# Copula based Cox proportional hazards models for dependent censoring

Ingrid Van Keilegom

December 4, 2023



Idea paper 1:

#### Idea paper 2:



Oslo, September 2014



Oslo, May 2016



Brussels, June 2017

Dependent censoring, related problems and literature



Estimation and asymptotic properties





# Dependent censoring, related problems and literature

- 2 Model specification and identification
- 3 Estimation and asymptotic properties
- 4 Simulations
- Discussion and future research

Consider a survival time T subject to random right censoring  $\Rightarrow$  We observe

```
Y = \min(T, C) and \Delta = I(T \leq C),
```

where C is a censoring variable

In many situations we observe either T or C, but not both

- $\Rightarrow$  Relation between *T* and *C* not identifiable nonparametrically (Tsiatis, 1975)
- $\Rightarrow$   $F_{T,C}$  not identifiable based on law of ( $Y, \Delta$ )
- $\Rightarrow$  Also  $F_T$  not identifiable

To overcome this, it is commonly assumed that T and C are stochastically independent, which solves the identification problem

But is this independence assumption always satisfied in practice ?



Independence between T and C cannot be tested, but the context of a study can give useful insight into the validity of this assumption

# Independence of T and C is satisfied if

- Administrative censoring: individuals alive at the end of the study are censored
  - $\Rightarrow$  Censoring is unrelated to survival time
  - $\Rightarrow$  Independence assumption makes sense
- Censoring happens for other reasons that are completely unrelated to the event of interest
- Many other contexts

Independence of T and C might be doubtful in

Medical studies : Patients may withdraw from the study

- because their condition is deteriorating or because they are showing side effects which need alternative treatments (positive relation between T and C)
- because their health condition has improved and so they no longer follow the treatment (negative relation between T and C)
- Unemployment studies : Unemployed people with low chances on the job market could decide to go abroad to improve their chances, leading to censoring times that depend on the duration of unemployment
- Transplant studies : Often the length of time a patient has to wait before he gets transplanted (*C*) depends on his/her medical condition, so on his time to death (*T*)

What happens if independence is assumed when T and C are in reality correlated ?

Consider

$$(\log T, \log C) \sim N_2\left( \left( \begin{array}{c} 0\\ 0 \end{array} \right), \left( \begin{array}{c} 1 & \rho\\ \rho & 1 \end{array} \right) \right),$$

where  $\rho=$  0,  $\pm 0.3, \pm 0.6$  or  $\pm 0.9$ 

Further, let  $Y = \min(T, C)$  and  $\Delta = I(T \leq C)$ 

For an arbitrary sample of size n = 200, we calculate

- ♦ the true survival function S(t) of  $T \sim \exp(N(0, 1))$
- ♦ the Kaplan-Meier estimator  $\hat{S}(t)$  (which assumes  $T \perp C$ )



 $\Rightarrow$  The larger  $\rho$ , the more the Kaplan-Meier estimator lies above the true survival function



 $\Rightarrow$  The smaller  $\rho$ , the more the Kaplan-Meier estimator lies below the true survival function

## This talk is NOT about

### • Competing risks:

Choice between dependent censoring and competing risks often depends on the research question

➡ More

➡ More

Informative censoring:

E.g. Koziol-Green model, models for T and C with common parameters, ....

• Dependent censoring caused by observed covariates: We suppose that even after conditioning on observed covariates, *T* and *C* are still dependent

What's in a name ? The above concepts are often confused conceptually with the concept of dependent censoring

## Literature on dependent censoring

The most popular approach is based on copulas:

# What is a copula ?

A bivariate distribution function on  $\left[0,1\right]\times\left[0,1\right]$  with uniform margins

Sklar's theorem

Suppose  $X \sim F, Y \sim G$ 

If F and G are continuous, there exists a unique copula  $\mathbb{C}$  such that

$$P(X \leq x, Y \leq y) = \mathbb{C}(F(x), G(y))$$

If X and Y are independent, then

$$P(X \le x, Y \le y) = F(x)G(y) = \mathbb{C}(F(x), G(y))$$

with  $\mathcal{C}(u, v) = uv$ , called the independence copula

Approaches based on copulas:

- Zheng and Klein (1995):
  - Modelling of the bivariate distribution of *T* and *C* by means of a fully known copula function :

 $P(T > t, C > c) = \mathcal{C}(S_T(t), S_C(c))$ 

- Nonparametric estimation of the survival function S<sub>T</sub> under this copula model ⇒ extension of Kaplan-Meier
- Rivest and Wells (2001): special case of Archimedean copulas
- Braekers and Veraverbeke (2005), Huang and Zhang (2008), Sujica and VK (2015, 2018), Emura and Chen (2018): extensions to regression models

But: All approaches assume that the copula is fully known with non- or semiparametric margins

# Relaxation of the known copula assumption:

- Czado and VK, 2023 (Biometrika)
  - First paper to show identifiability of copula model for dependent censoring without assuming that copula is fully known
  - Approach lies the foundations of this approach, but is limited to parametric model without covariates
- Deresa, Antonio and VK, 2022 (Insur. Math. Econ.)
  - Parametric margins that depend on covariates
  - Parametric copula independent of covariates
  - Dependent censoring and truncation
  - Broader marginal parametric models
  - Actuarial application

Question we want to address is

How to allow for semiparametric models and at the same time avoid the known-copula-assumption ?

We will do that under the following model framework:

- *T* follows semiparametric Cox model
- C follows parametric regression model
- Copula is parametric and independent of covariates

#### Reference:

Deresa, N.W. and VK (2023). Copula based Cox proportional hazards models for dependent censoring. *J. Amer. Statist. Assoc.* (to appear).

## Dependent censoring, related problems and literature

# 2 Model specification and identification

3 Estimation and asymptotic properties

# 4 Simulations



Consider

- ◊ a survival time T
- ◊ a vector of covariates X

Suppose that T|X follows a Cox proportional hazards model:

 $F_{T|X}(t|x) = P(T \le t|X = x) = 1 - \exp\{-\Lambda(t)e^{x^\top\beta}\},$ 

for some - unspecified baseline cumulative hazard A - vector of regression parameters  $\beta$ 

Suppose that instead of observing T we observe

 $Z = \min(T, C, A), \quad \Delta_1 = I(Z = T), \quad \Delta_2 = I(Z = C),$ 

where - *C* is a dependent censoring time - *A* is an independent censoring time We suppose the following models for C and A:

 $\diamond$  For some parameter space *H*, and some vector of covariates *W*,

 $F_{C|W} \in \{F_{C|W,\eta} : \eta \in H\}$ 

♦ The law of A is unspecified
♦ A ⊥ (T, C)|(X, W) and A ⊥ (X, W)

Finally, to model the dependence between T and C we use a copula model:

 $P(T \leq t, C \leq c | X = x, W = w) = \mathbb{C}(F_{T|X}(t|x), F_{C|W}(c|w)),$ 

where  $\mathfrak{C} \in {\mathfrak{C}_{\gamma} : \gamma \in \Gamma}$  for some parameter space  $\Gamma$ 

This model can be extended to more complex models:

- Semiparametric model for C (e.g. Cox model)
- Copula parameters depending on covariates
- Extensions of Cox model (e.g. transformation model)
- More complex censoring schemes
- $\Rightarrow$  We will discuss some of these extensions at the end

It what follows, we will need

$$h_{T|C}(u|v) = \frac{\partial}{\partial v} \mathcal{C}(u,v), \text{ and } h_{C|T}(v|u) = \frac{\partial}{\partial u} \mathcal{C}(u,v)$$

Then,

$$P(T \leq t | C = c, X = x, W = w) = h_{T|C}(F_{T|X}(t|x)|F_{C|W}(c|w))$$

# Is this model identifiable ? Under which conditions ?



With identifiability we mean that any two different sets of parameters give different joint distributions of  $(Z, \Delta_1, \Delta_2, X, W)$ 

We will show identifiability under the following conditions (C1)-(C5):

(C1) The matrices Var(X) and Var(W) have full rank

(C2) The vectors *X* and *W* contain at least one continuous variable (C3) For all  $\eta_1, \eta_2 \in H$ , we have:

$$\lim_{t \to 0} \frac{f_{C|W,\eta_1}(t|w)}{f_{C|W,\eta_2}(t|w)} = 1 \quad \text{for all } w \iff \eta_1 = \eta_2$$

#### Lemma

*Condition (C3) is satisfied for the families of log-normal, log-Student-t, Weibull, and log-logistic densities.* 

(C4) For all  $\gamma$ , all  $\zeta = (\beta, \Lambda)$  and all  $\eta$ ,

 $\lim_{t\to 0} h_{\mathcal{T}|\mathcal{C},\gamma}(\mathcal{F}_{\mathcal{T}|X,\zeta}(t|x)|\mathcal{F}_{\mathcal{C}|\mathcal{W},\eta}(t|w)) = 0 \text{ for all } (x,w)$ 

The same holds true for  $h_{C|T,\gamma}$ 

#### Lemma

Condition (C4) is satisfied by

- (1) the Frank copula, independently of the marginal distributions
- (2) the Gumbel copula if for all  $x, w, \zeta, \eta$ ,

$$0 < \lim_{t \to 0} \frac{\log \mathcal{F}_{\mathcal{T}|X,\zeta}(t|x)}{\log \mathcal{F}_{\mathcal{C}|W,\eta}(t|w)} < \infty$$

(3) the Gaussian copula if for all  $x, w, \zeta, \eta, \gamma$ ,

$$\lim_{t\to 0} [\Phi^{-1}(F_{T|X,\zeta}(t|x)) - \gamma \Phi^{-1}(F_{C|W,\eta}(t|w))] = -\infty$$
$$\lim_{t\to 0} [\Phi^{-1}(F_{C|W,\eta}(t|w)) - \gamma \Phi^{-1}(F_{T|X,\zeta}(t|x))] = -\infty$$

Remark:

Gumbel copula: Note e.g. that

$$\lim_{t\to 0} \frac{\log F_{T|X,\zeta}(t|x)}{\log F_{C|W,\eta}(t|w)} = \frac{\rho_T(x)}{\rho_C(w)} \in (0,\infty)$$

if 
$$T|X = x \sim \text{Weibull}(\lambda_T(x), \rho_T(x))$$
  
 $C|W = w \sim \text{Weibull}(\lambda_C(w), \rho_C(w))$ 

 Gaussian copula: (C4) is satisfied for many common margins (numerical verification)

(C5) For all 
$$\gamma_k, \zeta_k = (\beta, \Lambda_k), \eta$$
 ( $k = 1, 2$ ) that are such that  $\lim_{t\to 0} \lambda_1(t)/\lambda_2(t) = 1$ , we have

$$\lim_{t\to 0} \frac{c_{\gamma_1}(F_{T|X,\zeta_1}(t|x),F_{C|W,\eta}(t|w))}{c_{\gamma_2}(F_{T|X,\zeta_2}(t|x),F_{C|W,\eta}(t|w))} = 1 \text{ for all } (x,w) \iff \gamma_1 = \gamma_2,$$

where  $c_{\gamma}$  denotes the copula density

## Lemma

Condition (C5) is satisfied for the Frank, Gumbel and Gaussian copulas

#### Theorem

Assume that conditions (C1)-(C5) hold true. Then, our model is identifiable.

### Some remarks :

- Case of the Clayton copula
- Survival copulas are also possible
- Conditions are sufficient but not necessary

Dependent censoring, related problems and literature



Estimation and asymptotic properties

# 4 Simulations



Assume that we have an i.i.d. sample  $\{(Z_i, \Delta_{1i}, \Delta_{2i}, X_i, W_i)\}_{i=1}^n$  of  $(Z, \Delta_1, \Delta_2, X, W)$ , where

 $Z = \min(T, C, A), \quad \Delta_1 = I(Z = T), \quad \Delta_2 = I(Z = C)$ 

 $\Rightarrow$  The likelihood for  $\theta = (\gamma, \beta, \eta)$  is given by

$$\begin{split} L(\theta, \Lambda) \\ &= \prod_{i=1}^{n} \Big[ \lambda(Z_{i}) e^{X_{i}^{\top}\beta} \exp\{-\Lambda(Z_{i}) e^{X_{i}^{\top}\beta}\} \\ &\times \Big\{ 1 - h_{C|T,\gamma}(F_{C|W,\eta}(Z_{i}|W_{i})|F_{T|X,\zeta}(Z_{i}|X_{i})) \Big\} \Big]^{\Delta_{1i}} \\ &\times \Big[ f_{C|W,\eta}(Z_{i}|W_{i}) \Big\{ 1 - h_{T|C,\gamma}(F_{T|X,\zeta}(Z_{i}|X_{i})|F_{C|W,\eta}(Z_{i}|W_{i})) \Big\} \Big]^{\Delta_{2i}} \\ &\times \Big[ \tilde{\mathbb{C}}_{\gamma} \Big\{ F_{T|X,\zeta}(Z_{i}|X_{i}), F_{C|W,\eta}(Z_{i}|W_{i}) \Big\} \Big]^{(1-\Delta_{1i})(1-\Delta_{2i})} \end{split}$$

since the density and distribution of *A* can be omitted from the likelihood

#### Main idea:

Direct maximization of this likelihood is challenging since it involves the unknown function  $\boldsymbol{\Lambda}$ 

- ⇒ We estimate  $\theta$  by replacing  $\Lambda$  in the likelihood with a nonparametric estimator  $\hat{\Lambda}(\cdot, \theta)$  for fixed  $\theta$
- $\Rightarrow \theta$  is then estimated by solving the score equation derived from the pseudo-likelihood  $L(\theta, \hat{\Lambda}(\cdot, \theta))$

We will use martingale ideas to construct  $\hat{\Lambda}(\cdot, \theta)$ . For all *i*, let

♦ 
$$N_i(z) = I(Z_i \le z, \Delta_{1i} = 1)$$
 and  $Y_i(z) = I(Z_i \ge z)$ 

 $\diamond \tau_0 =$  finite maximum follow-up time

and define the conditional crude hazard rate  $\lambda^{\#}(z|X, W)$ :

$$\lambda^{\#}(z|X,W) = \frac{-\frac{\partial}{\partial u}P(T \ge u, C \ge z|X,W)|_{u=z}}{P(T \ge z, C \ge z|X,W)}$$

Then,

$$M_i(z) = N_i(z) - \int_0^z Y_i(s) \lambda^{\#}(s|X_i, W_i) ds$$

is a martingale with respect to the filtration

$$\mathfrak{F}_{z}^{i} = \sigma\{Y_{i}(s), N_{i}(s), X_{i}, W_{i}; 0 \leq s \leq z \leq \tau_{0}\}$$

Under the general parametric copula model, we have that

$$M_i(z) = N_i(z) - \int_0^z Y_i(s) \exp(\psi_i(s, \theta_0, \Lambda_0)) d\Lambda_0(s),$$

for a certain function  $\psi_i$ , where  $\theta_0 = (\gamma_0, \beta_0, \eta_0)$ 

 $\Rightarrow$  We estimate  $\Lambda$  for a given  $\theta$  by solving the estimating equation

$$\sum_{i=1}^{n} \{ dN_i(z) - Y_i(z) \exp(\psi_i(z,\theta,\Lambda)) d\Lambda(z) \} = 0 \quad (0 \le z \le \tau_0)$$

⇒ The estimator  $\hat{\Lambda}(\cdot, \theta)$  is a nondecreasing step function with jumps only at the observed survival times, denoted by  $z_1 < \cdots < z_K < \infty$ 

But: it involves a complex iterative optimization process

⇒ We propose an alternative estimator that is simpler to compute, and that consists in replacing  $\psi_i(z, \theta, \Lambda)$  by  $\psi_i(z-, \theta, \Lambda)$  in the estimating equation:

$$\begin{aligned} \Delta \hat{\Lambda}(z_k,\theta) &= \hat{\Lambda}(z_k,\theta) - \hat{\Lambda}(z_{k-1},\theta) \\ &= \frac{\sum_{i=1}^n dN_i(z_k)}{\sum_{i=1}^n Y_i(z_k) \exp\{\psi_i(z_{k-1},\theta,\hat{\Lambda})\}} \end{aligned}$$

Note that  $\Delta \hat{\Lambda}(z_k, \theta)$  depends on  $\hat{\Lambda}(z_j, \theta)$  for j = 1, ..., k - 1

 $\Rightarrow$  Avoids iterative optimization scheme for estimating  $\Lambda$ 

We now estimate  $\theta$  by replacing  $\Lambda$  by  $\hat{\Lambda}(\cdot, \theta)$  in the likelihood

$$L(\theta,\Lambda) = \prod_{i=1}^{n} g_{\theta,\Lambda}(Z_i,\Delta_{1i},\Delta_{2i}|X_i,W_i)$$

and setting the derivative with respect to  $\theta$  to zero

 $\Rightarrow$  This gives the following estimating equation:

$$U_n(\theta, \hat{\Lambda}(\cdot, \theta)) = n^{-1} \sum_{i=1}^n U(Z_i, \Delta_{1i}, \Delta_{2i}, \theta, \hat{\Lambda}(\cdot, \theta)) = 0,$$

where

$$U(Z_i, \Delta_{1i}, \Delta_{2i}, \theta, \Lambda) = \frac{\partial}{\partial \theta} \log g_{\theta, \Lambda}(Z_i, \Delta_{1i}, \Delta_{2i} | X_i, W_i)$$

Finally,  $\hat{\theta}$  is defined as a solution of this score equation

What happens in the special case of the independence copula  $C_{\gamma}(u, v) = uv$ ?

- $\Rightarrow \hat{\Lambda}$  cancels out from the formula of  $\psi_i(z_{k-1}, \theta, \hat{\Lambda})$
- $\Rightarrow \hat{\Lambda}(\cdot, \theta)$  reduces to the Breslow estimator of the cumulative hazard function in the Cox model (Breslow, 1974)
- $\Rightarrow \hat{\theta}$  reduces to the partial likelihood estimator of Cox (Cox, 1972)
- ⇒ Proposed estimator of  $\theta$  is extension of the partial likelihood estimator to the case of dependent censoring

## Lemma

W

for

(i) Consistency and rate of convergence of  $\hat{\Lambda}(\cdot, \theta)$ :

$$\sup_{\theta\in\Theta,0\leq z\leq\tau_0}|\hat{\Lambda}(z,\theta)-\Lambda_0(z,\theta)|=O_p(n^{-1/2})$$

(ii) *lid representation of*  $\hat{\Lambda}(\cdot, \theta_0) - \Lambda_0(\cdot)$ *:* 

$$\hat{\Lambda}(z, \theta_0) - \Lambda_0(z) = rac{1}{A(z)} rac{1}{n} \sum_{i=1}^n \int_0^z rac{A(s)}{B(s)} dM_i(s) + R_n(z),$$
  
where  $\sup_{0 \le z \le \tau_0} |R_n(z)| = o_p(n^{-1/2})$ 

(iii) Consistency of  $(\partial/\partial\theta)\hat{\Lambda}(\cdot,\theta_0)$ :

$$\left. rac{\partial \hat{\Lambda}(z, heta)}{\partial heta} 
ight|_{ heta = heta_0} = rac{1}{A_1(z)} \int_0^z rac{A_1(s)}{B(s)} dD(s) + o_p(1),$$
  
every  $z \in [0, au_0]$ 

#### Theorem

(i) Consistency of  $\hat{\theta}$ :

$$\hat{\theta} \xrightarrow{P} \theta_0$$

(ii) Asymptotic normality of  $\hat{\theta}$ :

$$n^{1/2}(\hat{ heta} - heta_0) \rightsquigarrow \mathcal{N}\{0, \Sigma_1^{-1}\Sigma_2(\Sigma_1^{-1})^{ op}\}$$

#### Remarks:

- Proof is based on Chen, Linton, VK (2003) containing primitive conditions for consistency and asymptotic normality of semiparametric Z-estimators
- ◊ Asymptotic variance has explicit but complex formula
   ⇒ Bootstrap will be used instead

Dependent censoring, related problems and literature

- 2 Model specification and identification
- 3 Estimation and asymptotic properties





#### Scenario 1: Comparison with independence model

- $\diamond$  Frank copula with Kendall's au = 0.2, 0.4 or 0.8
- $\diamond$  Cox model for T:

$$F_{T|X}(t|x) = 1 - \exp\left(-\Lambda(t)e^{\beta_1 x_1 + \beta_2 x_2}\right)$$

with  $\Lambda(t) = 0.25t^{3/4}$ ,  $\beta_1 = 0.45$  and  $\beta_2 = 1$ 

◊ Weibull model for C:

$$F_{C|X}(t|x) = 1 - \exp\Big(-\exp\Big(\frac{\log(t) - (\eta_0 + \eta_1 x_1 + \eta_2 x_2)}{\sigma}\Big)\Big),$$

with  $\eta_0 = 1.35, \eta_1 = 0.3, \eta_2 = 1$  and  $\sigma = 1$ 

- $\diamond~X_1 \sim \text{Bern}(0.5), X_2 \sim \mathcal{N}(0,1), \text{ and } X_1 \perp \!\!\!\perp X_2$
- ◇  $A \sim U[0, 15]$  and  $A \perp (T, C, X_1, X_2)$
- ♦ 1000 data sets of size n = 500 are used
- $\Rightarrow$  We have approximately 45% *T*, 40% *C* and 15% *A*

#### Average of the estimated cumulative hazard functions:



Frank copula: dashed grey line Independence copula: dashed black line True cumulative hazard function: solid line

|           | au= 0.2      |       | $\tau = 0.4$ |        |         | <i>τ</i> = 0.8 |        |       |       |
|-----------|--------------|-------|--------------|--------|---------|----------------|--------|-------|-------|
|           | Bias         | ESD   | RMSE         | Bias   | ESD     | RMSE           | Bias   | ESD   | RMSE  |
|           | Frank copula |       |              |        |         |                |        |       |       |
| $\beta_1$ | -0.010       | 0.134 | 0.134        | -0.014 | 0.131   | 0.131          | -0.024 | 0.126 | 0.129 |
| $\beta_2$ | -0.003       | 0.098 | 0.098        | -0.004 | 0.099   | 0.099          | -0.013 | 0.102 | 0.103 |
| $\eta_0$  | -0.005       | 0.139 | 0.139        | -0.006 | 0.123   | 0.123          | -0.022 | 0.113 | 0.115 |
| $\eta_1$  | 0.001        | 0.136 | 0.136        | 0.004  | 0.125   | 0.125          | 0.013  | 0.110 | 0.111 |
| $\eta_2$  | -0.002       | 0.118 | 0.118        | -0.002 | 0.109   | 0.109          | -0.012 | 0.099 | 0.100 |
| $\sigma$  | -0.002       | 0.052 | 0.052        | -0.001 | 0.052   | 0.052          | 0.003  | 0.051 | 0.051 |
| au        | 0.012        | 0.112 | 0.112        | 0.010  | 0.090   | 0.090          | 0.008  | 0.037 | 0.038 |
|           |              |       |              | Indepe | endence |                |        |       |       |
| $\beta_1$ | 0.024        | 0.135 | 0.137        | 0.058  | 0.137   | 0.149          | 0.124  | 0.141 | 0.188 |
| $\beta_2$ | 0.081        | 0.085 | 0.118        | 0.167  | 0.087   | 0.188          | 0.327  | 0.092 | 0.340 |
| $\eta_0$  | 0.165        | 0.111 | 0.199        | 0.314  | 0.109   | 0.333          | 0.520  | 0.110 | 0.532 |
| $\eta_1$  | 0.052        | 0.140 | 0.150        | 0.100  | 0.137   | 0.170          | 0.169  | 0.133 | 0.215 |
| $\eta_2$  | 0.129        | 0.095 | 0.160        | 0.248  | 0.095   | 0.265          | 0.415  | 0.101 | 0.427 |
| $\sigma$  | 0.001        | 0.055 | 0.055        | -0.013 | 0.055   | 0.057          | -0.082 | 0.053 | 0.098 |

# Normality of the estimators:



 $\hat{\omega}=\mbox{Fisher's Z}$  transformation of  $\hat{\tau}$ 

Estimation of the variance and 95% coverage rates:

| Par.      | Bias   | ESD   | BSE   | RMSE  | CR    |
|-----------|--------|-------|-------|-------|-------|
| $\beta_1$ | -0.006 | 0.130 | 0.136 | 0.130 | 0.959 |
| $\beta_2$ | 0.002  | 0.100 | 0.104 | 0.100 | 0.958 |
| $\eta_0$  | -0.021 | 0.160 | 0.172 | 0.161 | 0.968 |
| $\eta_1$  | -0.011 | 0.178 | 0.173 | 0.179 | 0.950 |
| $\eta_2$  | -0.024 | 0.148 | 0.156 | 0.150 | 0.948 |
| $\sigma$  | 0.008  | 0.076 | 0.078 | 0.077 | 0.958 |
| au        | 0.019  | 0.084 | 0.085 | 0.086 | 0.928 |
|           |        |       |       |       |       |

Scenario 2: Sensitivity to misspecification of the copula structure

- Same model as for Scenario 1 except that Gumbel and Gaussian copulas are used to estimate the model
- Average of the estimated cumulative hazard functions:



 $\Rightarrow$  Findings similar to those in Huang and Zhang (2008)

|           |               | $\tau = 0.2$ |       | $\tau = 0.4$    |       | $\tau = 0.8$ |        |       |       |
|-----------|---------------|--------------|-------|-----------------|-------|--------------|--------|-------|-------|
|           | Bias          | ESD          | RMSE  | Bias            | ESD   | RMSE         | Bias   | ESD   | RMSE  |
|           | Gumbel copula |              |       |                 |       |              |        |       |       |
| $\beta_1$ | -0.009        | 0.139        | 0.140 | -0.021          | 0.138 | 0.139        | -0.019 | 0.126 | 0.128 |
| $\beta_2$ | 0.006         | 0.104        | 0.104 | -0.003          | 0.108 | 0.108        | -0.012 | 0.099 | 0.100 |
| $\eta_0$  | -0.005        | 0.158        | 0.158 | -0.022          | 0.141 | 0.142        | -0.026 | 0.112 | 0.115 |
| $\eta_1$  | 0.002         | 0.139        | 0.139 | 0.000           | 0.129 | 0.129        | 0.006  | 0.112 | 0.112 |
| $\eta_2$  | -0.004        | 0.135        | 0.135 | -0.018          | 0.124 | 0.125        | -0.019 | 0.100 | 0.102 |
| $\sigma$  | -0.014        | 0.052        | 0.054 | -0.014          | 0.052 | 0.053        | 0.006  | 0.051 | 0.052 |
| au        | -0.001        | 0.130        | 0.130 | 0.013           | 0.109 | 0.110        | 0.000  | 0.036 | 0.036 |
|           |               |              |       | Gaussian copula |       |              |        |       |       |
| $\beta_1$ | -0.013        | 0.135        | 0.135 | -0.018          | 0.132 | 0.133        | -0.008 | 0.124 | 0.125 |
| $\beta_2$ | -0.011        | 0.107        | 0.107 | -0.016          | 0.105 | 0.106        | -0.000 | 0.098 | 0.098 |
| $\eta_0$  | -0.018        | 0.159        | 0.160 | -0.021          | 0.132 | 0.133        | -0.001 | 0.107 | 0.107 |
| $\eta_1$  | -0.002        | 0.139        | 0.139 | -0.000          | 0.127 | 0.127        | 0.012  | 0.112 | 0.113 |
| $\eta_2$  | -0.010        | 0.133        | 0.133 | -0.012          | 0.117 | 0.117        | 0.007  | 0.097 | 0.097 |
| $\sigma$  | 0.004         | 0.053        | 0.054 | 0.012           | 0.053 | 0.054        | 0.020  | 0.053 | 0.056 |
| au        | 0.022         | 0.140        | 0.142 | 0.014           | 0.096 | 0.097        | -0.047 | 0.043 | 0.064 |

## Scenario 3: Goodness-of-fit tests for Cox/copula model

- The idea is to construct a test statistic from the L<sub>2</sub> distance between a model based and a nonparametric estimator of the distribution of R = min(T, C)
- ♦ Model based estimator: Can be derived from the expressions of  $\hat{F}_T$  and  $\hat{F}_C$
- ◇ Nonparametric estimator: Since  $R \perp A$ , a regular Kaplan-Meier estimator of  $F_R$  can be used
- $\diamond$  Bootstrap is used under  $H_0$  to approximate the rejection rates

Three cases:

- Case 1: Correctly specified model
- ◊ Case 2: Model for C misspecified
- ◊ Case 3: Regression functions for T and C misspecified

Rejection rates:

| n    | Case | 5%    | 10%   |  |
|------|------|-------|-------|--|
| 500  | 1    | 0.038 | 0.078 |  |
|      | 2    | 0.504 | 0.674 |  |
|      | 3    | 0.334 | 0.430 |  |
| 1000 | 1    | 0.058 | 0.122 |  |
|      | 2    | 0.938 | 0.976 |  |
|      | 3    | 0.651 | 0.765 |  |

Dependent censoring, related problems and literature

- Model specification and identification
- 3 Estimation and asymptotic properties
- 4 Simulations



What we are currently working on:

- Extension to the case where both *T* and *C* follow a semiparametric transformation model
- Dependent censoring in cure models
- ◊ Dependent censoring and confounding based on semiparametric Cox model for *T*
- Quantile regression under dependent censoring
- Investigation of partial identification results
- Random effects approach to handle dependent censoring

#### Main reference:

Deresa, N.W. and VK (2023). Copula based Cox proportional hazards models for dependent censoring. *Journal of the American Statistical Association (to appear)*, DOI: 10.1080/01621459.2022.2161387

Example: Staphylococcus infection (Geskus, 2016)

- Of interest : Time to infection during in-hospital stay
- o How to deal with patients that are discharged without infection ?
- (1) Biological question : What would happen if everyone stayed in hospital ? (relevant to compare infection risk with other hospitals)
  - ⇒ Use marginal distribution (with discharge considered as censoring event)
  - $\Rightarrow$  Leads to dependent censoring
- (2) Clinical question : What percentage of patients gets infected while staying in hospital, and when do they get infected ?
  - ⇒ Use sub-distribution of staphylococcus infection in the presence of the competing event (=discharge)



Examples of models for informative censoring:

 $\diamond$  *F*<sub>T</sub> and *F*<sub>C</sub> share common parameters:

$$T \sim N(\mu_T, \sigma)$$
 and  $C \sim N(\mu_C, \sigma)$ 

◊ Koziol-Green model:

$$1 - F_C(t) = [1 - F_T(t)]^{\gamma}$$

 $\Rightarrow$  Dependence on the level of the distribution functions

