). Combining predictive
distributions. Electronic Journal of Statistics.

m Roksvag, T., Lenkoski, A., Scheuerer, M.,
Heinrich-Mertsching, C., & Thorarinsdottir, T. L (2023).
Probabilistic prediction of the time to hard freeze using
seasonal weather forecasts and survival time methods.
Quarterly Journal of the Royal Meteorological Society.
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