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Complicated stuff

. . . this is Hjort (1990).
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Start ‘simple’, start finite-dimensional

. . . this is also Hjort (1990).
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Semiparametric models

A semiparametric model is of the form

{Pθ,η : θ ∈ Θ, η ∈ H},

where Θ ⊂ Rp and H is a function space.

- Partial linear regression Y = η(z) + xtθ + σϵ;

- the Cox model α(t |x) = η(t) exp(xtθ);

- partially linear logistic regression

pr(x, z) = 1/{1 + exp(−η(z)− xtθ)}.

- partly parametric Aalen models (McKeague and Sasieni, 1994)

α(t |x, z) = ztη(t) + xtθ.

or its Hjort and Stoltenberg (2023) version, and so on.

Throughout this presentation, we seek inference for the parametric

part θ, or in Nils jargon, θ is our focus parameter.
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Again, start simple

Had Nils been presented with any of these models – before their

theory had been worked out, that is – I conjecture that he would have

said1

. . . did you try a parametric version?

. . . then take limits?, perhaps.

1In view of the Beta process paper, other papers, and personal communication.
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Parametric partial linear regression

For example, instead of directly attacking

Y = η(z) + xtθ + σϵ,

with θ as our focus parameter and an infinite dimensional nuisance η,

one ought first to master (and perhaps even settle for?)

Y = ηγ(z) + θx+ σϵ, for γ ∈ Rm, say.

with θ the focus and a finite dimensional nuisance γm.

Also, if ηγ0,m
is close enough to η0, inference for θ in the parametric

model shouldn’t differ that much from inference for θ in the

semiparametric one.

This idea leads to that of semiparametric sieves.

.
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Semiparametric sieves

If we have data from Pθ0,η0
where

Pθ0,η0 is in {Pθ,η : θ ∈ Θ, η ∈ H},

where Θ ⊂ R and H is a function space, the idea is to instead

consider a family of parametric models

{Pθ,η : θ ∈ Θ, η ∈ Hm},

where Hm is a collection of parametric functions, indexed by the m

parameters

γm = (γ
(m)
1 , . . . , γ(m)

m ) ∈ Rm,

where, for any η ∈ H, there is a sequence ηγm
such that

ηγm → η, as m tends to infinity.

In other words, ∪m≥1Hm is dense in H.

We denote γ0,m the sequence such that ηγ0,m
→ η0, i.e., the limit is

the true value in the big model.
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Not only parametric modelling

. . . but why stop at parametric modelling? Let’s instead go further

and pretend that the world is parametric, that is, work under the

parametric measure(s) Pθ0,γ0,m .

This idea we have from Mykland and Zhang (2009), who studied

inference for
∫ t

0
σ2
s ds (and other estimands) in continuous time

models of the type,

dXt = σt dBt, t ∈ [0, 1], X0 = x0.

by pretending that the data Xt0 , . . . , Xtn were realisations of the

discrete time (thus parametric) process

∆X̆ti = σti−1

√
∆ti N(0, 1), for i = 1, . . . , n, X0 = x0,

where ∆X̆ti = X̆ti − X̆ti−1 and ∆ti = ti − ti−1.

The key is contiguity.
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Contiguity

Let Qn and Pn be probability measures on (Ωn,An). The sequence

Qn is contiguous w.r.t. the sequence Pn if

Pn(An) → 0 implies Qn(An) → 0,

for every sequence events An. Write Qn ◁ Pn.

Le Cam’s third lemma: If Xn is a sequence of random variables, and

Qn ◁ Pn, and
2

(Xn,
dQn

dPn
)
Pn⇝ (X,V ),

then µ(B) = E IB(X)V is a probability measure, and Xn
Qn⇝ µ.

2If Qn is not absolutely continuous w.r.t. Pn, the expression dQn/dPn should be

read as the ratio of dQn/dνn and dPn/dνn where νn = (Qn + Pn)/2, for example.
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Le Cam’s third lemma

In particular, if θ̂n is an estimator of θ0 ∈ Rp, and Qn ◁ Pn, and

(
√
n(θ̂n − θ0), log

dQn

dPn
)
Pn⇝ Np+1

(( 0

− 1
2σ

2

)
,

(
Σ b

bt σ2

))
,

then √
n(θ̂n − θ0)

Qn⇝ b+Np(0,Σ).
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Parametric building blocks

Given a sample X1, . . . , Xn from Pθ0,η0
where

Pθ0,η0
is in {Pθ,η : θ ∈ Θ, η ∈ H}, and H is infinite dimensional

we pretend that the sample stems from Pθ0,ηγ0,m
, where

Pθ0,ηγ0,m
is in {Pθ,ηγm

: θ ∈ Θ, ηγm
∈ Hm},

where Hm is a collection of parametric functions, indexed by

m-dimensional parameter vector γm = (γ
(m)
1 , . . . , γ

(m)
m ).

Let fθ,ηγm
be the density of Pθ,ηγm

. Being parametric we proceed as

usual and differentiate

ℓ̇θ0,γ0,m
:=

∂

∂θ
log fθ,ηγ0,m

∣∣
θ=θ0

, & v̇θ0,γ0,m
:=

∂

∂γm
log fθ0,ηγm

∣∣
γm=γ0,m

,

and form the Fisher information matrix

Jm =

(
Jθ0θ0 Jθ0γ0,m

Jγ0,mθ0 Jγ0,mγ0,m

)
.
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The efficient score and information for θ. Fixed m

We can now form the efficient score and efficient information for

estimating θ under the mth parametric model Pθ0,ηγ0,m
, they are

ℓ̃θ0,γ0,m
= ℓ̇θ,γ0,m

− (J−1
γ0,mγ0,m

Jγ0,mθ0)
tv̇θ,γm

,

and J̃m = Jθ0θ0 − Jθ0γ0,m
J−1
γ0,mγ0,m

Jγ0,mθ0 .

The estimator sequence (in n) θ̂m,n is efficient under Pθ0,ηγ0,m
, or

‘best regular’, if and only if,3

√
n(θ̂m,n − θ0) = J̃−1

m

1√
n

n∑
i=1

ℓ̃θ0,γ0,m(Xi) + oPn
m
(1),

as n tends to infinity.

3See, e.g., van der Vaart (1998, p. 369).
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A growing parametric profiled LAN theorem

Recall the i.i.d. observations X1, . . . , Xn, and write

Pn = Pθ0,η0 × · · · × Pθ0,η0 , and Pn
m = Pθ0,ηγ0,m

× · · · × Pθ0,ηγ0,m
,

for the n-fold product measures. Form the sieved profile likelihood,

plm,n(θ) = sup
ηγm∈Hm

n∑
i=1

log fθ,ηγ
(Xi) = sup

γm∈Rm

n∑
i=1

log fθ,ηγm
(Xi),

and a version of one of Nils’ favourite processes,

Am,n(h) = plm,n(θ0 + h/
√
n)− plm,n(θ0).

We prove a growing parametric profiled LAN theorem:4 Assuming

‘(1), (2), (3)’ (that I will not go into here), and that mn is a

subsequence such that Pn ◁ Pn
mn

,

Amn,n(h) =
ht√
n

n∑
i=1

ℓ̃θ0,γ0,mn
(Xi)− 1

2h
tJ̃mn

h+ oPn(1).

4This is a sieved version of a theorem due to due to Murphy and van der Vaart

(2000).
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What this theorem does

. . . it provides conditions (the ones I failed to mention) under which

the profile score is only oPn
mn

(1) away from the efficient score, that is

1√
n

d

dθ
plmn,n(θ)

∣∣
θ=θ0

=
1√
n

n∑
i=1

ℓ̃θ0,γ0,mn
+ oPn

mn
(1),

Due to the assumed contiguity of Pn
mn

with respect to Pn, the

oPn
mn

(1) can be replaced by oPn(1) (this is Le Cam’s first lemma).

The nice thing about going parametric here, is that the model with

ℓ̃θ0,γ0,m
as its score5 always takes the form

Pθ,γm(θ), with γm(θ) = γ0,m + J−1
γ0,mγ0,m

Jγ0,mθ0(θ0 − θ),

so you don’t have to be clever about finding it (which you do have to

be in the semiparametric world).
5i.e., the least favourable submodel.
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Semiparametric efficiency, mn → ∞

Let θ̂m,n be the maximiser of plm,n(θ), i.e., the maximum likelihood

estimator under the mth parametric model.

We show that under the same assumptions invoked above and also

assuming consistency of θ̂mn,n for θ0 under Pn
mn

, . . .

. . . or, via a concavity argument à la Hjort and Pollard (1993),

√
n(θ̂mn,n − θ0) = J̃−1

mn

1√
n

n∑
i=1

ℓ̃θ0,γ0,mn
(Xi) + oPn

mn
(1),

where ℓ̃θ0,γ0,mn
is a sequence of efficient scores in growing parametric

models, and J̃mn
= Eθ0,ηγ0,mn

ℓ̃θ0,γ0,mn
ℓ̃tθ0,γ0,mn

.
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A theorem and a lemma

With the efficient score ℓ̃θ0,γ0,m and efficient information J̃−1
m we form

the efficienct influence function for estimating θ under Pθ0,ηγ0,m

ψ̃m = J̃−1
m ℓ̃θ0,γ0,m

.

Let ψ̃ be the efficient influence function for estimating θ under the

semiparametric model Pθ0,η0
.

Let θ ∈ R for simplicity.

Theorem: If E (ψ̃mn
− ψ̃)2 → 0, then θ̂mn,n is efficient for θ under

Pθ0,η0 .

Lemma: The sieve construction, i.e., ∪m≥1Hm being dense in H,

ensures the convergence in the theorem, provided

E (ℓ̇θ0,γ0,m − ℓ̇θ0,η0)
2 → 0.
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. . . from which we conclude that

Amn,n =
h√
n

n∑
i=1

ℓ̃θ0,γ0,mn
− 1

2h
2J̃mn + oPn

mn
(1)

=
h√
n

n∑
i=1

ℓ̃θ0,η0
− 1

2h
2J̃ + oPn

mn
(1),

which, combined with

- consistency of θ̂mn,n for θ0 under Pn
mn

;

- or, concavity of plm,n(θ) and Hjort and Pollard (1993),

yields,
√
n(θ̂mn,n − θ0)

Pn

⇝ N(0, J̃−1),

provided mn is chosen so that dPn/dP
n
mn

→ 1 in Pn
mn

-probability;

where J̃ is the efficient information under the big semiparametric

model Pθ0,η0 .

. . . and J̃ is the limit of J̃m.
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An test case: The partial linear model

Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be independent replicates of

(X,Y, Z), where the covariates X and Z take their values in [0, 1];

have a joint density; and Z ∼ FZ , with F
′
Z = fZ a continuous density,

bounded below.

The big semiparametric model is

Pθ0,η0 : Y = η0(Z) + θ0X + σϵ,

for ϵ ∼ N(0, 1), with (θ0, η0) denoting the true parameter value, and

η0 assumed continuously differentiable. Consider the smaller

parametric approximations (the sieves)

Pθ0,ηγ0,m
: Y = ηγ0,m(Z) + θ0X + σϵ′,

with ϵ′ ∼ ϵ ∼ N(0, 1), and ηγ0,m =
∑m

j=1 γ0,mIWm,j (z).

18



Parametric inference, fixed m

Let’s first pretend that (X1, Y1, Z1), . . . , (X1, Y1, Z1) are i.i.d. from the

parametric model, Pn
m = Pθ0,γ0,m

× · · · × Pθ0,γ0,m
for some fixed m.

Estimating θ0 is then a least squares problem, and with θ̂m,n the least

squares estimator

√
n(θ̂m,n − θ0)

Pn
m⇝ N(0, J−1

m ),

as n→ ∞, where Jm the sum (≈ a Riemann–Stieltjes sum)

Jm =
1

σ2

m∑
j=1

Var(X | Z ∈Wm,j){FZ(j∆m)− FZ((j − 1)∆m)},

and FZ is the distribution function of Z (covariate distributions are

the same under all models).

From parametric likelihood theory we know that θ̂m,n is efficient

under Pm. End of parametric story.
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Semiparametric inference, m → ∞ with n

We get a semiparametric problem when we let the models grow, i.e.,

when m tends to infinity with the sample size n.

The profile likelihood takes the form

plm,n(θ) = − 1

2σ2

n∑
i=1

m∑
j=1

{(Yi − Ȳm,j)− θ(Xi − X̄m,j)}2IWm,j
(Zi).

where X̄m,j =
∑n

i=1XiIWm,j
(Zi)/

∑n
i=1XiIWm,j

(Zi), and Ȳm,j

similarly defined. The profile score evaluated in θ0 is then

1√
n

d

dθ
plm,n(θ)

∣∣
θ=θ0

=
1

σ
√
n

n∑
i=1

m∑
j=1

(Xi − X̄m,j)IWm,j (Zi)ϵi,

and provided n∆mn → ∞ as n→ ∞ and ∆mn → 0,

1√
n

d

dθ
plmn,n(θ)

∣∣
θ=θ0

=
1

σ
√
n

n∑
i=1

mn∑
j=1

(Xi−µmn,j)IWmn,j (Zi)ϵi+oPn
mn

(1),

where µm,j = E(X | Z ∈Wm,j).
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. . . which is close the the efficient score

Recall that the least favourable submodel alwyas takes the form takes

the form Pθ,γm(θ) with γm(θ) = γ0,m + J−1
γ0,mγ0,m

Jγ0,mθ0(θ0 − θ).

The efficient score under the m parametric model is therefore

ℓ̃θ0,γ0,m
=

d

dθ
log fθ,γm(θ)

∣∣
θ=θ0

= σ−1
m∑
j=1

(X − {J−1
γ0,mγ0,m

Jγ0,mθ0}j)IWm,j
(Z)ϵ′.

and doing the multiplication J−1
γ0,mγ0,m

Jγ0,mθ0 = µm,j .

Can check directly check that E (ψ̃mn
− ψ̃)2 → 0, because the efficient

score for θ under the semiparametric model Pθ,η is

ℓ̃θ0,η0
= σ−1(X − E (X |Z))ϵ′,

and we see that

E (ℓ̃θ,γ0,m
(X,Y, Z)− ℓ̃θ0,η0

(X,Y, Z))2 → 0,

as m→ ∞. 21



Switching back to Pθ0,η0

From the above we get that

Amn,n =
h

σ
√
n

n∑
i=1

(Xi − E (X |Zi))ϵi − 1
2h

2J̃ + oPn
mn

(1),

where J̃ = σ−2EVar(X | Z). Here, since plm,n(θ) is indeed concave,

√
n(θ̂mn,n − θ0) = J̃−1 1√

n

n∑
i=1

(Xi − E (X |Zi))ϵi + oPn
mn

(1).

Using the assumption that η0 is continuously differentiable,

dPn

dPn
mn

Pn
mn⇝ 1, (so in probability)

provided
√
n∆mn

→ 0. Le Cam’s third lemma then allows us to

switch back to the semiparametric world, and
√
n(θ̂mn,n − θ0)

Pn

⇝ N(0, J̃−1),

as n→ ∞. Conclude that θ̂mn,n is efficient for θ under the

semiparametric model Pθ0,η0
. 22
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Same story for the Cox model (I think)

Survival data (T, δ,X) observed over [0, 1]. The mth parametric

model Pθ,γ0,m
is one in which the baseline hazard is locally constant,

as above.

With standard notation and assumptions (Andersen and Gill, 1982),

the profile score for the mth model, evaluted in the true parameter

value, θ0, is

1√
n

d

dθ
plm,n(θ)|θ=θ0 =

1√
n

n∑
i=1

m∑
j=1

{Xi−

∫
Wm,j

S
(1)
n (s, θ) ds∫

Wm,j
S
(0)
n (s, θ) ds

}
∫
Wm,j

dM
(m)
i,t ,

under Pθ0,γ0,m
, which is oPn

mn
(1) away from the efficient score (found

via the parametric least favourable submodel approach)

1√
n

n∑
i=1

ℓ̃θ0,γ0,m
=

1√
n

n∑
i=1

m∑
j=1

{
Xi −

∫
Wm,j

s
(1)
m (s)∫

Wm,j
s
(0)
m (s)

}∫
Wm,j

dM
(m)
i,t ,

where s
(k)
m (t) = Eθ0,γ0,m

Y (t)Xk exp(θ0X).
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. . . and

1√
n

n∑
i=1

ℓ̃θ0,γ0,mn
,

is oPn
mn

(1) away from the discrete time martingale

Zmn,n :=
1√
n

n∑
i=1

mn∑
j=1

{
Xi−

s
(1)
mn((j − 1)∆mn

)

s
(0)
m ((j − 1)∆mn)

}
{M (mn)

i,j∆mn
−M (mn)

i,(j−1)∆mn
},

whose variance process

⟨Zmn,n, Zmn,n⟩ =
∫ 1

0

(s(2)mn(t)

s
(0)
mn(t)

−s
(1)
mn(t)

2

s
(0)
mn(t)

2

)
s(0)mn

(t)ηγ0,m(t) dt+oPn
mn

(∆mn).

as n→ ∞ and ∆mn
→ 0.
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. . . and switch back

for t ∈ (0, 1],

log
dPn

θ0,η0

dPn
θ0,γ0,mn

∣∣
Ft

=

n∑
i=1

{ξ(mn)
i (t)− 1

2 ⟨ξ
(mn)
i , ξ

(mn)
i ⟩t}+ oPn

mn
(1),

where

ξ
(mn)
i (t) = − 1√

n

∫ t

0

hmn,n(s)

η0(s)
dM

(mn)
i (s),

where hm,n(s) =
√
n(ηγ0,m

(s)− η0(s)), so with η0 continuously

differentiable, as above,

dPn
θ0,η0

dPn
θ0,γ0,mn

Pn
θ0,γ0,mn⇝ 1,

provided
√
n∆mn

→ 0.
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. . . to be continued
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