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The problem: Combining information

Suppose ψ is a parameter of interest, with data y1, . . . , yk from
sources 1, . . . , k carrying information about ψ. How to combine
these pieces of information?

Standard (and simple) example: yj ∼ N(ψ, σ2j ) are indepenedent,
with known or well estimated σj . Then

ψ̂ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ2j
∼ N

(
ψ,
( k∑
j=1

1/σ2j

)−1)
.

Often additional variability among the ψj . Would e.g. be interested
in assessing both parameters of ψ ∼ N(ψ0, τ

2).

We need extended methods and partly new paradigms for handling
cases with very different types of information.
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Plan

General problem formulation:

Data yj source j carry information about ψj . Wish to assess overall
aspects of these ψj , perhaps for inference concerning some
φ(ψ1, . . . , ψk).

A Confidence distributions

B Previous CD combination methods (Singh, Strawderman, Xie,
Liu, Liu)

C A different II-CC-FF paradigm, via steps Independent
Inspection, Confidence Conversion, Focused Fusion, and
confidence-to-likelihood operations

D1 Example 1: Effective population size for cod

D2 Example 2: Olympic unfairness

E Concluding remarks
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A: Confidence distributions

For a parameter ψ, suppose data y give rise to confidence
intervals, say [ψ0.05, ψ0.95] at level 0.90, but also for other levels.
These are converted into a full distribution of confidence, with

[ψ0.05, ψ0.95] = [C−1(0.05, yobs),C
−1(0.95, yobs)],

etc. Here C (ψ, y) is a cdf in ψ, for each y , and

C (ψ0,Y ) ∼ unif at true value ψ0.

Very useful, also qua graphical summary: the confidence curve

cc(ψ) = |1− 2C (ψ, yobs)|,

with cc(ψ) = 0.90 giving the two roots ψ0.05, ψ0.95, etc.

An extensive theory is available for CDs, cf. Confidence,
Likelihood, Probability, Schweder and Hjort (CUP, 2016).
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B: Liu, Liu, Singh, Strawderman, Xie et al. methods

Data yj give rise to a CD Cj(ψ, yj) for ψ. Under true value,
Cj(ψ,Yj) ∼ unif. Hence Φ−1(Cj(ψ,Yj)) ∼ N(0, 1), and

C̄ (ψ) = Φ
( k∑

j=1

wjΦ
−1(Cj(ψ,Yj))

)
is a combined CD, if the weights wj are nonrandom and∑k

j=1 w
2
j = 1.

This is a versatile and broadly applicable method, but with some
drawbacks: (a) trouble when estimated weights ŵj are used; (b)
lack of full efficiency. In various cases, there are better CD
combination methods, with higher confidence power.

Better (in various cases): sticking to likelihoods and sufficiency.
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CD combination via confidence likelihoods

Combining information, for inference about focus parameter
φ = φ(ψ1, . . . , ψk): General II-CC-FF paradigm for combination of
information sources:

II: Independent Inspection: From data source yj to estimate and
intervals, yielding a CD:

yj =⇒ Cj(ψj).

CC: Confidence Conversion: From the confidence distribution to a
confidence log-likelihood,

Cj(ψj) =⇒ `c,j(ψj).

FF: Focused Fusion: Use the combined confidence log-likelihood
`c =

∑k
j=1 `c,j(ψj) to construct a CD for the given focus

φ = φ(ψ1, . . . , ψk), perhaps via profiling, median-Bartletting, etc.:

`c(ψ1, . . . , ψk) =⇒ C̄fusion(φ).

FF is also the (focused) Summary of Summaries operation.
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Carrying out steps II, CC, FF can be hard work, depending on
circumstances. The CC step is sometimes the hardest (conversion
of CD to log-likelihood). The simplest method is normal
conversion,

`c,j(ψj) = −1
2Γ−1

1 (ccj(ψj)) = −1
2{Φ

−1(Cj(ψj))}2,

but more elaborate methods may typically be called for.

Sometimes step II needs to be based on summaries from other work
(e.g. from point estimate and a .95 interval to approximate CD).

With raw data and sufficient time for careful modelling, steps II
and CC may lead to `c,j(ψj) directly. Even then having individual
CDs for the ψj is informative and useful.
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Illustration 1: Classic meta-analysis.

II: Independent Inspection: Statistical work with data source yj
leads to ψ̂j ∼ N(ψj , σ

2
j ); Cj(ψj) = Φ((ψj − ψ̂j)/σj).

CC: Confidence Conversion: From Cj(ψj) to

`c,j(ψj) = −1
2(ψj − ψ̂j)

2/σ2j .

FF: Focused Fusion: With a common mean parameter across
studies: Summing `c,j(ψj) leads to classic answer

ψ̂ =

∑k
j=1 ψ̂j/σ

2
j∑k

j=1 1/σ2j
∼ N

(
ψ,
( k∑
j=1

1/σ2j

)−1)
.

With ψj varying as N(ψ0, τ
2): then ψ̂j ∼ N(ψ0, τ

2 +σ2j ). CD for τ :

C (τ) = Prτ{Qk(τ) ≥ Qk,obs(τ)} = 1− Γk−1(Qk,obs(τ)),

with Qk(τ) =
∑k

j=1{ψ̂j − ψ̄(τ)}2/(τ2 + σ2j ). There is a positive
confidence probability for τ = 0. CD for ψ0: based on
t-bootstrapping and

t = {ψ̄(τ̂)− ψ}/κ(τ̂).
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Illustration 2: Let Yj ∼ Gamma(aj , θ), with known shape aj .

II: Independent Inspection: Optimal CD for θ based in Yj is
Cj(θ) = G (θyj , aj , 1).

CC: Confidence Conversion: From Cj(θ) to
`c,j(ψj) = −θyj + aj log θ.

FF: Focused Fusion: Summing confidence log-likelihoods,
C̄fusion(θ) = G (θ

∑k
j=1 yj ,

∑k
j=1 aj , 1). This is the optimal CD for

θ, and has higher CD performance than the Singh, Strawderman,
Xie type

C̃ (θ) = Φ
( k∑

j=1

wjΦ
−1(Cj(θ)

)
,

even for the optimally selected wj .

Crucially, the II-CC-FF strategy is very general and can be used
with very different data sources (e.g. hard and soft and big and
small data). The potential of the II-CC-FF paradigm lies in its use
for much more challenging applications (where each of II, CC, FF
might be hard).
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D1: Effective population size ratio for cod

A certain population of cod is studied. Of interest is both actual
population size N and effective population size Ne (the size of a
hypothetical stable population, with the same genetic variability as
the full population, and where each individual has a binomially
distributed number of reproducing offspring). The biological focus
parameter in this study is φ = Ne/N.

Steps II-CC for N: A CD for N, with confidence log-likelihood: A
certain analysis leads to confidence log-likelihood

`c(N) = −1
2(N − 1847)2/5342.

Steps II-CC for Ne : A CD for Ne , with confidence log-likelihood:
This is harder, via genetic analyses, etc., but yields confidence
log-likelihood

`c,e(Ne) = −1
2(Nb

e − 198b)/s2

for certain estimated transformation parameters (b, s).
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Step FF for the ratio: A CD for φ = Ne/N. This is achieved via
log-likelihood profiling and median-Bartletting,

`prof(φ) = max{`c(N) + `c,e(Ne) : Ne/N = φ}.
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D2: The Olympic unfairness of the 1000 m

Olympic speedskaters run the 1000 m in less than 70 seconds
(speed more than 50 km/h). They skate two and a half laps, in
pairs, with a draw determining inner/outer. Acceleration matters
(mv2/r1 > mv2/r2 with r1 = 25 m and r2 = 29 m), and so does
fatigue at end of race.

Start in inner lane: three inners, two outers.
Start in outer lane: two inners, three outers.

I shall estimate the Olympic unfairness parameter d , the difference
between outer and inner, for top skaters.

 

 

start outer

start inner

200m, 600m, finish
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In the Olympics: only one race. In the annual World Sprint
Championships: they race 500 m and 1000 m both Saturday and
Sunday, and they switch start lanes.

The six best men, from Calgary, January 2012, Saturday and
Sunday, with ‘i’ and ‘o’ start lanes, and passing times:

200 m 600 m 1000 m 200 m 600 m 1000 m
1 Shani Davis o 16.80 41.52 1:07.25 i 17.02 41.72 1:07.11
2 S. Groothuis i 16.61 41.48 1:07.50 o 16.50 41.10 1:06.96
3 Kyou-Hyuk Lee i 16.19 41.12 1:08.01 o 16.31 40.94 1:07.99
4 T.-B. Mo o 16.57 41.67 1:07.99 i 16.27 41.54 1:07.99
5 M. Poutala i 16.48 41.50 1:08.20 o 16.47 41.55 1:08.34
6 D. Lobkov i 16.31 41.29 1:08.10 o 16.35 41.26 1:08.40

I need a model for (Sat, Sun) results (Y1,Y2), utilising passing
times ui ,1, vi ,1 for Sat race and ui ,2, vi ,2 for Sun race, along with

zi ,1 =

{
−1 if no. i starts in inner on Saturday,

1 if no. i starts in outer on Saturday,

zi ,2 =

{
−1 if no. i starts in inner on Sunday,

1 if no. i starts in outer on Sunday.
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My model for (Sat, Sun) results, for skater i :

Yi ,1 = a1 + bui ,1 + cvi ,1 + 1
2dzi ,1 + δi + εi ,1,

Yi ,2 = a2 + bui ,2 + cvi ,2 + 1
2dzi ,2 + δi + εi ,2.

Here ui ,1, ui ,2 are 200 m passing time, vi ,1, vi ,2 are 600 m passing
time; δi follows the skater, with δi ∼ N(0, κ2) across skaters; and
εi ,1, εi ,2 are independent N(0, σ2). The inter-skater correlation is
ρ = κ2/(σ2 + κ2).

Crucially, outer lane start means adding 1
2d , inner lane start means

adding −1
2d , so d is overall difference due to start lane. Fairness

means d should be very close to zero.

The model has seven parameters, and I need full analysis of
dataset from each World Sprint Championships event to get hold
of a CD for the focus parameter d .
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From full analysis of World Sprint events 2014, ..., 2001 (seven
parameters in each model), I get hold of

d̂j ∼ N(dj , σ
2
j ),

and I then use dj ∼ N(d0, τ
2). Full CD analyses are then available

for d0 and for τ .
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Confidence curves cc(dj) for the fourteen unfairness parameters,
over 2014 to 2001. The overall estimate 0.14 seconds (advantage
inner-starter) is very significant, and big enough to make medals
change necks.
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Conclusion: The skaters need to run twice. (I’ve told the ISU.)
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E: Concluding remarks (and further questions)

a. If we have the raw data, and have the time and resources to do
all the full analyses ourselves, then we would find the Cj(ψj) in
Step II = Independent Inspection. In real world we would often
only be able to find a point estimate and a 95% interval for the ψj .
We may still squeeze an approximate CD out of this.

b. Step CC = Confidence Conversion is often tricky. There is no
one-to-one correspondence between log-likelihoods and CDs. Data
protocol matters. See CLP (2016).

c. Step FF = Focused Fusion may be accomplished by profiling the
combined confidence log-likelihood, followed by fine-tuning
(Bartletting, median correction, abc bootstrapping).
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d. Links to Bayes and objective Bayes – the II-CC-FF scheme can
take on board an expert’s prior for ψj alone, or for overall focus
parameter φ(ψ1, . . . , ψk), without the full Bayesian job (of having
a joint prior for all parameters of all models).

– Who wins the 2018 Football World Cup? Combining FIFA
ranking numbers with expert opinions, 1 day before each match.
System will be in place, with day-to-day updating, June-July 2018.

e. Other ‘harder applications’ of the II-CC-FF scheme are under
way (inside the FocuStat research programme 2014–2018) –
involving hard and soft data, as well as with big and small data.

– Evolutionary diversification rates for mammals over the past 40
million years: fossil records + phylogeny.

– Air pollution data for European cities, aiming at CDs for
Pr(tomorrow will be above threshold).
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