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Consider a survival time T subject to random right censoring

⇒We observe

Y = min(T ,C) and ∆ = I(T ≤ C),

where C is a censoring variable

In many situations we observe either T or C, but not both

⇒ Relation between T and C not identifiable nonparametrically
(Tsiatis, 1975)

⇒ FT ,C not identifiable based on law of (Y ,∆)

⇒ Also FT not identifiable

To overcome this, it is commonly assumed that T and C are
stochastically independent, which solves the identification problem

But is this independence assumption always satisfied in practice ?



Independence between T and C cannot be tested,
but the context of a study can give useful insight
into the validity of this assumption

Independence of T and C is satisfied if

� Administrative censoring: individuals alive at the end of the study
are censored
⇒ Censoring is unrelated to survival time
⇒ Independence assumption makes sense

� Censoring happens for other reasons that are completely
unrelated to the event of interest

� Many other contexts



Independence of T and C might be doubtful in

� Medical studies : Patients may withdraw from the study
I because their condition is deteriorating or because they are

showing side effects which need alternative treatments (positive
relation between T and C)

I because their health condition has improved and so they no longer
follow the treatment (negative relation between T and C)

� Unemployment studies : Unemployed people with low chances on
the job market could decide to go abroad to improve their
chances, leading to censoring times that depend on the duration
of unemployment

� Transplant studies : Often the length of time a patient has to wait
before he gets transplanted (C) depends on his/her medical
condition, so on his time to death (T )



What happens if independence is assumed when T and C are in
reality correlated ?

Consider

(log T , log C) ∼ N2

((
0
0

)
,

(
1 ρ

ρ 1

))
,

where ρ = 0,±0.3,±0.6 or ±0.9

Further, let Y = min(T ,C) and ∆ = I(T ≤ C)

For an arbitrary sample of size n = 200, we calculate

� the true survival function S(t) of T ∼ exp(N(0,1))

� the Kaplan-Meier estimator Ŝ(t) (which assumes T ⊥⊥ C)
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⇒ The larger ρ, the more the Kaplan-Meier estimator lies above
the true survival function
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⇒ The smaller ρ, the more the Kaplan-Meier estimator lies below
the true survival function



This talk is NOT about

Competing risks:
Choice between dependent censoring and competing risks often
depends on the research question

More

Informative censoring:
E.g. Koziol-Green model, models for T and C with common
parameters, ....

More

Dependent censoring caused by observed covariates:
We suppose that even after conditioning on observed covariates,
T and C are still dependent

What’s in a name ? The above concepts are often confused
conceptually with the concept of dependent censoring



Literature on dependent censoring

The most popular approach is based on copulas:

What is a copula ?

A bivariate distribution function on [0,1]× [0,1] with uniform
margins

Sklar’s theorem

Suppose X ∼ F ,Y ∼ G
If F and G are continuous, there exists a unique copula C such
that

P(X ≤ x ,Y ≤ y) = C
(
F (x),G(y)

)
If X and Y are independent, then

P(X ≤ x ,Y ≤ y) = F (x)G(y) = C
(
F (x),G(y)

)
with C(u, v) = uv , called the independence copula



Approaches based on copulas:

Zheng and Klein (1995):
� Modelling of the bivariate distribution of T and C by means of a fully

known copula function :

P(T > t ,C > c) = C(ST (t),SC(c))

� Nonparametric estimation of the survival function ST under this
copula model⇒ extension of Kaplan-Meier

Rivest and Wells (2001): special case of Archimedean copulas

Braekers and Veraverbeke (2005), Huang and Zhang (2008),
Sujica and VK (2015, 2018), Emura and Chen (2018): extensions
to regression models

But: All approaches assume that the copula is fully known with non- or
semiparametric margins



Relaxation of the known copula assumption:

Czado and VK, 2023 (Biometrika)
� First paper to show identifiability of copula model for dependent

censoring without assuming that copula is fully known
� Approach lies the foundations of this approach, but is limited to

parametric model without covariates

Deresa, Antonio and VK, 2022 (Insur. Math. Econ.)
� Parametric margins that depend on covariates
� Parametric copula independent of covariates
� Dependent censoring and truncation
� Broader marginal parametric models
� Actuarial application



Question we want to address is

How to allow for semiparametric models and at the same time
avoid the known-copula-assumption ?

We will do that under the following model framework:

T follows semiparametric Cox model

C follows parametric regression model

Copula is parametric and independent of covariates

Reference:
Deresa, N.W. and VK (2023). Copula based Cox proportional hazards
models for dependent censoring. J. Amer. Statist. Assoc. (to appear).
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Consider

� a survival time T

� a vector of covariates X

Suppose that T |X follows a Cox proportional hazards model:

FT |X (t |x) = P(T ≤ t |X = x) = 1− exp{−Λ(t)ex>β},

for some - unspecified baseline cumulative hazard Λ

- vector of regression parameters β

Suppose that instead of observing T we observe

Z = min(T ,C,A), ∆1 = I(Z = T ), ∆2 = I(Z = C),

where - C is a dependent censoring time
- A is an independent censoring time



We suppose the following models for C and A:

� For some parameter space H, and some vector of covariates W ,

FC|W ∈ {FC|W ,η : η ∈ H}

� The law of A is unspecified

� A ⊥⊥ (T ,C)|(X ,W ) and A ⊥⊥ (X ,W )

Finally, to model the dependence between T and C we use a copula
model:

P(T ≤ t ,C ≤ c|X = x ,W = w) = C(FT |X (t |x),FC|W (c|w)),

where C ∈ {Cγ : γ ∈ Γ} for some parameter space Γ



This model can be extended to more complex models:

� Semiparametric model for C (e.g. Cox model)

� Copula parameters depending on covariates

� Extensions of Cox model (e.g. transformation model)

� More complex censoring schemes

⇒We will discuss some of these extensions at the end

It what follows, we will need

hT |C(u|v) =
∂

∂v
C(u, v), and hC|T (v |u) =

∂

∂u
C(u, v)

Then,

P(T ≤ t |C = c,X = x ,W = w) = hT |C(FT |X (t |x)|FC|W (c|w))



Is this model identifiable ? Under which conditions ?



With identifiability we mean that any two different sets of parameters
give different joint distributions of (Z ,∆1,∆2,X ,W )

We will show identifiability under the following conditions (C1)-(C5):

(C1) The matrices Var(X ) and Var(W ) have full rank

(C2) The vectors X and W contain at least one continuous variable

(C3) For all η1, η2 ∈ H, we have:

lim
t→0

fC|W ,η1
(t |w)

fC|W ,η2
(t |w)

= 1 for all w ⇐⇒ η1 = η2

Lemma
Condition (C3) is satisfied for the families of log-normal, log-Student-t,
Weibull, and log-logistic densities.



(C4) For all γ, all ζ = (β,Λ) and all η,

lim
t→0

hT |C,γ(FT |X ,ζ(t |x)|FC|W ,η(t |w)) = 0 for all (x ,w)

The same holds true for hC|T ,γ

Lemma
Condition (C4) is satisfied by

(1) the Frank copula, independently of the marginal distributions

(2) the Gumbel copula if for all x ,w , ζ, η,

0 < lim
t→0

log FT |X ,ζ(t |x)

log FC|W ,η(t |w)
<∞

(3) the Gaussian copula if for all x ,w , ζ, η, γ,

lim
t→0

[Φ−1(FT |X ,ζ(t |x))− γΦ−1(FC|W ,η(t |w))] = −∞

lim
t→0

[Φ−1(FC|W ,η(t |w))− γΦ−1(FT |X ,ζ(t |x))] = −∞



Remark:

� Gumbel copula: Note e.g. that

lim
t→0

log FT |X ,ζ(t |x)

log FC|W ,η(t |w)
=
ρT (x)

ρC(w)
∈ (0,∞)

if T |X = x ∼Weibull(λT (x), ρT (x))

C|W = w ∼Weibull(λC(w), ρC(w))

� Gaussian copula: (C4) is satisfied for many common margins
(numerical verification)



(C5) For all γk , ζk = (β,Λk ), η (k = 1,2) that are such that
limt→0 λ1(t)/λ2(t) = 1, we have

lim
t→0

cγ1(FT |X ,ζ1
(t |x),FC|W ,η(t |w))

cγ2(FT |X ,ζ2
(t |x),FC|W ,η(t |w))

= 1 for all (x ,w) ⇐⇒ γ1 = γ2,

where cγ denotes the copula density

Lemma

Condition (C5) is satisfied for the Frank, Gumbel and Gaussian copulas



Theorem
Assume that conditions (C1)-(C5) hold true. Then, our model is
identifiable.

Some remarks :

� Case of the Clayton copula

� Survival copulas are also possible

� Conditions are sufficient but not necessary
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Assume that we have an i.i.d. sample {(Zi ,∆1i ,∆2i ,Xi ,Wi)}ni=1 of
(Z ,∆1,∆2,X ,W ), where

Z = min(T ,C,A), ∆1 = I(Z = T ), ∆2 = I(Z = C)

⇒ The likelihood for θ = (γ, β, η) is given by

L(θ,Λ)

=
n∏

i=1

[
λ(Zi)eX>

i β exp{−Λ(Zi)eX>
i β}

×
{

1− hC|T ,γ(FC|W ,η(Zi |Wi)|FT |X ,ζ(Zi |Xi))
}]∆1i

×
[
fC|W ,η(Zi |Wi)

{
1− hT |C,γ(FT |X ,ζ(Zi |Xi)|FC|W ,η(Zi |Wi))

}]∆2i

×
[
C̃γ

{
FT |X ,ζ(Zi |Xi),FC|W ,η(Zi |Wi)

}](1−∆1i )(1−∆2i )

since the density and distribution of A can be omitted from the
likelihood



Main idea:
Direct maximization of this likelihood is challenging since it
involves the unknown function Λ

⇒We estimate θ by replacing Λ in the likelihood with a
nonparametric estimator Λ̂(·, θ) for fixed θ

⇒ θ is then estimated by solving the score equation derived from
the pseudo-likelihood L(θ, Λ̂(·, θ))

We will use martingale ideas to construct Λ̂(·, θ). For all i , let

� Ni(z) = I(Zi ≤ z,∆1i = 1) and Yi(z) = I(Zi ≥ z)

� τ0 = finite maximum follow-up time

and define the conditional crude hazard rate λ#(z|X ,W ):

λ#(z|X ,W ) =
− ∂

∂u
P(T ≥ u,C ≥ z|X ,W )|u=z

P(T ≥ z,C ≥ z|X ,W )



Then,

Mi(z) = Ni(z)−
∫ z

0
Yi(s)λ#(s|Xi ,Wi)ds

is a martingale with respect to the filtration

Fi
z = σ{Yi(s),Ni(s),Xi ,Wi ; 0 ≤ s ≤ z ≤ τ0}

Under the general parametric copula model, we have that

Mi(z) = Ni(z)−
∫ z

0
Yi(s) exp(ψi(s, θ0,Λ0))dΛ0(s),

for a certain function ψi , where θ0 = (γ0, β0, η0)

⇒We estimate Λ for a given θ by solving the estimating equation

n∑
i=1

{dNi(z)− Yi(z) exp(ψi(z, θ,Λ))dΛ(z)} = 0 (0 ≤ z ≤ τ0)



⇒ The estimator Λ̂(·, θ) is a nondecreasing step function with jumps
only at the observed survival times, denoted by z1 < · · · < zK <∞

But: it involves a complex iterative optimization process

⇒We propose an alternative estimator that is simpler to compute,
and that consists in replacing ψi(z, θ,Λ) by ψi(z−, θ,Λ) in the
estimating equation:

∆Λ̂(zk , θ) = Λ̂(zk , θ)− Λ̂(zk−1, θ)

=

∑n
i=1 dNi(zk )∑n

i=1 Yi(zk ) exp{ψi(zk−1, θ, Λ̂)}

Note that ∆Λ̂(zk , θ) depends on Λ̂(zj , θ) for j = 1, . . . , k − 1

⇒ Avoids iterative optimization scheme for estimating Λ



We now estimate θ by replacing Λ by Λ̂(·, θ) in the likelihood

L(θ,Λ) =
n∏

i=1

gθ,Λ(Zi ,∆1i ,∆2i |Xi ,Wi)

and setting the derivative with respect to θ to zero

⇒ This gives the following estimating equation:

Un(θ, Λ̂(·, θ)) = n−1
n∑

i=1

U(Zi ,∆1i ,∆2i , θ, Λ̂(·, θ)) = 0,

where

U(Zi ,∆1i ,∆2i , θ,Λ) =
∂

∂θ
log gθ,Λ(Zi ,∆1i ,∆2i |Xi ,Wi)

Finally, θ̂ is defined as a solution of this score equation



What happens in the special case of the independence copula
Cγ(u, v) = uv?

⇒ Λ̂ cancels out from the formula of ψi(zk−1, θ, Λ̂)

⇒ Λ̂(·, θ) reduces to the Breslow estimator of the cumulative
hazard function in the Cox model (Breslow, 1974)

⇒ θ̂ reduces to the partial likelihood estimator of Cox (Cox, 1972)

⇒ Proposed estimator of θ is extension of the partial likelihood
estimator to the case of dependent censoring



Lemma
(i) Consistency and rate of convergence of Λ̂(·, θ):

sup
θ∈Θ,0≤z≤τ0

|Λ̂(z, θ)− Λ0(z, θ)| = Op(n−1/2)

(ii) Iid representation of Λ̂(·, θ0)− Λ0(·):

Λ̂(z, θ0)− Λ0(z) =
1

A(z)

1
n

n∑
i=1

∫ z

0

A(s)

B(s)
dMi(s) + Rn(z),

where sup0≤z≤τ0
|Rn(z)| = op(n−1/2)

(iii) Consistency of (∂/∂θ)Λ̂(·, θ0):

∂Λ̂(z, θ)

∂θ

∣∣∣∣∣
θ=θ0

=
1

A1(z)

∫ z

0

A1(s)

B(s)
dD(s) + op(1),

for every z ∈ [0, τ0]



Theorem
(i) Consistency of θ̂:

θ̂
P−→ θ0

(ii) Asymptotic normality of θ̂:

n1/2(θ̂ − θ0) N{0,Σ−1
1 Σ2(Σ−1

1 )>}

Remarks:

� Proof is based on Chen, Linton, VK (2003) containing primitive
conditions for consistency and asymptotic normality of
semiparametric Z-estimators

� Asymptotic variance has explicit but complex formula
⇒ Bootstrap will be used instead
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Scenario 1: Comparison with independence model

� Frank copula with Kendall’s τ = 0.2, 0.4 or 0.8

� Cox model for T :

FT |X (t |x) = 1− exp
(
− Λ(t)eβ1x1+β2x2

)
with Λ(t) = 0.25t3/4, β1 = 0.45 and β2 = 1

� Weibull model for C:

FC|X (t |x) = 1− exp
(
− exp

( log(t)− (η0 + η1x1 + η2x2)

σ

))
,

with η0 = 1.35, η1 = 0.3, η2 = 1 and σ = 1

� X1 ∼ Bern(0.5), X2 ∼ N(0,1), and X1 ⊥⊥ X2

� A ∼ U[0,15] and A ⊥⊥ (T ,C,X1,X2)

� 1000 data sets of size n = 500 are used

⇒We have approximately 45% T , 40% C and 15% A



Average of the estimated cumulative hazard functions:

Frank copula: dashed grey line
Independence copula: dashed black line
True cumulative hazard function: solid line



τ = 0.2 τ = 0.4 τ = 0.8
Bias ESD RMSE Bias ESD RMSE Bias ESD RMSE

Frank copula
β1 -0.010 0.134 0.134 -0.014 0.131 0.131 -0.024 0.126 0.129
β2 -0.003 0.098 0.098 -0.004 0.099 0.099 -0.013 0.102 0.103
η0 -0.005 0.139 0.139 -0.006 0.123 0.123 -0.022 0.113 0.115
η1 0.001 0.136 0.136 0.004 0.125 0.125 0.013 0.110 0.111
η2 -0.002 0.118 0.118 -0.002 0.109 0.109 -0.012 0.099 0.100
σ -0.002 0.052 0.052 -0.001 0.052 0.052 0.003 0.051 0.051
τ 0.012 0.112 0.112 0.010 0.090 0.090 0.008 0.037 0.038

Independence copula
β1 0.024 0.135 0.137 0.058 0.137 0.149 0.124 0.141 0.188
β2 0.081 0.085 0.118 0.167 0.087 0.188 0.327 0.092 0.340
η0 0.165 0.111 0.199 0.314 0.109 0.333 0.520 0.110 0.532
η1 0.052 0.140 0.150 0.100 0.137 0.170 0.169 0.133 0.215
η2 0.129 0.095 0.160 0.248 0.095 0.265 0.415 0.101 0.427
σ 0.001 0.055 0.055 -0.013 0.055 0.057 -0.082 0.053 0.098



Normality of the estimators:
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Estimation of the variance and 95% coverage rates:

Par. Bias ESD BSE RMSE CR
β1 −0.006 0.130 0.136 0.130 0.959
β2 0.002 0.100 0.104 0.100 0.958
η0 −0.021 0.160 0.172 0.161 0.968
η1 −0.011 0.178 0.173 0.179 0.950
η2 −0.024 0.148 0.156 0.150 0.948
σ 0.008 0.076 0.078 0.077 0.958
τ 0.019 0.084 0.085 0.086 0.928



Scenario 2: Sensitivity to misspecification of the copula structure

� Same model as for Scenario 1 except that Gumbel and Gaussian
copulas are used to estimate the model

� Average of the estimated cumulative hazard functions:

⇒ Findings similar to those in Huang and Zhang (2008)



τ = 0.2 τ = 0.4 τ = 0.8
Bias ESD RMSE Bias ESD RMSE Bias ESD RMSE

Gumbel copula
β1 -0.009 0.139 0.140 -0.021 0.138 0.139 -0.019 0.126 0.128
β2 0.006 0.104 0.104 -0.003 0.108 0.108 -0.012 0.099 0.100
η0 -0.005 0.158 0.158 -0.022 0.141 0.142 -0.026 0.112 0.115
η1 0.002 0.139 0.139 0.000 0.129 0.129 0.006 0.112 0.112
η2 -0.004 0.135 0.135 -0.018 0.124 0.125 -0.019 0.100 0.102
σ -0.014 0.052 0.054 -0.014 0.052 0.053 0.006 0.051 0.052
τ -0.001 0.130 0.130 0.013 0.109 0.110 0.000 0.036 0.036

Gaussian copula
β1 -0.013 0.135 0.135 -0.018 0.132 0.133 -0.008 0.124 0.125
β2 -0.011 0.107 0.107 -0.016 0.105 0.106 -0.000 0.098 0.098
η0 -0.018 0.159 0.160 -0.021 0.132 0.133 -0.001 0.107 0.107
η1 -0.002 0.139 0.139 -0.000 0.127 0.127 0.012 0.112 0.113
η2 -0.010 0.133 0.133 -0.012 0.117 0.117 0.007 0.097 0.097
σ 0.004 0.053 0.054 0.012 0.053 0.054 0.020 0.053 0.056
τ 0.022 0.140 0.142 0.014 0.096 0.097 -0.047 0.043 0.064



Scenario 3: Goodness-of-fit tests for Cox/copula model

� The idea is to construct a test statistic from the L2 distance
between a model based and a nonparametric estimator of the
distribution of R = min(T ,C)

� Model based estimator: Can be derived from the expressions of
F̂T and F̂C

� Nonparametric estimator: Since R ⊥⊥ A, a regular Kaplan-Meier
estimator of FR can be used

� Bootstrap is used under H0 to approximate the rejection rates



Three cases:

� Case 1: Correctly specified model

� Case 2: Model for C misspecified

� Case 3: Regression functions for T and C misspecified

Rejection rates:

n Case 5% 10%

500 1 0.038 0.078
2 0.504 0.674
3 0.334 0.430

1000 1 0.058 0.122
2 0.938 0.976
3 0.651 0.765
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What we are currently working on:

� Extension to the case where both T and C follow a
semiparametric transformation model

� Dependent censoring in cure models

� Dependent censoring and confounding based on semiparametric
Cox model for T

� Quantile regression under dependent censoring

� Investigation of partial identification results

� Random effects approach to handle dependent censoring



Main reference:

Deresa, N.W. and VK (2023). Copula based Cox proportional
hazards models for dependent censoring. Journal of the American
Statistical Association (to appear), DOI:
10.1080/01621459.2022.2161387



Example: Staphylococcus infection (Geskus, 2016)

� Of interest : Time to infection during in-hospital stay

� How to deal with patients that are discharged without infection ?

(1) Biological question : What would happen if everyone stayed in
hospital ? (relevant to compare infection risk with other hospitals)

⇒ Use marginal distribution (with discharge considered
as censoring event)

⇒ Leads to dependent censoring

(2) Clinical question : What percentage of patients gets infected while
staying in hospital, and when do they get infected ?

⇒ Use sub-distribution of staphylococcus infection in
the presence of the competing event (=discharge)

Go Back



Examples of models for informative censoring:

� FT and FC share common parameters:

T ∼ N(µT , σ) and C ∼ N(µC , σ)

� Koziol-Green model:

1− FC(t) = [1− FT (t)]γ

⇒ Dependence on the level of the distribution functions

Go Back
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