
Focused Regularised Likelihood

Gudmund Horn Hermansen with Nils Lid Hjort

1/25



Godt Hjort

2/25



Introduction, Summary and Notation

Suppose we have data from

Yi = β0 + β1xi,1 + · · ·+ βpxi,p + σϵi = xtiβ + σϵi,

with ϵ1, . . . , ϵn are i.i.d. standard normals, β ∈ Rp+1 and σ > 0.

Ridge regression is a common regularised method for estimating β:

β̂ridge = argmin
β

{
1

n

n∑
i=1

(Yi − xtiβ)
2 + λ

p+1∑
j=1

|βj |2
}
.

Note that:

• λ = 0 is the same as ordinary least squares regression

• increasing λ will ‘shrink’ the β̂j-s toward zero

The above is (essentially) the same as

θ̂λ = (β̂λ, σ̂λ) = argmax
β,σ

{
ℓn(β, σ) + λn

p+1∑
j=1

|βj |2
}
,

where ℓn(β) is the log-likelihood corresponding to a Gaussian distribution.

The penalisation term is now scaled by n.
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Introduction, Summary and Notation

We denote the ‘true’ data-generating distribution by G.

In general Y1, Y2, . . . , Yn are i.i.d. from G.

Let Fθ be a parametric model, and ℓn(θ) the corresponding log-likelihood.

Then the FRL estimator is

θ̂λ = argmax
θ

{
ℓn(θ)− 1

2
λn{ψ̂ − ψ(θ)}2

}
,

where λ is a tuning parameter and ψ a control parameter.

Effective control parameters are important characteristics of a distribution
where we also have robust alternative estimators (non-parametric).
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θ

{
ℓn(θ)− 1

2
λn{ψ̂ − ψ(θ)}2

}
,

where λ is a tuning parameter and ψ a control parameter.

Effective control parameters are important characteristics of a distribution
where we also have robust alternative estimators (non-parametric).

Example: A quantile with 0 ≤ p ≤ 1:

ψ(θ) = ψ(Fθ, p) = F−1
θ (p) and ψ̂ = ψ̂(p) = Ĝ−1

n (p),

where Ĝn is the empirical CDF.
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2
λn{ψ̂ − ψ(θ)}2

}
,

where λ is a tuning parameter and ψ a control parameter.

Effective control parameters are important characteristics of a distribution
where we also have robust alternative estimators (non-parametric).

Example: k-th moment:

ψ(θ) = ψ(Fθ, k) =

∫
yk dFθ(y) and ψ̂ = ψ̂(k) =

1

n

n∑
i=1

yki .
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θ̂λ = argmax
θ

{
ℓn(θ)− 1

2
λn{ψ̂ − ψ(θ)}2

}
,

where λ is a tuning parameter and ψ a control parameter.

Effective control parameters are important characteristics of a distribution
where we also have robust alternative estimators (non-parametric).

Example: A probability, e.g.

ψ(θ) = ψ(Fθ, q) =

∫
I(y > q) dFθ(y) and ψ̂(q) =

1

n

n∑
i=1

I(yi > q).
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Introduction, Summary and Notation

In general, the log Focused Regularised Likelihood (log-FRL) is

ℓn,λ(θ) = ℓn,λ,w,ψ(θ) = ℓn(θ)− 1
2
λn

r∑
j=1

wj{ψ̂j − ψj(θ)}2,

where

• ℓn(θ) is the log-likelihood corresponding to Fθ

• λ is a tuning parameter

• ψj are control or focus parameter, e.g. quantiles, moments, . . .

• ψ̂j are non-parametric or robust alternative estimates for ψj

• w1, . . . , wr are weights with w1 + · · ·+ wr = 1

Note that:

• if λ = 0 we have θ̂λ = θ̂ML

• increasing λ will ‘push’ ψj(θ̂λ) to match ψ̂j

We also need a set of ’standard’ regularity assumptions to be true.
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Why?

Control parameters can make the estimated model more robust.

Control as a focus parameter can improve the model where it is important.

Analytic large sample theory for:

• standard models for i.i.d. data

• models with local misspecification

• regression models

• stationary time series (will not talk about this here)
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Illustration: Measuring the Speed of Light

We can use FRL for robust estimation of a normal density.

In particular if data contains outliers or is contaminated.

Suppose we want to model the data below with a N(µ, σ2).
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Newcomb's Measurements of the Speed of Light

Simon Newcomb speed of light measurements; see e.g. Stigler (1977) for details about the data.
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Illustration: Measuring the Speed of Light

We will do this by adding some quantiles as control parameters:

ψ(µ, σ, p) = σ × Φ−1(p) + µ and ψ̂ = ψ̂(p) = Ĝ−1(p)

where Ĝ is the empirical CDF, with p = 0.1, 0.5, p = 0.90 and λ = 1000.

0

2

4

6

299.5 300.0 300.5 301.0
Mm/s

F
re

qu
en

cy

FRL

ML

Newcomb's Measurements of the Speed of Light

Simon Newcomb speed of light measurements; see e.g. Stigler (1977) for details about the data.

8/25



Illustration: Measuring the Speed of Light

We will do this by adding some quantiles as control parameters:

ψ(µ, σ, p) = σ × Φ−1(p) + µ and ψ̂ = ψ̂(p) = Ĝ−1(p)
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Illustration: Measuring the Speed of Light

Increasing λ ‘push’ the estimated quantiles towards the empirical quantiles.
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Illustration: Measuring the Speed of Light

And, the estimated parametres move away from the ML estimates.
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However, are these FRL estimates more precise?
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Illustration: Simulated Data with Contamination

Simulated data with contamination (outliers).

Repeated simulations of independent Y1, . . . , Y100 with Yi ∼ N(0, 1).

Add 4% contamination from a N(4, 0.5).

Again, we will use control parameters based on quantiles (0.1, 0.5 and 0.9).
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Illustration: Simulated Data with Contamination

Estimated quantiles are ‘pushed’ towards the empirical (and true) quantiles.
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Illustration: Simulated Data with Contamination

And the estimated parameters move closer to the true values.
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Here, the median was used as a control parameter.

However, should we just use the non-parametric estimate(s)?
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Illustration: Estimation of Location Parameter with Contamination

Same simulation setup, but with ‘focus’ on estimating a location parameter.

We frame this as estimating µ in a N(µ, 1), two natural estimators are

µ̂ML = Ȳn =
1

n

n∑
i=1

Yi and m̂ = median(Y1, . . . , Yn).

We consider µ = 0 to be the ‘true’ target value.
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Illustration: Estimation of Location Parameter with Contamination

The FRL, with the median as control ψ = µ and ψ̂ = m̂ is

µ̂λ = argmax
µ

{
ℓn(µ)− 1

2
λn{m̂− µ}2

}
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Note that this is a bias–variance trade–off game (with respect to RMSE).

How to determine the optimal λ?
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Large Sample Theory - Illustration

We can use large-sample theory or the bootstrap to analyse the ‘behaviour’
of the FRL estimator, find optimal λ, compare it to the MLE, . . . .

A bootstrap approach seems to work well, will not focus on this here.

We need the target of θ̂λ, say θλ, and the limit distribution of
√
n(θ̂λ − θλ).

Again, consider estimating a location parameter, with competing estimators

Ȳn =
1

n

n∑
i=1

Yi and m̂ = median(Y1, . . . , Yn),

with Yi are i.i.d. and Yi ∼ G.

In order to fit the FRL framework, we view this as estimating µ in a N(µ, 1).

With the median as the control parameter, i.e. ψ(µ) = µ and ψ̂ = m̂ as the
robust alternative, then

µ̂λ = argmax
µ

{
ℓn(µ)− 1

2
λn{m̂− µ}2

}
and

µ̂λ =
1

1 + λ
Ȳn +

λ

1 + λ
m̂.
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Large Sample Theory - Illustration

We know that Ȳn →pr Eg Y1 = µg, and m̂→pr mg = G−1(0.5).

And, we can show that

µ̂→pr µλ = argmin
µ

{
KL(g, fµ) +

1
2
λ{m− µ}2

}
=

1

1 + λ
µg +

λ

1 + λ
mg,

where fµ is the density of a N(µ, 1).

Moreover,

√
n(µ̂− µλ) →d Λ ∼ N

(
0,

1

(1 + λ)2

[
σ2
g +

λ2

4g(mg)2
+
λ × Eg |Y1 −mg|

g(mg)

])
,

where σ2
g = Varg(Y1).

There are analogous limit distribution results for both Ȳ and the median m̂.

From this, we can extract (limit) bias, variance, RMSE, etc.

And, for example:

• we can derive an expression for the optimal value of λ

• compare estimators

• make asymptotic test and diagnostics tools/plots

17/25



Large Sample Theory - Illustration
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Large Sample Theory - Illustration

We know that Ȳn →pr Eg Y1 = µg, and m̂→pr mg = G−1(0.5).

And, we can show that

µ̂→pr µλ = argmin
µ

{
KL(g, fµ) +

1
2
λ{m− µ}2

}
=

1

1 + λ
µg +

λ

1 + λ
mg,

where fµ is the density of a N(µ, 1).

Moreover,

√
n(µ̂− µλ) →d Λ ∼ N

(
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1

(1 + λ)2

[
σ2
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λ2
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+
λ × Eg |Y1 −mg|
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Large Sample Theory - Summary

Consider one ψ and let Y1, Y2, . . . Yn be i.i.d. from G, then

θ̂λ = argmax
θ

{
ℓn(θ)− 1

2
λn{ψ̂ − ψ(θ)}2

}
.

In order to ‘understand’ the FRL estimate we need to:

(1) find what θ̂λ aims at and

(2) derive the limit distribution of
√
n(θ̂λ − θλ).

We obtain (1) by similar arguments as the MLE for a misspecified model:

θ̂λ →pr θλ = argmin
θ

{
KL(g, fθ) +

1
2
λ{ψtrue − ψ(θ)}2

}
.

Similar for (2), where we can show

√
n(θ̂λ − θλ) →d Np(0, [J(θλ) + λL]−1Kλ[J(θλ) + λL]−1),

where J is the Fisher information, L = ψ̇(θλ)ψ̇(θλ)
t + [ψtrue − ψ(θλ)]ψ̈(θλ),

Kλ = K(θλ) + 2λcψ̇(θλ)
t + λ2τ2ψ̇(θλ)ψ̇(θλ)

t

and K(·), τ2 and c are elements from the covariance matrix involving ψ̂ and
the scaled score-function, ψ̇ and ψ̈ are first and second order derivatives.
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Models with Local Misspecification - Summary

Suppose Y1, Y2, . . . , Yn are i.i.d. and Yi ∼ Fθ0,γ0+δ/
√
n and γ0 is known.

Models with local misspecification are useful for examining bias–variance
trade–offs in a large-sample framework; Claeskens and Hjort (2008).

Assume we are interested in estimating ψ = ψ(θ, γ) (focus parameter).

We can compare ψnarr = ψ(θ̂narr, γ0) with ψwide = ψ(θ̂, γ̂) in the limit, i.e.
√
n(ψ̂narr − ψtrue) →d N(ωδ, τ20 )

√
n(ψ̂wide − ψtrue) →d N(0, τ20 + ω2κ2)

with ω = J10J
−1
00 ψ̇θ − ψ̇γ and τ20 = ψ̇t

θJ
−1
00 ψ̇θ, and ψ̇· are partial derivatives.

If the FRL estimate is

θ̂λ = argmax
θ

{
ℓn(θ)− 1

2
λn{ψ̂wide − ψ(θ, γ0)}2

}
,

and ψ̂λ = ψ(θ̂λ, γ0) we can show that
√
n(ψ̂λ − ψtrue) →d N(ωλδ, τ

2
λ),

with Jλ = J00 + λψ̇θψ̇
t
θ and

ωλ = (J01+λψ̇γψ̇θ)J
−1
λ ψ̇θ−ψ̇γ and τλ = ψ̇t

θ[J
−1
λ +λJ−1

λ [(I+λτ20 )ψ̇θψ̇
t
θ]J

−1
λ ]ψ̇θ.
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Models with Local Misspecification - Exponential or Weibull?

Let Y1, . . . , Yn be i.i.d. Weibull with parameters θ0 = 0.34 and γ = 1+ δ/
√
n.

Note that δ = 0 is the exponential distribution (narrow).

Comparing the exponential (narrow), Weibull (wide) and FRL at estimating

ψ(θ, γ) = Pr{Y1 > 1}.
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Focused regularised regression

The general idea and framework is easily extended to regression models.

A canonical FRL construction is then

θ̂λ = (β̂λ, σ̂λ) = argmax
β,σ

ℓn(β, σ)− 1
2
λn

1

|I|
∑
zi∈I

{µ̂(zi)− ztiβ}2
 ,

where µ̂ is an alternative estimate of the mean and I is a set of important
and/or control ‘individuals’.

Example: A simple model combined with a sophisticated non-parametric
model for µ̂(·); e.g. to control for missing interactions.

Example: To integrate an estimated model with the output from a physical
or mechanistic model; weather, hydrology, biology, . . . .

Example: To integrate local data with external data where we do not have
access to raw data, relying on an estimated µ̂(·) for integration.

Example: To regularise a complex model, by penalising towards a simple
model where data is sparse.
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Illustration - Focused regularised regression

Simulated data with
Yi = µ(xi) + ϵi

for some smooth function µ(·) and independent ϵ1, . . . , ϵn.
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A model that captures both the overall trend and the detailed behaviour?

Useful for extrapolation.
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Illustration - Focused regularised regression

A smooth spline effectively capture detailed behaviour where data is dense

Can use a simple linear model to capture the overall trend.
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How to combine?
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Illustration - Focused regularised regression

Inspired by the FRL setup

θ̂λ = (β̂λ, σ̂λ) = argmax
β,σ

{
ℓn(sβ , σ)− 1

2
λn

1

|I|
∑
zi∈I

{(â+ b̂zi)− sβ(zi)}2
}
,

where sβ is a smooth spline and I is a set of control points – some below
x = 0 and some above x = 4.
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Concluding Remarks

Just do it.

A straightforward method for improving robustness of parametric models.

And can make inference more focused.

Large-sample theory justify the use in simple models.

Works well for regression models.

And stationary time series.

Bootstrapping techniques also works well (in simulated data examples).

Link to empirical likelihood and empirical Bayes.
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